JPS6083823A - Manufacture of thick and cylindrical formed object of polyester - Google Patents

Manufacture of thick and cylindrical formed object of polyester

Info

Publication number
JPS6083823A
JPS6083823A JP19246183A JP19246183A JPS6083823A JP S6083823 A JPS6083823 A JP S6083823A JP 19246183 A JP19246183 A JP 19246183A JP 19246183 A JP19246183 A JP 19246183A JP S6083823 A JPS6083823 A JP S6083823A
Authority
JP
Japan
Prior art keywords
polyester
cylindrical
formed object
molded body
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19246183A
Other languages
Japanese (ja)
Inventor
Toru Matsubayashi
徹 松林
Seiichi Yamashiro
山城 誠一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP19246183A priority Critical patent/JPS6083823A/en
Publication of JPS6083823A publication Critical patent/JPS6083823A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/002Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/08Deep drawing or matched-mould forming, i.e. using mechanical means only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0094Condition, form or state of moulded material or of the material to be shaped having particular viscosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles

Abstract

PURPOSE:To obtain the titled formed object excellent in thickness distribution and strength by thermoforming a specified polyester sheet in a specified forming condition to the shape of a bottomed cylinder and cutting off the mouth part and the bottom part of the formed object. CONSTITUTION:Substantially non-oriented and amorphous polyester sheet 5 (300mum max. in thickness) that is composed mainly of polyester in which the intrinsic viscosity is 0.5 min. and the main repetition unit is ethylene terephthalate is thermoformed with molds 1, 2 and drawn deeply into the bottomed and cylindrical formed object 6 of the ratio of length/diameter 3 or more. The bottom part and the mouth part are cut to obtain the cylindrical formed object uniform in thickness distribution.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 不発りjはn11子機器産業分町において使用される記
@素子用化体等に過した円筒状成形体の製j’l’1法
にl!++l 1.−1詳しくはその内面及び/又は夕
)面に高W・1度修気記録素子等を装着し得る平滑な表
ii’u 11を有し、肉薄かつ均一な肉厚分イIJを
有゛づ−るホ11エスラ゛ル製円筒状成形体の製ノ^法
に関する。 〔従来技術〕 4+YX来ボ11 s丁−スチル製肉薄円筒状成5形体
を製造−→る方法どシテハ、例えばl)v公1ift 
38−18978−づの如と、いわゆるインフレーショ
ン成形法或いはtag公昭46−32080号の如き、
伸出成形でイ++ +:)れたチューブ状予価成形体を
供給ロールと引取ロールの間で延伸・膨張せしめる方法
等が知られている。しかしながら、かかる製造法により
得られる成形体は、偏平に折りたたまれた状態であるた
めおり跡があったり、ダイスより叩出される際に生じろ
タテスジ(ダイス′;/)等の欠陥部分があり、これら
の成形体を躬0素T用担体に使用する局舎には、核欠陥
部分が使用上の所大な欠点となるため、その改良が望ま
れている。 〔発明の目的〕 本発明は以北の事情を背旦として為されたものであり、
その目的とするところは円筒状の形態で肉薄かつ、折り
跡ダイス′)等の欠陥のない帰れた表面平滑性及び均一
な肉厚分布を(イL、、、優れた強度及び耐熱寸法安定
性を有−するポリエステル製成形体の製造法を提供すス
)ことにある。 〔発明の構成〕 本発明者は、かかる問題点に着目し、前記の如な欠点の
無い肉薄円筒状成形体の9μ造法に関し岬意研究の結果
、特定のポリエステルシートを用い特定の成形榮件によ
り有底円筒状予備成形体を熟成ICY l−、たのち、
該予南成形体の口部及び1氏部を切断除去する事により
、欠点を改善出来る事を見出し本発明に到透した。 即ち本発明は、固肩粘反が0.5以」−であり1.1゛
たる繰り返し単位がエチレンテレフタレートであるポリ
エステルを主快措成l戊勿とする〜実質的に無配向で非
晶質、厚み300μ以トのポリエステルシートを延II
 nJ’ !I目な温1隻範囲に1.+い(、フラグ金
屋及びギャヒテイ金型prて成J1ネ体の)にさ/ +
gi径比が3倍以上になる(a+き閉校にてイ1底円7
:′i)状成形体に熱成形したのち底部及びL」部を切
1rJr して円面状成形体を製造する事を特徴ノする
ポリニスケル製肉博円藺状成形体の製造法である。 本発明におけるポリエステルは5ポリエチレンテレノタ
レーI・リホモポリマーを主たる対象どするが、テレフ
タル酸成分の一部を例えばインフタル酸、ナフタリンジ
カルボン酸、ジフェニルジカルホン酸、シフエノキ/エ
クンジカルポン譚、ジンエニルーf−−デルンカルホン
に、ジフェニルスルポンジカルホンI&等の如”J 芳
tf 族・ンカルボン醒;、ベキ−+1ヒドロフーレフ
タルra 、へAリヒドロイン−7タルte等の如ぎ1
ift i瑣族ンカルポ7rα;アジピン酸、セハチン
酸、アセライン猷等の如き脂肪族ジカルボン[71;、
p−β−ヒトr1キンニドキシ安息香酸、ε−オキシカ
707m等の如奸オーキシ酸碧の他の二官’1715性
カルホン酸の1種以上で、及び/又はエチレングリシー
ル成分の一部を例えはトリメナレンクリコール。 ノー1ラメf−レンゲリコール、−・キサメチレンクリ
コール、テカメチレングリコール、/Fオペンf−Lツ
ノグリコール、/ニーf−17ングリコール。 ;、1−ンクロヘキ→)/ジメfIJ−ル、1,4−7
りaヘキ−リーンラメ1〜rJ−ル、2,2−ヒス(4
′−β−ヒドロ=\−);1−トキノフエ!ル)フロパ
ン。 ヒ゛ス(4′−β−ヒトaキノエトキ/ノユニルンスル
オン酸等の他のグ1jコール及υこれらの機能的誘導体
の多−fit;化合′I91の1紳以上で6侠(〜て2
 wt’%以]の範囲で共重合せしめたコホリマーであ
っても艮い。 不発1夕1に用いるポリエステルシートは固有粘r*:
 <以下IVと略す)が0.5以上で実質的に無Mt’
、回で非晶質かつ厚みが300μ以−トのものである。 1vが()95よりも低いと、ソートを熱成形する(C
当り、延伸温度にシー]を刀IJ熱する際に、晴晶泡が
起り、延伸困午であったり、たとえ成形出来ても肉厚の
不均一、夕1ザヶが著[2い−1の欠点7)・ある−I
Vが0.6以上、時VO,7以上であイごど、前記肉厚
が均一でタテ→ノヶのりろ生が少ないものになり好まし
い。 また、シートは実質的に無配回でシト晶′IIJのもの
を用いるが、ソートが配向状9Mであると得られる成形
体の周方向の肉厚分イ11が極端IC悪< 7:Cる。 また、シートが結晶状態でrG)るとVJ〔沖・l影脹
が困雌となる。ノートの結晶状態は例えば該ソートσ)
密肚により知る41がui来るが、If:L:l。 い密度は]、34J//i以下のものである。 ソートの肉厚は300μ以r−′であり、300μより
も厚いと、本発明の目的とする肉薄成形体がイ(lられ
ない。 AX発明では、かかるポリエステルシートを熟成)1ン
11、有底円筒状’f’ (jii成ブ1ネ体を仄j「
りしたのち。 該予備成形体のu ?ilX及び)氏7HBを切断除去
し−CI=1的とする円筒状成形体を得のが、熱成形の
除げ一予(itii成形体の長さ/直径比(以下L/D
と略す)を3イン’f以」−の深絞りとすな。L / 
I)が3よりも小さいと軸方向の肉厚分布が艮灯lc成
形伯を得か1(<、まプこタテザケが鵡り易いものと7
.1′/、1゜L/Dを3以上とす0こ、l−、T゛ソ
フンン+111dt <、肉厚分A[iの不均一な5′
I・1斐の不兄分な1HiXy)を切1!J+しても充
分実用的な侍さσ)円筒体をイ1!ることかできる。 本発明で熱成形とは、いわ(・1)るi1=空成形法及
び/又は真空成形法であり、第1図(a! 、(bl 
+ (C1げ、熱成形法の一例を示す。第1し1しこお
いて1(1フラク、2目、1′ヤヒプイ、301ヒーク
、4はクラン−7,5は熱成形J(Iのボ11エステル
フイルノ・を示す。図fa)に示゛74” 、J、うに
、熱成形に際してはボ11エステルフィルム5をフラン
ツ4で保持し、ヒータ3で延伸温度迄加熱する。次いで
ヒータ3をフィルム5上より移動させ、プラク1をフィ
ルム5上から押圧し、キャビティ2内に押込み、フィル
ム5を有底円筒状の予備成形体6に成形する((b)図
参照)。プラグ】、キャビティ2は加熱されており、同
時にフラグ1か6圧縮空気を吹込むか(圧空成形)、キ
ャヒウーイ2を減圧r −4−<・か(真空成形)若
[Industrial Application Fields] The non-explosion method is used in the production of cylindrical molded bodies used in the n11 sub-equipment industry, and is used in devices, etc. ++l 1. -1 Specifically, it has a smooth surface on its inner surface and/or surface on which a high W/1 degree recording element can be mounted, and has a thin and uniform wall thickness. This article relates to a method for producing a cylindrical molded article made of ethyl alcohol. [Prior art] 4+YX 11 s - Method for producing a thin cylindrical molded body made of steel, for example l) V 1ift
38-18978-dunoni, so-called inflation molding method or tag Kosho No. 46-32080,
