JPS6090746A - Polyester thin cylindrical molding - Google Patents

Polyester thin cylindrical molding

Info

Publication number
JPS6090746A
JPS6090746A JP58198244A JP19824483A JPS6090746A JP S6090746 A JPS6090746 A JP S6090746A JP 58198244 A JP58198244 A JP 58198244A JP 19824483 A JP19824483 A JP 19824483A JP S6090746 A JPS6090746 A JP S6090746A
Authority
JP
Japan
Prior art keywords
polyester
designated
thickness
molded body
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58198244A
Other languages
Japanese (ja)
Other versions
JPH0234309B2 (en
Inventor
Toru Matsubayashi
徹 松林
Seiichi Yamashiro
山城 誠一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP58198244A priority Critical patent/JPS6090746A/en
Priority to EP84307290A priority patent/EP0142948A3/en
Priority to US06/664,071 priority patent/US4659534A/en
Publication of JPS6090746A publication Critical patent/JPS6090746A/en
Publication of JPH0234309B2 publication Critical patent/JPH0234309B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D23/00Producing tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/22Shaping by stretching, e.g. drawing through a die; Apparatus therefor of tubes
    • B29C55/26Shaping by stretching, e.g. drawing through a die; Apparatus therefor of tubes biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/28Shaping by stretching, e.g. drawing through a die; Apparatus therefor of blown tubular films, e.g. by inflation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73923Organic polymer substrates
    • G11B5/73927Polyester substrates, e.g. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0031Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0072Roughness, e.g. anti-slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/001Tubular films, sleeves

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To obtain a polyester thin cylindrical molding of an optimum thickness as a carrier for high-density magnetic recording elements, which is excellent in physical properties and adhesion with regenerating head, by specifically designating the intrinsic viscosity of polyester, thickness, surface roughness and degree of orientation of polyester. CONSTITUTION:For polyester thin cylindrical moldings having main repeating unit of ethylene terephthalate, the intrinsic viscosity is designated to 0.5 or more for maintaining of mechanical strength and preventing vertical tear, the thickness is designated to 100mum or less from standpoint of adhesion with head for recording regeneration, and the difference between maximum thickness and minimum thickness of cross section of the molding in parallel with axis is designated to 30mum or less for preventing longitudinal tear. The surface roughness in the circumferential direction of the periphery of the molding is designated to 0.05mum or less from the standpoint of longitudinal tear prevention, and orientation degrees in axial and circumferential directions are designated to 0.03 or more from the standpoint of longitudinal tear resistance and circumferential strength. The cylindrical molding is obtained by a vacuum molding method to push a heated film 5 into the cavity 2 by a plug 1 or a blow molding method.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は電子機器産業分野において使用される記録素子
用担体に使用し得る成形体に関し、更にはその内面及び
/又は外面に高密度砿気配鎌素子等を装着し得る平滑な
表面性を有し、肉薄かつ均一な肉厚分布を有するポリエ
ステル製円筒状成形体に関する。
[Industrial Field of Application] The present invention relates to a molded body that can be used as a recording element carrier used in the electronic device industry, and furthermore, a molded body that can be equipped with a high-density atomized sickle element or the like on its inner and/or outer surface. The present invention relates to a polyester cylindrical molded body having smooth surface properties, thin walls, and uniform wall thickness distribution.

【従来技術〕[Conventional technology]

