JPS6089977A - Field effect transistor - Google Patents

Field effect transistor

Info

Publication number
JPS6089977A
JPS6089977A JP19859383A JP19859383A JPS6089977A JP S6089977 A JPS6089977 A JP S6089977A JP 19859383 A JP19859383 A JP 19859383A JP 19859383 A JP19859383 A JP 19859383A JP S6089977 A JPS6089977 A JP S6089977A
Authority
JP
Japan
Prior art keywords
buffer layer
layer
substrate
gaas
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19859383A
Other languages
Japanese (ja)
Inventor
Hirobumi Mizuno
博文 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP19859383A priority Critical patent/JPS6089977A/en
Publication of JPS6089977A publication Critical patent/JPS6089977A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Abstract

PURPOSE:To eliminate the adverse influence of a semiconductor substrate by forming a P type low density buffer layer, a buffer layer region which has two layers of the P type buffer layer and another buffer layer hetero bonded to the P type buffer layer and electrodes on the substrate which has high density active layer. CONSTITUTION:An iron-doped P<-> type GaAs buffer layer 11 is formed by vapor phase growing method on a semi-insulating GaAs substrate 10, and a GaAlAs buffer layer 12 of hetero junction and a GaAs active layer 13 are continuously grown. Then, an aluminum film 21 which becomes a gate electrode formed by an aluminum side etching method using a photoresist is formed on a mesa, AuGeNi layer 22 which become source and drain electrodes are laminated, and alloyed. Then, electrode wirings 23 for connecting the source and drain electrodes to be formed next via bonding pads are formed, and an Au film 24 and the gate are bonded. Thus, the emission of electrons on the surface of the layer 13 can be reduced to eliminate the adverse influence of the substrate 10.

Description

【発明の詳細な説明】 本発明は化合物半導体を用いた電界効果トランジスタに
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a field effect transistor using a compound semiconductor.

化合物半導体はその物理的特徴を生かして超高波素子に
多く用いられている。最近その中でも111−V族2元
化合物半導体であるGaAsを利用し九電界効果トラン
ジスタ(以下、単にFETという)の発展は目ざましく
、量産化が進められている。この段階において、高性能
でしかも低価格の超高周波素子を歩留りよく得ることが
必要となっている。
Compound semiconductors are often used in ultrahigh wave devices due to their physical characteristics. Among these, field effect transistors (hereinafter simply referred to as FETs) using GaAs, which is a 111-V group binary compound semiconductor, have recently made remarkable progress and are being mass-produced. At this stage, it is necessary to obtain high-performance, low-cost ultra-high frequency devices with a high yield.

この1つの要素として、バッファ一層の性質とバッフ1
層とアクティブ層の界面における濃度プロファイルの急
岐性をいかに上げるかということが性能を向上させるう
えで重要な問題となってきた。
One element of this is the nature of the buffer layer and the buffer 1
How to increase the abruptness of the concentration profile at the interface between the layer and the active layer has become an important issue in improving performance.

従来、GaAsFETは半絶縁性基板からの悪影響をな
くするだめに、7〜8μm程度のP型の低濃度で高比抵
抗の(peトド一層)を形成し、その上にn型のQaA
sアクティブ層を気相成長法により連続して形成し、そ
の後ゲート、ソースおよびドレイン電極が形成されると
いう構造が一般的に知られている。
Conventionally, in order to eliminate the negative influence from the semi-insulating substrate, GaAsFETs are made by forming a low-concentration, high-resistivity P-type layer (a single layer of PE) of about 7 to 8 μm, and then layering an n-type QaA layer on top of it.
A generally known structure is that an s-active layer is successively formed by vapor phase growth, and then gate, source, and drain electrodes are formed.