A method is known in which a tubular preformed body formed by stretch molding is stretched and expanded between a supply roll and a take-up roll. However, the molded product obtained by this manufacturing method has defects such as fold marks and vertical scratches (dice';/) that occur when being punched out from a die because it is in a flat folded state. In the case where these molded bodies are used as carriers for 0-element T, nuclear defect portions are a major drawback in use, and therefore improvements are desired. [Object of the invention] The present invention was made in consideration of the situation in the north,
The purpose is to have a cylindrical shape with a thin wall, a surface smoothness without defects such as creases, and a uniform thickness distribution (L), excellent strength and heat-resistant dimensional stability. The object of the present invention is to provide a method for manufacturing a polyester molded article having the following. [Structure of the Invention] The present inventor focused on such problems, and as a result of research on the 9 μm manufacturing method of thin cylindrical molded products without the above-mentioned defects, the present inventor developed a method for manufacturing a 9 μm thin cylindrical molded product using a specific polyester sheet. Due to the circumstances, the bottomed cylindrical preform was aged ICY l-, and then
The inventors have discovered that the defects can be improved by cutting and removing the mouth and end portions of the Yonan molded body, and have achieved the present invention. That is, the present invention mainly uses a polyester having a stiff-shoulder-reflexivity of 0.5 or more and a repeating unit of 1.1, which is ethylene terephthalate. Rolled polyester sheet with quality and thickness of 300μ or more
nJ'! 1 within the range of 1 hot ship. + Yes (Frag metal shop and Gyahitei mold PR made J1 body) / +
The gi diameter ratio will be more than 3 times (a + ki closed, a 1 base circle 7
:'i) This is a method for producing a circular shaped molded product made of polyniskel, which is characterized in that after the product is thermoformed into a circular shaped molded product, the bottom and L'' portions are cut to produce a circular molded product. The polyester in the present invention is mainly 5-polyethylene terenotale I/rehomopolymer, but a part of the terephthalic acid component can be added to, for example, inphthalic acid, naphthalene dicarboxylic acid, diphenyldicarphonic acid, cyphenoki/ecundicarpone, ginenyl-f-deluncalphone. , Diphenylsulfone dicarphone I&etc.'
aliphatic dicarboxylic acid such as adipic acid, cehatic acid, acelaic acid, etc. [71;
One or more other bifunctional carbonic acids such as p-β-human r1 quinidoxybenzoic acid, ε-oxycarboxylic acid, and/or a part of the ethylene glycyl component, for example Trimenalene glycol. No 1 lame f-lenge glycol, - xamethylene glycol, tecamethylene glycol, /F open f-L horn glycol, /nee f-17 glycol. ;, 1-encrohex→)/dimethyl, 1,4-7
riaheki-leanlame1~rJ-le,2,2-his(4
′-β-hydro=\-);1-Tokinofue! Le) Floppan. Multi-fit of other glycols such as 4'-β-human aquinoethyl/noylinsulfonic acid and their functional derivatives;
Even if it is a copolymer copolymerized within a range of [wt'% or more]. The polyester sheet used for misfires has an inherent viscosity r*:
<hereinafter abbreviated as IV) is 0.5 or more, substantially no Mt'
, is amorphous and has a thickness of 300 μm or more. When 1v is lower than ()95, thermoforming the sort (C
When heating the film to the drawing temperature, clear crystal bubbles may occur, making it difficult to draw, and even if it can be formed, the thickness will be uneven, and the thickness will be very large. Disadvantage 7)・Aru-I
It is preferable that V is 0.6 or more and VO is 7 or more because the thickness is uniform and there is little vertical to roughness. In addition, the sheet is made of cytocrystalline 'IIJ with substantially no orientation, but if the sorting is oriented 9M, the circumferential thickness of the obtained molded body 11 will be extremely low in IC<7:C. . Also, when the sheet is in a crystalline state (rG), VJ [Oki-l shadow expansion becomes difficult. The crystalline state of the note is for example the sort σ)
41 who knows from the secret comes ui, but If:L:l. The density is below 34J//i. The thickness of the sort is 300μ or more r-', and if it is thicker than 300μ, the thin-walled molded product that is the object of the present invention cannot be produced.In the AX invention, such a polyester sheet is aged). Bottom cylindrical 'f'
After that. u of the preform? The length/diameter ratio (hereinafter L/D
(abbreviated as ) should be deep drawn with a diameter of 3 inches or more. L/
If I) is smaller than 3, the thickness distribution in the axial direction will be less than 1 (<, 7.
.. 1'/, 1゜When L/D is 3 or more, 0ko, l-, T゛Sofunn + 111dt <, wall thickness A[i uneven 5'
Cut 1 HiXy), I. Samurai that is practical enough even if J + σ) Cylindrical body I1! I can do that. In the present invention, thermoforming refers to i1 = air forming method and/or vacuum forming method, as shown in Fig. 1 (a!, (bl)
+ (C1 ge, shows an example of the thermoforming method. 1st cut, 1st cut, 1' yahipui, 301 heat, 4 is clan-7, 5 is thermoforming J (I) The ester film 5 shown in Figure fa) is 74'', J. During thermoforming, the ester film 5 is held by a flanz 4 and heated to the stretching temperature by the heater 3. is moved from above the film 5, the plaque 1 is pressed from above the film 5 and pushed into the cavity 2, and the film 5 is formed into a cylindrical preformed body 6 with a bottom (see figure (b)).Plug], Cavity 2 is heated, and at the same time, compressed air is blown into flag 1 or 6 (pressure forming), or the cavity 2 is depressurized to r −4−<・(vacuum forming).