従来、ポリエステル製肉薄円筒状成形体としては、例え
ば製分1i838−18978号の如ぎ、いわゆるイン
フレーション成形法或いは特公昭46−32080号の
如き、押出成形で得られたチューブ状予備成形体を供給
p−ルと引取p−ルの間で鷺伸・膨張せしめて得られる
成形体等が知られている。しかしながら、かかる製造法
により得られる成形体は、偏平に折りたたまれた状態で
あるため、おり跡があったり、ダイスより押出される際
に生じるタテスジ(ダイスジ)等の欠陥部分があり、こ
れらの成形体を記録素子用担体に使用する場合には、核
欠陥部分が使用上の重大な欠点となるため、その改良が
望まれている。 〔発明の目的〕 本発明は以上の事情を背景として為されたものであり、
その目的とするところは円筒状の形態で肉薄かっ、折り
跡ダイスジ等の欠陥のない、優れた表面平滑性及び均一
な肉厚分布を有し、優れた強度及び耐熱寸法安定性を有
するポリエステル製成形体を提供することKある。 〔発明の構成〕 本発明者は、かかる問題点に着目し、前駅の如き欠点の
無い肉薄円筒状成形体に関し鋭意研究の結果、特定のポ
リエステルよりなり特定の形状、肉厚、配向度及び表面
性を有する成形体であれば、欠点を改善出来る事を見出
し本発明圧到達し六。 即ち本発明は、主にる繰り返し単位がエチレンテレフタ
レートであり、固有粘度が0.5以上であるポリエステ
ルよりなる円筒状成形体において、成形体の肉厚が10
0μ以下、軸に平行な成形体断面の最大肉厚と最小肉厚
との差が30μ以下、成形体の内面及び/又は外面の円
周方向表面粗さCCLA(単位:#))が0.05以下
であり、軸方向及び円周方向の配向度がそれぞれ0.0
3以上であるポリエステル製肉薄円筒状成形体である。 本発明におけるポリエステルは、ポリエチレンテレフタ
レート(以下PETと略す)のホモポリマーを主たる対
象とするが、テレフタル酸成分の一部を例えばイソフタ
ル酸、ナフタリンジカルボン酸、ジフェニルジカルボン
酸1 ’)フェノキシエタンジカルボン酸、ジフェニル
エーテルジカルボン酸、ジフェニルスルホンジカルボン
酸等の如き芳香族ジカルボン酸、ヘキサヒトロチレンタ
ル酸、ヘキサヒト−イソフタル酸等の如き脂環族ジカル
ボン酸、アジピン酸、セパチン酸、アゼライン酸等の如
き脂肪族ジカルボン酸、p−β−ヒトpキシエトキシ安
息香酸、ε−オキシカプロン酸等の如きオキシ酸等の他
の二官能性カルボン酸の1種以上で、及び/ヌはエチレ
ンクリコール成分の一部を例えばトリメチレングリコー
ル、テトラメチレングリコール、ヘキザメチレングリコ
ール、デカメチレングリコール9ネオペンチレングリフ
ール、ジエチレングリコール、l、1−シクロヘキサン
ジメチロール、l、4−シクロヘキサンジメチロール、
2,2−ビス(4′−β−ヒFpキシエトキシフェニル
)プロパン、ビス(4′−β−ヒトpキシエトキシフェ
ニル)スルホン酸等の他のグリコール及びこれらの機能
的誘導体の多官能化合物の181以上で置換して2 w
tチ以下の範囲で共重合せしめたコポリマーであっても
良い。 本発明のポリエステル成形体の固有粘度(以下IVと称
す)は0.5以上であり、0.6以上、特KO07以上
が更に好ましい。■vがO,Sよりも低いと機械的強度
、%に縦裂げの発生が著しくなり使用に耐え難い。IV
が0.6 以mK0.7以上であると上記機械的強度が
良好 5− となる。 本発明の成形体肉厚は100μ以下であるが、100μ
よりも厚いと、例えば本発明を記録素子用担体に使用し
た場合、配録再生用ヘッドとの密着性が悪くなる等の欠
陥が生じる。肉厚の好ましい範囲は、30μ乃至80μ
、特に40〜60μの範囲が再生用ヘッドとの密着性、
操作上の剛性等の面で好ましい。 肉厚の下限は特に無いが、あまり肉薄であると剛性が弱
くなる事、成形体の製造が困難となる。 本発明の成形体肉厚は、その目的とする用途の軽量化・
小型化のため100μ厘以下とい 6 − う従来の円筒状成形体に比較して肉薄なものであるが、
かかる肉薄の場合、成形体の軸に平行な切断面からの縦
裂が著しくなり極めて大きな問題となる。該縦裂に対し
、軸に平行な成形体断面の最大肉厚と最小肉厚との差を
30μ層以下とする事、成形体の内面及び/ヌは外面の
軸方向のスジ状四部の深さ及び/又はスジ状凸部の高さ
を2〃以下とする事、軸方向及び円周方向の配向度を0
.03以上とする事が極めて有効である。軸方向の配向
度が0.03より小さいと成形体の円周方向の強度が不
充分であり円周方向の配向度が0.04以上、特1c 
0.05以上とし良場合は1配縦裂強度が良好になるた
め好ましい。尚軸方向及び円周方向の配ρ度が0.03
よりも小さいと骸成形体の耐熱寸法安定性を更に向上せ
しめるために熱処理を施こした際の強度低下が著しくな
る。 本発明で軸方向の配向度とは、軸方向と厚み方向との屈
折率の差を指し1円周方向の配向度とは、円周方向と厚
み方向との屈折率の差をいう。 本発明の成形体の内面及び/又は外面の円周方向の表面
粗さく中心縁平均粗さ:CLAと略す)が0.05以下
であるが、CLAが0.05よりも大きいと記録を再生
する際の性能が低下するため好ましくない。 本発明の成形体の形状は、実質的に円筒状であり、成形
体の外径(D)と成形体長さくH)の値は、用途によっ
て異なるが、成形体用途を配録素子用担体として使用す
る場合、通常下式の範囲のものが有用である。 10w≦D≦80m 20m≦H≦200u H/D≧2 更に円筒側部が中心軸に対し0.1部以上の角度を有す
る円錐体の1部の如き形状圧すると成形体を取扱う際に
重ね合わせる事が出来るため好ましく、また成形体を成
形する際に金型の如き成形設備との接触による傷が出来
難いため、外観・表面平滑性・縦裂強度が優れる。 本発明の成形体の密度Cま、通常t、a 611/cd
以上であるが、該成形体の耐熱寸法安定性を更に良好な
ものとするためK、円筒状を保つ様拘束しながら熱処理
を施こす場合は、密度が1.37#/2−以上、好まし
くは密度が1.381/csA以上となる条件が良い。 かかる熱処理を施こした場合、成形体の真円性が更に向
上するため好ましい。 本発明の成形体は、例えば第1図に示す如く、実質的に
無延伸で非晶状のシートを円柱状のプラグ屋及び/ヌは
円筒状の側面を有するキャビティ型を用い熱成形する方
法或いは第7図に示す如く実質的に非晶質のPETチュ
ーブを延伸可能な温度範囲で、軸方向に延伸し、かつ円
周方−に吹込膨張せしめて、2軸的に配向L2PET製
肉薄円筒状成形体を成形する方法等により得られる。 第1図においては、1はプラグ、2はキャ 9 − ビテイ、3はヒータ、4はクランプ、5は熱成形用のポ
リエステルフィルムを示し、熱成形に際しては、ポリエ
ステルフィルム5をクランプ4で保持し、ヒータ3で延
伸温度迄加熱する図(a)参照。次いでヒータ3をフィ
ルム5上より移動させ、プラグlをフィルム5上から押
圧しキャビティ2内に押込み、フィルム5を有底円筒状
の予備成形体6に成形する((b)図参照)。プラグl
、キャビティ2は加熱されており、同時にプラグ1から
圧縮空気を吹込むか(圧空成形)、キャビティ2を減圧
にするか(真空成形)若しくは両者を同時に実施して予
備成形体6をキャビティ2の形状に試製する。出来上っ
た予備成形体の上部及び底部を切断して肉薄円筒状成形
体を製造する。 又、第7図に示した方法においては、21はポリエステ
ルよりなる素材管、22は圧力流体を供給する管端、2
3は供給p−ラ。 24け筒状加熱装置、26は延伸ローラ。 F−1〇− 27は4増り装置であり、素材管21[その管端22か
ら圧力流体を供給しつつ供給R−ラ23から定速で供給
し、筒状加熱装[24に導き、これを延伸温度まで加熱
する。素材管は加熱装置24内で円周力1’o!に膨張
延伸されると共に供給p−ラより早い速度の延伸ρ−ラ
26ヌは4増り装@ 27 Kより長手方面にも延伸さ
れる。4増り装置f27は成形管を把持して4窄ると同
時に圧力流体をシールする。4増られた成形管はシール
部を切断され円筒状成形体かえられる。 〔実施例〕 以下、実施例により本発明を詳述する。なお主な物性値
の測定条件は次の通りである。 il+ 固有粘度rrv) : 0−りapフェノールを溶媒として35℃で測定。 (2) 密 度 〔ρ〕 : 四塩化炭素とn−へブタンより作成した密度勾配管にで
30℃にで測定。 (3) 屈折率〔n〕: アツベ屈折率計に偏光板を装着し、成形体より切増った
サンプルの厚さ方向及び平面方向の屈折率を温度25℃
でナトリウムD#!を用いて測定。 (4) 縦裂強度: 成形体の軸に平行な切断面に20℃にて種々の曲率半径
となる様変形を与え、縦裂が発生した曲率半径を測定。 (51表面粗さCLA(センター・ライン争アペレツジ
(Center Line Average ・中心線
平均粗さ)) JIS BO6011c準じ、東京精密社製触針式表面
粗さ計(Surcom 3 B )を使用して、針の半
径2μ属、荷重0.19pの条件下に、フィルム粗さ曲
線をめ、その中心線の方向に測定長さLの部分を抜きと
り、この抜きとり部分の中心線をX軸、縦倍率の方向を
Y軸として粗さ曲線なY=fに)で表わしたとき、次の
式で与えられた値をμ調単位で表わす。 この測定は、基準長を0.25寵として8個測定し、値
の大きい方向から3個除外し5個の平均値で表わす。 実施例1〜5及び比較例1 表−IK示すIVO)PETチップを160℃で5時間
熱風乾燥し、チップ中の水分率を0.005 wtチ程
度としたのち、681mφのスクリュー径を有し、先端
にスリット状の空隙を有するダイスを装着した押出機V
C#乾燥チップを供給し、押出され*PETシートを直
ちに水冷により約20℃の温度KW4節されたステンレ
ス製ドラムにより冷却して肉厚的200# 、ρ=1.
33j’/cII、表−1に示すIVの非晶質PETシ
ートを得た。 該シートを100■X100mの正方形状穴を有する枠
にて上下よりはさみ固定したの−13+ ち、リング状ヒーターによりシート中心部が約130℃
になる迄加熱層、先端部及び根本部の直径が32■及び
34M、長さ125u温度120℃のプラグ金型により
シートを、底部及び上部の直径が36111及び37N
、深さ12711m +温度60℃のキャビティ金型内
圧押込み、プラグ金型より5 k#/cdGの圧縮空気
の吹込みシートをキャビティ金型迄膨張せしめ、約5秒
間保持したのち成形体内の圧力を常圧迄減じ金型を開い
て有底円筒状成形体を増り出した。以上の成形概要を第
1図に示すO 得られ九成形体の軸方向肉厚分布・配向度分布の例をそ
れぞれ第3図、第4図に示す。 #I2図は有底円筒状成形体の断面図であり、Dはフラ
ンジ面、Eは底部であり側面の数値はフランジ面からの
距離(S [3) )を示す。 第3図〜第5図は、実施例2及び4の成形体の肉厚分布
TH[μ〕1円周方向配向度ムnx−z(円周方向の屈
折率nzと厚み方向屈折率nz14− の差)及び軸方向配向度ムny−7(軸方向の屈折率り
とnzとの差)の分布を示し、グラフ内の数置2,4け
それぞれ実施例2.4の成形体の測定値を示す。794
図で7ランク面より2(!II程度迄(領域A)では、
Δnx−,< 0.03 。 約2〜43迄の範囲(領域B)では、0.03≦ムnX
−Z≦o、o a 、約4cx以上の範囲(領域C)で
は、ΔnX−Z > 0−04となっている。 更に成形体円筒部を切り開いて、直交する偏光板の間に
実施例4のサンプルを入れ、歪を観察した結果を第6図
に示す。 第6図で数置0〜10はそれぞれフランジ面からの距離
(3)を示し、図中の曲線は歪により生じ良干渉稿の概
略を示す。第6図で、A′は軸方向の歪が生じている領
域I C’は周方向の歪がが生じている領域、B′は軸
方向と周方向の歪が混在する領域であり、第4図で説明
したΔnz−2の範囲による領域A−Cとほぼ一致する
。次いで円筒状成形体の各部を軸方向を軸として折り曲
げ、曲率半径が0.5鰭以下とした場合に縦裂けかどの
程度発生するかを調べた。結果を表−1に示す。 表 −1 表−1より明らかな如(、比較例1のIVが0.50よ
り低い場合は、いずれの部分も縦裂が50−以上発生し
、使用に耐えない。■が約0.60以上であれば領域C
の部分を円筒体として使用すればタテサケの問題が無く
、IVが約0.70以上であればどの部分も**が−無
い−1 実施例6〜9及び比較例2,3 無延伸ポリエステルシートの肉厚を変えた他は、実施例
2と同様にして肉厚の異なる円筒状成形体を得た。骸成
形体の表面KA71を蒸着し、静電溶量式の金属表面粗
度計(株式会社メトロール社製、商品名サーフタッチ、
センサーは3 tm X 9寵の大きさで平面用・塵式
TP−401型)のセンサー押付圧力機構の低加重弐に