しかし、このようなP−のGaAsバ1ツフ1一層を有
する場合、n−のGaAsバッファ一層とは異なりアク
ティブ層界面の濃度プロファイルは急岐であるが、ポテ
ンシャルはやはりゆるやかに変化し、電子がバッファ一
層内へしみ出るという現象が生ずる。このことはgnの
下づまシをおこし、高周波特性におけるNFを劣化させ
る原因になり問題になっていた。
However, in the case of having a single layer of P- GaAs buffer 1, unlike a single layer of n- GaAs buffer, the concentration profile at the interface of the active layer is steep, but the potential still changes slowly and electrons are A phenomenon of seepage into the buffer layer occurs. This has caused a problem in that it causes the gn to fall down and deteriorates the NF in high frequency characteristics.

本発明の目的は、半絶縁性基板からの悪影響を受けず、
しかもバッファ一層とアクティブ層との界面プロファイ
ルがより急岐になるバッファ一層を有する高性能な電界
効果トランジスタを提供することにある。
The purpose of the present invention is to avoid the negative effects from semi-insulating substrates,
Moreover, it is an object of the present invention to provide a high-performance field effect transistor having a buffer layer in which the interface profile between the buffer layer and the active layer becomes more abrupt.

本発明の電界効果トランジスタは半絶縁性基板上にP型
の低濃度で高比抵抗のGaAsバッファ一層と、そのバ
ッフ1一層とへテロ接合されたGaAIASバッファ一
層の2層からなるバッフ1一層および高濃度のQa A
mアクティブ層を有する半導体基板上に、ショットキー
接合されたゲート電極とオーミック接触されたソース電
極とドレイン−電極とが形成される。
The field effect transistor of the present invention has a buffer 1 layer on a semi-insulating substrate, which is composed of two layers: a P-type low-concentration, high-resistivity GaAs buffer layer, and a GaAIAS buffer layer heterojunctioned with the buffer 1 layer. High concentration of Qa A
A source electrode and a drain electrode which are in ohmic contact with a gate electrode having a Schottky junction are formed on a semiconductor substrate having an active layer.

本発明によれば、第2J@目にヘテロ接合され九GaA
lAsバッファ一層を用いることによシ、GaAlAs
とGaAsのバンドギャップの差から生ずる電子に対す
る急岐なポテンシャルバリアが形成され、従来問題にな
っていたアクティブ層界面における電子のしみ出しが少
なくなり、gm等の性能向上を実現できる。しかも第1
層目のP−GaA、sバッファ一層を併用していること
により半絶縁性基板からの悪影褥を受けることなく良好
な1AsB’Hf’を実現できる。
According to the present invention, the second J@th heterojunction
By using one layer of lAs buffer, GaAlAs
A sharp potential barrier against electrons is formed due to the difference in band gap between GaAs and GaAs, and the seepage of electrons at the interface of the active layer, which has been a problem in the past, is reduced, and performance improvements such as GM can be realized. Moreover, the first
By using a single layer of P-GaA and a single layer of s-buffer, good 1AsB'Hf' can be achieved without suffering from adverse effects from the semi-insulating substrate.

以下1本発明の一実施例を図面を参照して、より詳細に
説明する。
Hereinafter, one embodiment of the present invention will be described in more detail with reference to the drawings.

第1図は従来のGaAsFETの断面構造を示している
。半絶縁性GaAs基板10上にP″のGaAsバッフ
ァ一層11全11、このバッファ一層の一部に漆すが形
成されている。メサ上にはGaAsアクティブ層13が
形成され、さらにゲート電極21゜ソース、ドレイン電
極22が形成されている。
FIG. 1 shows a cross-sectional structure of a conventional GaAsFET. A P'' GaAs buffer layer 11 is formed on a semi-insulating GaAs substrate 10, and lacquer is formed on a part of this buffer layer.A GaAs active layer 13 is formed on the mesa, and a gate electrode 21° is formed on the mesa. Source and drain electrodes 22 are formed.

第2図は本発明のGaAlAs、ETに用いられたエピ
タキシャルウニ・・−の断面構造を示している。
FIG. 2 shows the cross-sectional structure of the epitaxial sea urchin used in the GaAlAs ET of the present invention.

半絶縁性GaAs基板10上に鉄をドープしたP−のG
aAsバッファー)曽11を気相成長法により形成する
(成長温度ニア50℃エビ層=7μm)。
Iron-doped P-G on semi-insulating GaAs substrate 10
aAs buffer) So 11 is formed by a vapor phase growth method (growth temperature near 50° C. shrimp layer = 7 μm).