2くは両者を同時に実施して:l−ll1.i成形体6
をキャビティ2の形状に賦型する。 賦型された予備成形体6は、プラク1.ギヤlテテイ2
を移動させてを出しく(C)図fB l1ti ) 、
予(+tii成形体の成形が児了1−る。 土述の如く熱成形を行う際のポリエステルシートの加熱
は、断面形状が円状により構成されイ)ヒーターを用い
、例えば円板状或いはリング状のヒーター又はそれらを
組合上、たものを714いろ。ヒーターの断面形状が円
形以外であると、成11φ体の周方向の肉厚分布が不均
一となり好ま[−1(ない。 該ヒーター圧よりボ11エステルフィル−ノーを加熱す
るが、〕、イルムの加熱後の温度は該ポリエステルの延
伸温度であり、p g ’rを144いる場合は80℃
〜+ 6 [1’C1好ましくは110〜130゛(7
である。。 熱成形に使月Iするプラグ及びキャビティは成形体と接
触する面を鏡面状にHi′(’+督仕」・げしたものが
ηfましく、・した、ケーバー角度が0.1°以」のも
のを用いると、成形体表面の傷が防止出来る。金型表面
をプフロン加り又はテフロン含τS2メツ、ヤする笠の
処理を施こしたものを用(・る事(よ更に好ま[−1−
・、 熱成形する際のフラグ温度は延伸Hffiし状態に、C
−2る71゛リエスiルシートの温度−20′C以−1
−とじ、1)ETの場合は100°C以上、りIましく
け+2o℃JJ土である。プラグ温度がポリエステルソ
ート温度−20′Cよりも低いと、成形体の肉厚分布が
不均一であったり、耐熱寸法安定性が不(支)となる等
の欠点が生じる。ホリエステルシート温I年とほぼ同一
温度が伯に好井しい。 庄たキャビティ温度はポリエステルのカラス転移温度±
20℃であり好まし、くけ+10℃である(ポリエチレ
ンテレフタレートの場合50〜90℃、好ましくは60
〜80℃)。ギヤビフーイ温度が上記範囲よりも低いと
キャE・ティ土面と接m(シ、たシート部分が局部的に
低温となり、t?線部分延伸性が悪くなるため、成形体
の該当lit分(有底円筒状成形体の円筒部分)が局部
的な肉厚状どなり、肉厚分布不良となる。またWヤヒテ
イ温囲が上記範囲より〜、(・と、キャビテイ面と接触
したシート部との間の接着力が大きクツ(る小が原因と
考えられる同様の肉厚分布欠陥b′−生じる。 以上の如クイ;)られる有底円筒状予(nil成形体よ
り、肉薄円筒状成形体が得られるが、必快に応17て予
備成形体又は円筒状成形体を、円筒状を1′11つ様拘
束しながら熱処理する事により耐熱寸法安定性、断面形
状の真円性1表面の平滑性を史に向上せしめる事が出来
る。 〔実施例〕 以下実施例により木づろ明をi)−述する。 主な時性IIMの測定条件は仄の通りである。 同イj枯度[:IV):0−クロσノエ/−ル又はテト
−フクOCIエクノ七フェノー ル混合f夜を電媒とり、、35℃ で6111定。 v+fLVL(ρ〕 :四基化炭ぷとローへブタンより
作成しブこ密度勾配−#にて 30Cで1固定。 屈折率〔n〕 :アツベ屈折重言1にl11i′)Y、
版を装着り、、成形体より切取ったザ ンブルの11バ折率を25゛Cです トリウム1〕線にて1川定。 カラス転移温度(TyJ:走査型示差熱−敞ハiにより
非晶状のザンブルを8℃/ mmの昇 温速度にてg+Ij定。 なお、実m例中、P ETはポリエチレンラーレフタレ
ートを示1゜ k雄側−1〜3及び比較例−1 1V=0.65のP E Tチップを160℃で5時間
!l’l−1茨J−C乾燥し、チップ中の水分率をo、
o o s wtZ程度とり、た後、65mmのスクリ
ュー径な有し、先端にスリット状のを師な有するクイス
を装着した押出機に該乾煙チッノを供給り、、押出され
たP ICTシートを直もνr′水冷により、約30℃
の温バ[に調節されたステンレスドラムにより冷却して
、肉厚2(1071,IV’=0.60. ρ= 1.
33 fled 、 T、V−7o℃の非晶’I’l 
I) E ’l”シートを得た。 該シートを第1図で説明した方法釦より熱成形した。即
ち、l OOmmX I OOmjnの歪力形状穴を信
する枠にて上下よりはさみ固定したのら、シー) 1t
l+より80*nの距離にある内イJB105*i+外
径200朋のリング状ヒーターにより、シート中心部が
約130℃になる迄加熱した。加熱Jji表−IK示す
プラグ金型によりシートを表−1に示すキャビティ金型
内に押し込むとともにフラグ金型より5 kg/cdG
の圧縮空気を吹込みシートをキャビティ金型−迄膨11
1趨さゼ、約5秒間保持しl二の1、成形体内の圧力を
′品用flL減じ、金J、−1すを開いて成形体をII
Mり出した。 白、い−4゛れの」ハ合もプラグ温1男はl 30°C
。 ギヤIニケイ温I(yは80℃としプこ。 得られた成形体の軸方向肉厚分布及び配回変分布を第3
図及び第4図に示す。第2図は実施例−2の場合の有底
円筒状成形体の断面図であり、Dはフランジ面、Eは底
部であり、側m1の数値はフランジu11からの距離(
al)を示す。第3図は実施例−1〜3及び比較例−1
の成形体の肉厚分布TH(μ)を示し、グラフ内の数イ
ー8゜9.10はそれぞれ実施例−1,2,3の成形体
の測定値、1】は比較例−10) (iill定イ16
を互々示す。比較例−1の肉厚分布は不均一で不良であ
るのに対し、本うら明の実施例=1〜3の成形体は良好
な肉厚分布となった。第4図は実施例−1〜3及び比較
例−1の成形体の円周方向配向度Δnx−z (円周方
向の屈折率nxと厚み方向Jnl折率nzの差)分布を
示し、クラブ内の数((i+2゜13.14は、それぞ
れ実施例−1,2,3の成形体の測定値、15は比較ψ
リ−1の測定値を示−[。第4図でいずれの場合もフラ
ンジ面より2σ程度迄(領域A)は八nz:h≦0.0
3 、約2〜4硼迄の範囲(領域B)では0.03≦△
nりU、04゜X−ン− 約4α以上の範囲(領域C)ではΔ’ny−1≧0.0
4となることを示す。 更に成形体円筒部を切り開いて直交する偏光板の間にサ
ンプルを入れ歪を西摂しまた結果を第5図に示す。第5
図の(at 、 (bl 、 (clはそれぞれ実施例
−1〜3の、fd)は比較例−1のサンプル測定結果で
あり、数値2〜12はそれぞれフランジ面からの距離(
σ)を示し、図中の曲線は歪により生じた干渉橘の概略
を示す。第5図で、A′は軸方向の歪が生じている領域
、C′は円周方向の歪が生じている領域、B′は軸方向
と円周方向の歪が混在している領域であり、A′〜C′
は第4図で説明した配向度(A’h4=z )による領
域A〜Cとは父一致している。 次いで円筒状成形体の各部を軸方向を軸として折り曲げ
、曲率半径が0.5節以下とした場合にタテサケがどの
程度となるかを調べた。 この結果、いずれの場合も領域Aでは殆んど100チタ
テサケが発生し、領域Bではタテザケ発生率約50%、
領域Cでは0%であった。 領域Cの部分を円筒体として使用す、ればタテサケの問
題がない。更に周方向の肉厚分AI+を測定した結果を
表−2に示す。 表 −2 周方向の偏肉の程度は本発明の場合」−10μ以下で良
好であり、L/Dが3よりも小さいと不良であった。 以上の結果より明らかなようV、本発明方法により得ら
れる成形体は、良好な肉厚分布及び強度を有するもので
ある。尚、成形機は浅野製作r5+ RFC−IAPA
WSP型コスミック真空成形機を圧空成形司廂な様に改
造して使用した。 実施例−4〜7及び比較例−2〜3 PETのIVを変えた他は実施例−2と同様に、有底円
筒状成形体を成形した。結果を表−31C示す。 表 −3 実施例−7の如く、I V O,55の場合、偏肉の程
度が±lOμの範囲であり、使用し得る範囲である。タ
テサケ性は領域Cでやや難がある。 IVが0.50以下では使用し得な(・。 IVが0.60以上は良好であり、特にIVが0.70
以上では肉厚分布、タテサケ性とも極めて良好となる。 実施例−8〜10及び比較例−4,5 熱成形に用いたポリエステルシートを変えた他は実施例
−2と同様に成形体を作成し、評価した。結果を表−3
に示−4−8 表 −3 *l 2軸延1甲PETフィルム 比較例−6 ヒーターを既設の棒状ヒーター(13a+X11闘、ヒ
ーター間隔60fi)を用いた他は実施例−2と同様に
して成形体を得た。 得られた成形体は楕円状に円筒部が変形しており、また
円方向の肉厚は最大肉厚差が40μ程度あり不良であっ
た。 実施例−11〜17及び比較例−7〜9プラグ及びキャ
ビティ温度を表−4に示す如く変えた他は、実施例−2
と同様忙成形を行った。結果を表−4にまとめた。 尚、PETのT、9G′よ70℃、PETシービの加熱
完了后の温度は130℃であった。 表 −4 1)ΔT、ニブラグ温度−加熱完了后のPETシート温
度〔℃〕2)△T、:キャビテイ温度−PgTのT、1