改造し7’CfAllAll釦装置、該成形体表面とセ
ンサーとの密着性を評価11t。結果を表−3に示す。 17− 1)本表面粗度計の測定原理は被測定物と金属電極の間
の空間率により静電容量が変わ\ る事を利用し、液晶指示(フルスケール32)にて空間
率を測定する型式のものである。従って電極と成形体と
の密着性が悪いと液晶指示数が少なくなる。 実施例10〜12及び比較例4 圧空成形の際にリング状ヒーターの替わりに棒状ヒータ
ーを使用しkものを比較例とした他は、実施例2と同様
に有底円筒状成形体を成形した。得られた有底円筒状成
形体より円筒部分のみを切り出し1円周方向の肉厚と円
筒部の真円度を測定した。結果を表−3に示す。 18− 表 −3 実施例】0〜12の如く円周方向の最大肉厚と最少肉厚
との差が30μ以内であると、円筒部の最長径と最短径
との差が1社以内で真円性が良好であるのに対し、比較
例4の如く肉厚差が30μを越えると、真円性が極端に
悪くなる。 実施例13〜15及び比較例5 rv=o、asのPET−F−7ブを160℃の熱風乾
燥機により5時間乾燥してチップ中の水分割合を0.0
05 wt−程度とした後、シリンダ゛−直径30訂φ
!シリンダー長/シリンダー径=22であり、E端部に
チューブ用ダイスを装着した押出機へ乾燥チップを供給
し、シリンダー及びダイス温度275〜300℃にて、
チューブを押出し直ちに水冷固化さしめる事とより、外
径9酊、肉径0.6uの非晶状PETチューブを得た。 骸チューブはIV =0.60 、ρ= 1.33であ
った。 該チューブを第7図の如き装置にて繭述の方法で延伸膨
張せしめ、シール部を切断して円筒状成形体なえfc。 なお、加熱器内の熱水温度は98℃とし、縦方向の延伸
倍率は供給p−ルと引墳p−ルの回転数を調節する事に
より変え、円周方向の延伸倍率はサイジンク″用バイブ
(第7図、28)の内径を変える事により変え声。得ら
れた成形体の配回度及び強度を測定した結果を表−4に
示す。 表 −4 *折り曲げ方を周方向を軸とした他は縦裂強度の場合と
同様にして実施した。 配向度が0.03より少さいと強度が極端に低下する。 実施例16〜18及び比較例6 PETK表−5VC示す粒子径及び添加量の滑剤を添加
した他は、実施例2と同様Kして表両粗度の異なる有底
円筒状成形体を得た。 骸有底円筒状成形体は胴部の傾き角度が0.25゜であ
った。かかる成形体の底部を他の成形体の開口部に挿入
する事により重み重ねた後、21− 再び別々にした際の引掻き傷発生及びスベリ性状況を表
−5に示す。 表 −5 実施例16〜18のサンプルの3次元粗さ計による表面
性状況は磁気テープとして実用されているユ軸延伸PE
Tフィルムと同程度の粗さのものであったが、比較例6
は5〜8μ程度の突起があり、磁気記録用担体としては
不良であった。 以上説明した如く、本発明の成形体は肉薄かつ肉厚分布
及び表面平滑性が良好で機械的22− 用し得る。
Conventionally, thin cylindrical molded products made of polyester have been supplied with tubular preforms obtained by the so-called inflation molding method, such as Seiban No. 1i838-18978, or by extrusion molding, such as in Japanese Patent Publication No. 46-32080. A molded article obtained by stretching and expanding between a pulley and a pulley puller is known. However, since the molded product obtained by this manufacturing method is in a flat folded state, there are defects such as crease marks and vertical streaks (die streaks) that occur when extruded from a die. When using the core as a carrier for a recording element, the nuclear defect portion becomes a serious drawback in use, and therefore improvements are desired. [Object of the invention] The present invention was made against the background of the above circumstances,
Its purpose is to have a cylindrical shape with thin walls, no defects such as creases and die lines, excellent surface smoothness and uniform thickness distribution, and a polyester material with excellent strength and heat-resistant dimensional stability. There is a need to provide a molded body. [Structure of the Invention] The present inventor has focused on such problems, and as a result of intensive research into a thin cylindrical molded product without defects such as Maeki, the inventor has found that a molded product made of a specific polyester with a specific shape, wall thickness, degree of orientation, and It was discovered that the defects could be improved if the molded article had surface properties, and the pressure of the present invention was achieved.6. That is, the present invention provides a cylindrical molded body made of polyester whose main repeating unit is ethylene terephthalate and whose intrinsic viscosity is 0.5 or more, and whose wall thickness is 10
0 μ or less, the difference between the maximum wall thickness and minimum wall thickness of the cross section of the molded body parallel to the axis is 30 μ or less, and the circumferential surface roughness CCLA (unit: #) of the inner and/or outer surface of the molded body is 0. 05 or less, and the degree of orientation in the axial direction and the circumferential direction is each 0.0.
It is a thin cylindrical molded article made of polyester having a thickness of 3 or more. The polyester in the present invention is mainly a homopolymer of polyethylene terephthalate (hereinafter abbreviated as PET), and a part of the terephthalic acid component may be, for example, isophthalic acid, naphthalene dicarboxylic acid, diphenyl dicarboxylic acid (1') phenoxyethane dicarboxylic acid, Aromatic dicarboxylic acids such as diphenyl ether dicarboxylic acid, diphenylsulfone dicarboxylic acid, etc.; alicyclic dicarboxylic acids such as hexahytrotyrentalic acid, hexahyto-isophthalic acid, etc.; aliphatic dicarboxylic acids such as adipic acid, sepatic acid, azelaic acid, etc. , p-β-human p-oxyethoxybenzoic acid, ε-oxycaproic acid, etc., and/or a portion of the ethylene glycol component, such as Methylene glycol, tetramethylene glycol, hexamethylene glycol, decamethylene glycol 9 neopentylene glycol, diethylene glycol, l,1-cyclohexane dimethylol, l,4-cyclohexane dimethylol,
Polyfunctional compounds of other glycols and functional derivatives thereof such as 2,2-bis(4'-β-hyFpxyethoxyphenyl)propane, bis(4'-β-hyFpxyethoxyphenyl)sulfonic acid Replace with 181 or more and 2 w
A copolymer copolymerized in a range of t or less may also be used. The intrinsic viscosity (hereinafter referred to as IV) of the polyester molded article of the present invention is 0.5 or more, more preferably 0.6 or more, particularly KO07 or more. (2) If v is lower than O or S, mechanical strength and vertical tearing will be significant and it will be difficult to withstand use. IV
When mK is 0.6 or more and mK0.7 or more, the mechanical strength is good. The thickness of the molded body of the present invention is 100μ or less, but 100μ
If it is thicker than this, for example, when the present invention is used as a recording element carrier, defects such as poor adhesion with a recording/reproducing head will occur. The preferred range of wall thickness is 30μ to 80μ
, especially in the range of 40 to 60μ, the adhesion with the reproduction head,
This is preferable in terms of operational rigidity, etc. There is no particular lower limit to the wall thickness, but if the wall thickness is too thin, the rigidity will be weakened and it will be difficult to manufacture a molded product. The thickness of the molded body of the present invention is determined by the weight reduction and
In order to reduce the size, it is thinner than the conventional cylindrical molded body, which is less than 100 μm thick.
In the case of such a thin wall, longitudinal cracking from the cut plane parallel to the axis of the molded body becomes significant, which poses a very serious problem. Regarding the longitudinal cracks, the difference between the maximum wall thickness and the minimum wall thickness of the cross section of the compact parallel to the axis should be 30μ or less, and the inner surface and / The height of the stripe and/or striped convex portion should be 2 or less, and the degree of orientation in the axial direction and circumferential direction should be 0.
.. It is extremely effective to set the value to 03 or higher. If the degree of orientation in the axial direction is less than 0.03, the strength in the circumferential direction of the molded body is insufficient.
A value of 0.05 or more is preferable because the single alignment longitudinal tear strength becomes good. Furthermore, the ρ degree in the axial direction and the circumferential direction is 0.03.
If it is smaller than , the strength will be significantly reduced when heat treatment is performed to further improve the heat-resistant dimensional stability of the skeleton molded body. In the present invention, the degree of orientation in the axial direction refers to the difference in refractive index between the axial direction and the thickness direction, and the degree of orientation in the circumferential direction refers to the difference in refractive index between the circumferential direction and the thickness direction. The surface roughness in the circumferential direction of the inner and/or outer surface of the molded article of the present invention (center edge average roughness (abbreviated as CLA)) is 0.05 or less, but recording is not possible when CLA is greater than 0.05. This is not preferable because the performance when doing so is degraded. The shape of the molded body of the present invention is substantially cylindrical, and the values of the outside diameter (D) and the length H) of the molded body vary depending on the application, but the molded body is used as a carrier for a recording element. When used, those within the range of the following formula are usually useful. 10w≦D≦80m 20m≦H≦200u H/D≧2 Furthermore, if the shape is pressed into a shape such as a part of a cone whose cylindrical side part has an angle of 0.1 part or more with respect to the central axis, it will overlap when handling the molded body. It is preferable because it can be matched, and it is less likely to be damaged by contact with molding equipment such as a mold when molding a molded product, so it has excellent appearance, surface smoothness, and longitudinal tear strength. Density C of the molded article of the present invention, usually t, a 611/cd
As mentioned above, in order to further improve the heat-resistant dimensional stability of the molded product, when heat treatment is performed while restraining the molded product to maintain its cylindrical shape, the density is preferably 1.37#/2- or more. A good condition is that the density is 1.381/csA or more. It is preferable to perform such a heat treatment because the roundness of the molded article is further improved. The molded article of the present invention can be produced by thermoforming a substantially unstretched amorphous sheet using a cylindrical plug mold and/or a cavity mold having cylindrical side surfaces, as shown in FIG. 1, for example. Alternatively, as shown in FIG. 7, a substantially amorphous PET tube is stretched in the axial direction within a temperature range that allows stretching, and then expanded by blowing in the circumferential direction to form a thin cylinder made of biaxially oriented L2PET. It can be obtained by a method of molding a shaped body. In FIG. 1, 1 is a plug, 2 is a cavity, 3 is a heater, 4 is a clamp, and 5 is a polyester film for thermoforming. During thermoforming, the polyester film 5 is held by the clamp 4. , see figure (a) where it is heated to the drawing temperature with the heater 3. Next, the heater 3 is moved from above the film 5, and the plug 1 is pressed from above the film 5 into the cavity 2, thereby forming the film 5 into a cylindrical preform 6 with a bottom (see figure (b)). plug l
, the cavity 2 is heated, and the preform 6 is molded into the cavity 2 by simultaneously blowing compressed air from the plug 1 (air pressure forming), by reducing the pressure in the cavity 2 (vacuum forming), or by performing both at the same time. Prototype the shape. The top and bottom parts of the completed preform are cut to produce a thin cylindrical molded body. In addition, in the method shown in FIG. 7, 21 is a material tube made of polyester, 22 is a tube end for supplying pressure fluid, and 2