7(”C)3) A:良好 B:胴部の上部(領域A−
B)に帯状の肉厚部が発生。使用には耐え得る。 C:
胴中央部に帯状の肉厚部が発生し使用不可。 D:成形
体が取り出し時に収縮変形し、使用不可。 4) 80℃熱風中1c24時間放置した際の円周方向
収縮率。 以上説明した如く1本発明方法により肉厚分布が良好で
機械的強度、耐熱寸法安定性の優れた肉薄円筒状成形体
を製造し得る。
[
2 or perform both at the same time: l-ll1. i molded body 6
is shaped into the shape of cavity 2. The shaped preform 6 is made of a plaque 1. Gear 2
(C) Figure fB l1ti ),
Preliminary molding of the molded body is completed. As mentioned above, the heating of the polyester sheet during thermoforming is performed by forming a polyester sheet with a circular cross-sectional shape using a heater, for example, a disk-shaped or ring-shaped sheet. There are 714 types of heaters or combinations of them. If the cross-sectional shape of the heater is other than circular, the thickness distribution in the circumferential direction of the 11φ body will be uneven, which is preferable [-1 (No. Although the heater pressure heats the 11 ester fill-no), the ilm The temperature after heating is the stretching temperature of the polyester, and when p g 'r is 144, it is 80 ° C.
〜+6 [1'C1 Preferably 110-130゛(7
It is. . Plugs and cavities used for thermoforming should have a mirror-like surface in contact with the molded body, and the cable angle should be 0.1° or more. It is possible to prevent scratches on the surface of the molded product.It is even more preferable to use a mold whose surface has been treated with Pflon or Teflon-containing τS2. 1-
・The flag temperature during thermoforming is set to the stretched Hffi state and C
-2 Temperature of 71゛I sheet -20'C or more -1
- Binding, 1) In the case of ET, the temperature is 100°C or higher, and the temperature is +2°C JJ soil. If the plug temperature is lower than the polyester sorting temperature -20'C, disadvantages such as non-uniform thickness distribution of the molded product and poor heat-resistant dimensional stability will occur. The temperature of the Hollyester sheet is almost the same as that of 2015, which is ideal for Hakui. The measured cavity temperature is ± the glass transition temperature of polyester.
20°C, preferably +10°C (50 to 90°C, preferably 60°C in the case of polyethylene terephthalate)
~80°C). If the gear bifoil temperature is lower than the above range, the part of the sheet in contact with the soil surface will be locally low temperature, and the stretchability of the t? line will deteriorate. The cylindrical part of the bottom cylindrical molded body) has local wall thickness irregularities, resulting in poor wall thickness distribution. Also, the W-Yahitei temperature range is less than the above range, and between ( and the sheet part in contact with the cavity surface). A similar wall thickness distribution defect b′-, which is thought to be caused by a large adhesion force, occurs. However, it is necessary to heat-treat the preform or cylindrical molded body while restraining the cylindrical shape in a 1'11 manner to improve heat-resistant dimensional stability, roundness of the cross-sectional shape, and smoothness of the surface. [Example] Below, Kizuro Akira will be described in accordance with the following example. The main measurement conditions for temporal IIM are as shown below. IV): 0-chloroσnoel/-ol or Tet-Fuku OCI Ecno-7phenol mixture f night is taken as an electric medium, and constant at 6111 at 35°C. Buko density gradient - # fixed at 1 at 30C. Refractive index [n]: Atsube refraction emphasis 1 to l11i')Y,
Attach the plate and measure the refractive index of the 11 bars of the sample cut from the molded body using the 25°C thorium 1 wire. Glass transition temperature (TyJ: g + Ij determined by scanning differential thermal heating at a heating rate of 8°C/mm for amorphous Zanburu. In the actual example, PET indicates polyethylene rarephthalate.゜K male side-1 to 3 and comparative example-1 PET chips with 1V = 0.65 were dried at 160°C for 5 hours!l'l-1 Thorn JC, and the moisture content in the chips was reduced to o,