3 is supply p-ra. 24 cylindrical heating devices, 26 stretching rollers. F-1〇-27 is a 4-increase device, in which a material tube 21 [while supplying pressure fluid from its tube end 22, is supplied at a constant speed from a supply R-ra 23, and is guided to a cylindrical heating device [24]. This is heated to the drawing temperature. The material tube is subjected to a circumferential force of 1'o! in the heating device 24! The ρ-ra 26 which is expanded and stretched at a faster speed than the supplied p-ra is also stretched in the longitudinal direction by 4 extensions @ 27K. The 4-increasing device f27 grips the forming tube and simultaneously closes it 4 and seals the pressure fluid. The sealed portion of the 4-increased molded tube is cut and the cylindrical molded product is changed. [Example] Hereinafter, the present invention will be explained in detail with reference to Examples. The measurement conditions for the main physical property values are as follows. il+ Intrinsic viscosity rrv): Measured at 35°C using 0-reap phenol as a solvent. (2) Density [ρ]: Measured at 30°C in a density gradient tube made from carbon tetrachloride and n-hebutane. (3) Refractive index [n]: Attach a polarizing plate to the Atsube refractometer and measure the refractive index in the thickness direction and plane direction of the sample cut out from the molded body at a temperature of 25°C.
Sodium D#! Measured using. (4) Vertical crack strength: The cut plane parallel to the axis of the compact was deformed to various radii of curvature at 20°C, and the radius of curvature at which vertical cracks occurred was measured. (51 Surface roughness CLA (Center Line Average)) According to JIS BO6011c, using a stylus type surface roughness meter (Surcom 3 B) manufactured by Tokyo Seimitsu Co., Ltd. Under the conditions of a radius of 2μ and a load of 0.19p, draw a film roughness curve, cut out a part of measurement length L in the direction of its center line, and set the center line of this cut out part on the X axis and the vertical magnification. When expressed as a roughness curve (Y=f) with the direction of Y being the Y axis, the value given by the following equation is expressed in μ scale units. In this measurement, 8 pieces were measured with a reference length of 0.25 mm, 3 pieces were excluded from the direction with the largest value, and the average value of the 5 pieces was expressed. Examples 1 to 5 and Comparative Example 1 A PET chip (IVO shown in Table IK) was dried with hot air at 160°C for 5 hours to reduce the moisture content in the chip to about 0.005 wt. , an extruder V equipped with a die having a slit-like void at the tip.
C# dry chips are supplied, and the extruded *PET sheet is immediately cooled by water cooling in a stainless steel drum kept at a temperature of about 20°C KW4 to give a thick 200#, ρ=1.
33j'/cII, an amorphous PET sheet of IV shown in Table 1 was obtained. The sheet was sandwiched and fixed from above and below with a frame with a 100 x 100 m square hole, and the center of the sheet was heated to approximately 130°C by a ring-shaped heater.
Heating layer, the diameter of the tip and root part is 32mm and 34M, the length is 125u, the sheet is made by a plug mold with a temperature of 120℃, the diameter of the bottom and top part is 36111 and 37N.
, a depth of 12,711 m + a temperature of 60°C, pressure inside the mold cavity was pushed, a sheet of compressed air of 5 k#/cdG was blown from the plug mold to the cavity mold, and after holding for about 5 seconds, the pressure inside the molded body was reduced. The pressure was reduced to normal, the mold was opened, and a cylindrical molded body with a bottom was expanded. The above molding outline is shown in FIG. 1. Examples of the axial thickness distribution and orientation degree distribution of the obtained molded body are shown in FIGS. 3 and 4, respectively. Figure #I2 is a cross-sectional view of the bottomed cylindrical molded body, where D is the flange surface, E is the bottom, and the numerical value on the side surface indicates the distance (S[3)) from the flange surface. 3 to 5 show the wall thickness distribution TH [μ]1 of the molded bodies of Examples 2 and 4, the degree of orientation in the circumferential direction mnx-z (the refractive index in the circumferential direction nz and the refractive index in the thickness direction nz14- The distribution of the axial orientation degree ny-7 (difference between the refractive index and nz in the axial direction) is shown, and the numbers 2 and 4 in the graph are the measurements of the molded product of Example 2.4 Show value. 794
In the figure, from the 7 rank surface to 2 (! II level (area A),
Δnx-, < 0.03. In the range from about 2 to 43 (region B), 0.03≦munX
-Z≦o, o a , in the range of about 4cx or more (region C), ΔnX-Z > 0-04. Furthermore, the cylindrical part of the molded body was cut open, and the sample of Example 4 was placed between orthogonal polarizing plates, and the distortion was observed. The results are shown in FIG. In FIG. 6, the numbers 0 to 10 each indicate the distance (3) from the flange surface, and the curved line in the figure shows the outline of a good interference pattern caused by distortion. In Figure 6, A' is an area where axial strain occurs, C' is an area where circumferential strain occurs, and B' is an area where axial and circumferential strains are mixed. This almost coincides with the region A-C according to the range of Δnz-2 explained in FIG. Next, each part of the cylindrical molded body was bent with the axial direction as an axis, and it was examined to what extent vertical cracking would occur when the radius of curvature was set to 0.5 fins or less. The results are shown in Table-1. Table-1 As is clear from Table-1 (if the IV of Comparative Example 1 is lower than 0.50, vertical cracks will occur in any part of 50 or more, making it unusable. ■ is about 0.60 If it is above, area C
If the part is used as a cylindrical body, there will be no problem of warping, and if the IV is about 0.70 or more, there will be no ** in any part -1 Examples 6 to 9 and Comparative Examples 2 and 3 Unstretched polyester sheet Cylindrical molded bodies with different wall thicknesses were obtained in the same manner as in Example 2, except that the wall thicknesses of the molded bodies were changed. KA71 was deposited on the surface of the skeleton molded body, and an electrostatic metal surface roughness meter (manufactured by Metrol Co., Ltd., trade name: Surf Touch,
The sensor has a size of 3 tm x 9 cm, and is modified to a low-load second sensor pressing pressure mechanism of a flat surface / dust type TP-401 type), and a 7'CfAllAll button device is used to improve the adhesion between the surface of the molded object and the sensor. Rating: 11t. The results are shown in Table-3. 17-1) The measurement principle of this surface roughness meter is that the capacitance changes depending on the space ratio between the object to be measured and the metal electrode, and the space ratio is measured using the liquid crystal display (full scale 32). It is of the type. Therefore, if the adhesion between the electrode and the molded body is poor, the number of liquid crystal indications will decrease. Examples 10 to 12 and Comparative Example 4 A cylindrical molded body with a bottom was molded in the same manner as in Example 2, except that a rod-shaped heater was used instead of a ring-shaped heater during pressure forming, and K was used as a comparative example. . Only the cylindrical portion was cut out from the obtained bottomed cylindrical molded body, and the wall thickness in the circumferential direction and the roundness of the cylindrical portion were measured. The results are shown in Table-3. 18-Table-3 Example] If the difference between the maximum and minimum wall thickness in the circumferential direction is within 30 μ as shown in 0 to 12, the difference between the longest diameter and the shortest diameter of the cylindrical portion is within one company. While the roundness is good, when the wall thickness difference exceeds 30μ as in Comparative Example 4, the roundness becomes extremely poor. Examples 13 to 15 and Comparative Example 5 PET-F-7 blocks with rv=o and as were dried for 5 hours in a hot air dryer at 160°C to reduce the moisture content in the chips to 0.0.
After adjusting the cylinder diameter to about 05 wt-30mm
! Cylinder length/cylinder diameter = 22, dry chips were supplied to an extruder equipped with a tube die at the E end, and the cylinder and die temperature was 275 to 300 °C.
The tube was extruded and immediately solidified by cooling with water to obtain an amorphous PET tube with an outer diameter of 9mm and a wall diameter of 0.6u. The skeleton tube had IV = 0.60 and ρ = 1.33. The tube is stretched and expanded by the method described above using the apparatus shown in FIG. 7, and the sealed portion is cut to form a cylindrical molded body fc. The temperature of the hot water in the heater is 98°C, the stretching ratio in the longitudinal direction is changed by adjusting the rotation speed of the supply roller and the pulling roller, and the stretching ratio in the circumferential direction is 98°C. The sound can be changed by changing the inner diameter of the vibrator (Fig. 7, 28).The results of measuring the degree of alignment and strength of the obtained molded body are shown in Table-4. The test was carried out in the same manner as in the case of longitudinal tear strength except that the degree of orientation was less than 0.03, the strength was extremely reduced. Examples 16 to 18 and Comparative Example 6 Except for adding an additional amount of lubricant, the same procedure as in Example 2 was carried out to obtain a bottomed cylindrical molded body having different roughness on both surfaces. The bottom part of the molded body was inserted into the opening of another molded body and the molded body was stacked with weight, and then the two molded bodies were separated again.The occurrence of scratches and the slipping property are shown in Table 5. Table 5 The surface properties of the samples of Examples 16 to 18 measured by a three-dimensional roughness meter are as follows:
Although it had the same roughness as the T film, Comparative Example 6
had protrusions of about 5 to 8 μm, and was poor as a magnetic recording carrier. As explained above, the molded article of the present invention is thin and has good thickness distribution and surface smoothness, and can be used for mechanical purposes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に使用し得るシートの熱成形の概略状況
を示す図であり、第2図は有底円筒状成形体の断面図、
第3図は本発明による円筒状成形体の肉厚分布、第4図
、」5図は配向度分布を、第6図は本発明の円筒状成形
体円筒部の歪による干渉稿の状態を示す概略図である。 第7図は、本発明の成形体を得る他の方法の概略図であ
り、チューブ状PETを延伸膨張後切断する方法を示す
。 23− り9:♀ 9QQ ?−&LL7
FIG. 1 is a diagram showing a schematic diagram of thermoforming of a sheet that can be used in the present invention, and FIG. 2 is a cross-sectional view of a bottomed cylindrical molded product;
Fig. 3 shows the wall thickness distribution of the cylindrical molded body according to the present invention, Figs. FIG. FIG. 7 is a schematic diagram of another method for obtaining a molded article of the present invention, showing a method of cutting a tubular PET after stretching and expanding it. 23- Ri9:♀ 9QQ? -&LL7