o o s wtZ, then feed the dry smoke chitno into an extruder equipped with a screw having a screw diameter of 65 mm and a slit-like shape at the tip, and extrude the P ICT sheet. Approximately 30℃ due to direct water cooling
It was cooled using a stainless steel drum adjusted to a temperature of 2.0 mm, and the wall thickness was 2 (1071, IV' = 0.60. ρ = 1.
33 fled, T, V-7oC amorphous 'I'l
I) E 'l'' sheet was obtained. This sheet was thermoformed using the method explained in Fig. 1. That is, it was fixed with scissors from above and below with a frame that believed the strain force shape hole of lOOmmXIOOmjn. (ra, sea) 1t
The center of the sheet was heated to about 130° C. by a ring-shaped heater with an inner diameter of JB105*i and an outer diameter of 200 mm located at a distance of 80*n from l+. The sheet is pushed into the cavity mold shown in Table-1 using the plug mold shown in the heating Jji table-IK, and 5 kg/cdG is heated from the flag mold.
Blow compressed air into the mold cavity to inflate the sheet until 11
1. Hold for about 5 seconds, reduce the pressure inside the molded body, open the molded body, and remove the molded body.
M started out. White, the temperature of the plug is 30°C.
. Gear temperature I (y is 80°C).
It is shown in FIG. FIG. 2 is a cross-sectional view of the bottomed cylindrical molded body in Example-2, where D is the flange surface, E is the bottom, and the value of the side m1 is the distance from the flange u11 (
al) is shown. Figure 3 shows Examples-1 to 3 and Comparative Example-1.
The number E8゜9.10 in the graph is the measured value of the molded bodies of Examples-1, 2, and 3, respectively, and 1] is the measured value of the molded bodies of Comparative Example-10). iill fixed i16
Show each other. The wall thickness distribution of Comparative Example 1 was uneven and poor, whereas the molded bodies of Examples 1 to 3 of this background had a good wall thickness distribution. FIG. 4 shows the circumferential orientation degree Δnx-z (difference between the refractive index nx in the circumferential direction and the Jnl refractive index nz in the thickness direction) of the molded bodies of Examples 1 to 3 and Comparative Example 1, and The number in
Indicates the measured value of Lee-1. In Fig. 4, in any case, up to about 2σ from the flange surface (area A) is 8nz: h≦0.0.
3. 0.03≦△ in the range from about 2 to 4 (area B)
nriU, 04°
4. Furthermore, the cylindrical part of the molded body was cut open and the sample was placed between orthogonal polarizing plates to remove the strain. The results are shown in FIG. Fifth
In the figure, (at, (bl, (cl) are the sample measurement results of Examples-1 to 3, respectively) are the sample measurement results of Comparative Example-1, and the numbers 2 to 12 are the distances from the flange surface (
σ), and the curve in the figure shows the outline of the interference curve caused by strain. In Figure 5, A' is the area where axial strain occurs, C' is the area where circumferential strain is generated, and B' is the area where axial and circumferential strain is mixed. Yes, A'-C'
This coincides with the regions A to C according to the degree of orientation (A'h4=z) explained in FIG. Next, each part of the cylindrical molded body was bent with the axial direction as an axis, and it was examined how long the length would be when the radius of curvature was set to 0.5 knots or less. As a result, in both cases, almost 100 giant salmon occurred in area A, and in area B, the occurrence rate was about 50%,