Claims (1)

【特許請求の範囲】 1、 主たる繰り返し単位がエチレンテレフタレートで
あり、固有粘度が0.5以上であるポリエステルよりな
る円筒状成形体において、成形体の肉厚が100μ以下
、軸に平行な成形体断面の最大肉厚と最小肉厚との差が
30μ以下、成形体の内面及び/又は外面の円周方向表
面粗さ[CLA(単位二μ)〕が0.05以下であり、
軸方向及び円周方向の配向度がそれぞれ0.03以上で
あるポリエステル製肉薄円筒状成形体。 2 前記ポリエステルの固有粘度が0.7以上である特
許請求範囲第1項記載のポリエステル製肉薄円筒状成形
体。
[Claims] 1. A cylindrical molded body made of polyester whose main repeating unit is ethylene terephthalate and whose intrinsic viscosity is 0.5 or more, the molded body having a wall thickness of 100μ or less and parallel to the axis. The difference between the maximum wall thickness and the minimum wall thickness of the cross section is 30 μ or less, and the circumferential surface roughness [CLA (unit: 2 μ)] of the inner and/or outer surface of the molded body is 0.05 or less,
A thin cylindrical molded article made of polyester having an orientation degree of 0.03 or more in both the axial direction and the circumferential direction. 2. The thin cylindrical molded article made of polyester according to claim 1, wherein the polyester has an intrinsic viscosity of 0.7 or more.
JP58198244A 1983-10-24 1983-10-25 Polyester thin cylindrical molding Granted JPS6090746A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58198244A JPS6090746A (en) 1983-10-25 1983-10-25 Polyester thin cylindrical molding
EP84307290A EP0142948A3 (en) 1983-10-24 1984-10-23 Production of thin-walled cylindrical body of aromatic polyester
US06/664,071 US4659534A (en) 1983-10-24 1984-10-23 Production of thin-walled cylindrical body of aromatic polyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58198244A JPS6090746A (en) 1983-10-25 1983-10-25 Polyester thin cylindrical molding