In region C, it was 0%. If the area C is used as a cylindrical body, there will be no problem of warping. Furthermore, the results of measuring the wall thickness AI+ in the circumferential direction are shown in Table 2. Table 2: In the case of the present invention, the degree of thickness deviation in the circumferential direction was -10μ or less, which was good, and when L/D was smaller than 3, it was bad. As is clear from the above results, the molded article obtained by the method of the present invention has good thickness distribution and strength. The molding machine is Asano R5+ RFC-IAPA.
A WSP type cosmic vacuum forming machine was modified and used as a pressure forming center. Examples 4 to 7 and Comparative Examples 2 to 3 Bottomed cylindrical molded bodies were molded in the same manner as in Example 2, except that the IV of PET was changed. The results are shown in Table 31C. Table 3 As in Example 7, in the case of IVO, 55, the degree of thickness deviation is in the range of ±lOμ, which is a usable range. Vertical salmon quality is somewhat difficult in area C. If the IV is less than 0.50, it cannot be used (・) If the IV is more than 0.60, it is good, especially if the IV is 0.70.
Above this, both the wall thickness distribution and the vertical moldability are extremely good. Examples 8 to 10 and Comparative Examples 4 and 5 Molded bodies were prepared and evaluated in the same manner as in Example 2, except that the polyester sheet used for thermoforming was changed. Table 3 shows the results.
Shown in -4-8 Table -3 *l Comparative example of biaxially stretched 1A PET film -6 Molding was carried out in the same manner as in Example -2 except that the existing rod-shaped heater (13a + X11, heater spacing 60fi) was used as the heater. I got a body. The obtained molded product had a cylindrical portion deformed into an elliptical shape, and the maximum wall thickness difference in the circular direction was about 40 μm, which was poor. Examples 11 to 17 and Comparative Examples 7 to 9 Example 2 except that the plug and cavity temperatures were changed as shown in Table 4.
The molding process was carried out in the same way. The results are summarized in Table 4. The temperature of PET T and 9G' was 70°C, and the temperature of PET Seavi after heating was 130°C. Table-4 1) ΔT, nib lug temperature - PET sheet temperature after heating completion [℃] 2) △T,: cavity temperature - T of PgT, 1
7(”C)3) A: Good B: Upper part of torso (area A-
A band-like thick part occurs in B). It can withstand use. C:
A band-like thick part appears in the center of the body, making it unusable. D: The molded product shrinks and deforms when taken out, making it unusable. 4) Circumferential shrinkage rate when left in hot air at 80°C for 24 hours. As explained above, by the method of the present invention, it is possible to produce a thin cylindrical molded article with good wall thickness distribution, excellent mechanical strength, and heat-resistant dimensional stability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に使用し得るシートの熱成形の概略状況
を示す図であり、第2図は本発明による円筒状成形体の
断面図、第3図は本発明による成形体の肉厚分布、第4
図は配向変分布を第5図は本発明の円筒状成形体円筒部
の歪による干渉層の状態を示す概略図でちる。 第1図 第3図 2 4 6 8 10 12 14 7ラン#;面一・5の「巨歳l(Cm)第 S 図 (α) (C) (’b)’注)
FIG. 1 is a diagram showing a schematic diagram of thermoforming of a sheet that can be used in the present invention, FIG. 2 is a cross-sectional view of a cylindrical molded article according to the present invention, and FIG. 3 is a diagram showing the wall thickness of a molded article according to the present invention. Distribution, 4th
The figure shows the orientation variation distribution, and FIG. 5 is a schematic diagram showing the state of the interference layer due to distortion of the cylindrical portion of the cylindrical molded body of the present invention. Fig. 1 Fig. 3 2 4 6 8 10 12 14 7 Run #; One-sided, 5 "Giant age l (Cm) Fig. S (α) (C) ('b)' Note)

Claims (1)

【特許請求の範囲】 1 固有粘度が0.5以上であり、主たる繰り返し、単
位がエチレンテ1/フタレートであるボ11エステルを
主型構成成分とする実y4的に無配向で非晶質、厚み3
00μ以I・−〇ホ11エスラールンー1・を延伸用f
i!;な温度’l’ii囲姓ニオ・テいて1.!ラフ金
型及び・1−・ヒナ1金!1.2にて成形体のIUさ/
直径比が31(を以上1cなる如く深絞りにて有Jに円
筒状成形体に熱成形しまたのち底部及び[1部を切Vf
[L−C円筒状成形体を製it”jする小をI[♀緻と
するポリユースチル製肉薄円筒4ノニ成形体の製造法。 2 ブ7り金型+7、A1史をポリエステルンーI・の
温度−20℃以」二、キャビテ1@型温度をポリエステ
ルのカラス転移温度1−20 ”Cとし、て成形する事
を特徴とする特iiF請求範門弟]Jハ記載のポリエス
テル製肉薄円筒状成形体の製造法。 3 ポリエステルシートの加熱に同根状及び/又はリン
グ状の加熱体を用いゐ事を特徴どするl持jfl請求範
囲第1JA乃至m2項it: 4%のy14 リQf−
ステル製肉薄円筒状成形体の製j1″、法。
[Scope of Claims] 1. A material having an intrinsic viscosity of 0.5 or more, which is substantially non-oriented, amorphous, and has a thickness of 11 ester having a main repeating unit of ethylene tere 1/phthalate as a main component. 3
For stretching 00 μ or more I・-〇 11 Esler Run-1・f
i! 1. ! Rough mold and 1-1 chick! In 1.2, the IU of the molded body/
The diameter ratio is 31 (more than 1 cm), and it is thermoformed into a cylindrical molded body by deep drawing, and then the bottom and [1 part are cut off].
[Method for manufacturing a thin cylindrical molded product made of polyureus steel with a small diameter of 1 [♀] to produce a LC cylindrical molded product. 2. Thin cylindrical molding made of polyester according to [Special iiF Claims Disciple] Jc, characterized in that molding is carried out at a temperature of -20°C or lower. 3. A method for manufacturing a polyester sheet, characterized in that a root-shaped and/or ring-shaped heating element is used to heat the polyester sheet.
Method for manufacturing a thin cylindrical molded body made of Stell.
JP19246183A 1983-10-17 1983-10-17 Manufacture of thick and cylindrical formed object of polyester Pending JPS6083823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19246183A JPS6083823A (en) 1983-10-17 1983-10-17 Manufacture of thick and cylindrical formed object of polyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19246183A JPS6083823A (en) 1983-10-17 1983-10-17 Manufacture of thick and cylindrical formed object of polyester