Publications (2)

Publication Number Publication Date
JPS6090746A true JPS6090746A (en) 1985-05-21
JPH0234309B2 JPH0234309B2 (en) 1990-08-02

Family

ID=16387898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58198244A Granted JPS6090746A (en) 1983-10-24 1983-10-25 Polyester thin cylindrical molding

Country Status (1)

Country Link
JP (1) JPS6090746A (en)

Also Published As

Publication number Publication date
JPH0234309B2 (en) 1990-08-02

Similar Documents

Publication Publication Date Title
US6420011B1 (en) Biaxially oriented polyester film and production method thereof
JP4023090B2 (en) Biaxially oriented polyester film for magnetic recording tape and magnetic recording tape
JP5234690B2 (en) Polyester film for simultaneous transfer of molding
KR102707290B1 (en) Biaxially oriented polyester film roll
JP2008162220A (en) Polyester film for molding simultaneous transfer
JP4090739B2 (en) Polyester film roll
JPS6090746A (en) Polyester thin cylindrical molding
US5076976A (en) Process for producing polyester film
JP2017128080A (en) Polyester film roll
JP3925162B2 (en) Biaxially oriented polyester film
JP2020164795A (en) Polyester film having excellent dimensional stability and coated-type magnetic recording tape
JP3852979B2 (en) Polyester film for transfer foil
JP4590693B2 (en) Biaxially oriented polyester film
TW396106B (en) Biaxially oriented film of polyethylene -2, 6-Naphthalenedicarboxylate
JPH0832499B2 (en) Heat resistant polyester film for transfer film
JPS61197220A (en) Manufacture of thin cylindrical molded material made of polyester
JP2008290365A (en) Composite film
JP4232378B2 (en) Biaxially oriented polyester film and method for producing the same
JP2014208438A (en) Film for transfer foil
JPS6083823A (en) Manufacture of thick and cylindrical formed object of polyester
JP7419722B2 (en) Biaxially oriented polyester film
JP3478667B2 (en) Base film for photographic film
JPH0994877A (en) Biaxially oriented polyester film and production thereof
JP4495815B2 (en) Biaxially oriented polyester film
JPH08294963A (en) Polyester film