Publications (1)

Publication Number Publication Date
JPS6083823A true JPS6083823A (en) 1985-05-13

Family

ID=16291679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19246183A Pending JPS6083823A (en) 1983-10-17 1983-10-17 Manufacture of thick and cylindrical formed object of polyester

Country Status (1)

Country Link
JP (1) JPS6083823A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5009826A (en) * 1986-05-29 1991-04-23 Phillips Petroleum Company Method of molding a composite drill collar
JPH03146893A (en) * 1989-11-02 1991-06-21 Pioneer Electron Corp Timer control circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55133917A (en) * 1979-04-06 1980-10-18 Onishi Kako Kk Deep drawing process for polyester film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55133917A (en) * 1979-04-06 1980-10-18 Onishi Kako Kk Deep drawing process for polyester film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5009826A (en) * 1986-05-29 1991-04-23 Phillips Petroleum Company Method of molding a composite drill collar
JPH03146893A (en) * 1989-11-02 1991-06-21 Pioneer Electron Corp Timer control circuit

Similar Documents

Publication Publication Date Title
US4127631A (en) Thermoforming process for polyalkylene terephthalate polyester resins
US3496143A (en) Process for sheet forming polyethylene terephthalate
US3429854A (en) Process for sheet forming polyethylene terephthalate
KR960006778B1 (en) Moldable biaxially stretched polyester film
US4385089A (en) Process for preparing biaxially oriented hollow shaped articles from thermoplastic materials
US4512948A (en) Method for making poly(ethylene terephthalate) article
US4476170A (en) Poly(ethylene terephthalate) articles and method
US4943406A (en) Method for production of containers in thermoplastic material, in particular sheets of polyethylene-terephthalate
US3547891A (en) Heat formable polyester film
NZ203100A (en) Blow moulding then heat setting poly(ethylene terephthalate)articles
JP2010201857A (en) Biaxially-oriented polyester film for molding simultaneous transfer
JPS6083823A (en) Manufacture of thick and cylindrical formed object of polyester
JP2003276080A (en) Thermoforming material of polyethylene terephthalate resin and method for producing thermoformed molding of polyethylene terephthalate resin
JP2611415B2 (en) Biaxially oriented polyester film for molding, film for molding transfer, and film for molding container
JPH0832499B2 (en) Heat resistant polyester film for transfer film
EP0390191A2 (en) Biaxially stretched polyester film and process for producing the same
JP2006182017A (en) Biaxially oriented film made of resin composed mainly of polyglycolic acid and its manufacturing method
US4073857A (en) Deep-drawing of a monoaxially oriented, heat relaxed polyester film
JPH0127850B2 (en)
JPH0832498B2 (en) Polyester film for transfer film
JPH07329170A (en) Rolling polyester sheet, its thermal molding and manufacture thereof
JPS5867411A (en) Forming method of polyester film
JP3045811B2 (en) Method for producing uniaxially stretched polyester sheet
JPS6132129B2 (en)
JPH0234309B2 (en)