次に分子ビームエピタキシャル法によるペテロ接合ノG
aA11A8バy7y一層12(成長温[: 600℃
、エビ層:0.5μrn)とGaAs 7りf (;Q
m13(エビ厚:0.2μm、キャリアー濃度: 2 
Xl017儂″S)を連続成長する。次に第3図に示す
ように、メサ形成された後にフォトレジストを用い7ヒ
Alのサイドエツチング法によりゲート電極となるAI
2] (Alご450ON)をメサ上に形成する)。次
に第4図に示すように、フォトレジストを用いたり7ト
オ7法により、メサ上にソースおよびドレイン電極とな
るAuGe・NN鰺22−(2)Σ15oo’A、ut
=4ooX)を積層して形成し、アロイ(4308C)
を行う。次に第5図に示すように、フォトレジストを用
いたリフトオフ法により、メサ上に形成されたソースと
ドレイン電極と各々のポンディングパッドを接続するた
めのil&配置1M’l’1−Pt 23 (’I’i
 =2000X、 P t=2ooo、K)を形成し、
その後II!rl法によl) A u24を形成する。
Next, the Peter junction G using the molecular beam epitaxial method was
aA11A8by7y12 (growth temperature [: 600℃
, shrimp layer: 0.5μrn) and GaAs 7rif (;Q
m13 (shrimp thickness: 0.2 μm, carrier concentration: 2
Next, as shown in FIG. 3, after forming a mesa, side-etching of 7-Al using a photoresist is performed to form an AI that will become a gate electrode.
2] (Al 450ON) is formed on the mesa). Next, as shown in FIG. 4, using a photoresist or using the 7-to-7 method, AuGe NN mackerel 22-(2)Σ15oo'A, ut which will become the source and drain electrodes on the mesa.
=4ooX) and formed by laminating alloy (4308C)
I do. Next, as shown in FIG. 5, a lift-off method using photoresist is used to connect the source and drain electrodes formed on the mesa to each bonding pad. ('I'i
=2000X, Pt=2ooo, K),
Then II! l) A u24 is formed by the rl method.

この時にゲートのボンディング−5= パッドも同時に形成される。At this time, gate bonding -5= Pads are also formed at the same time.

以上のように、本実施例のGaAsFBTによれば、P
 −ノGaAsバッファーとヘテo GaAlAsパ、
7アーとを用いることによシ、従来問題となっでいたア
クティブ層界面における電子のし今出しが少なくなり、
しかも半絶縁性基板からの悪影響を受けることなく、良
好なGaAsFETを得ることが出来る。
As described above, according to the GaAsFBT of this example, P
- a GaAs buffer and a GaAlAs buffer;
By using 7A, the electron output at the interface of the active layer, which has been a problem in the past, is reduced.
Furthermore, a good GaAsFET can be obtained without being adversely affected by the semi-insulating substrate.

このようにして製作されたGaAsFE’I’と、第1
図に示す従来のGaAsFETとを比軟した場合、第6
図に示すように9mが15チ程度向上し、12GHzに
おけるNli’も従来の2.4dB(平均1直)から2
.2dB(平均値)に改善された。なお同図において斜
線は従来のFETの特性図で斜線のないものは本実施例
のFETの特性図である。いずれもゲート長は0.5μ
m、ゲ〒ト幅は280μIn、ソース・ドレイン間間隔
は2.0μmのF ETを使用した。
The GaAsFE 'I' produced in this way and the first
When compared with the conventional GaAsFET shown in the figure, the 6th
As shown in the figure, the distance at 9 m has improved by about 15 inches, and the Nli' at 12 GHz has also improved from 2.4 dB (average 1 shift) to 2.
.. It was improved to 2dB (average value). In the same figure, the hatched line is a characteristic diagram of the conventional FET, and the line without hatching is a characteristic diagram of the FET of this embodiment. The gate length is 0.5μ in both cases.
An FET with a gate width of 280 .mu.m and a source-drain spacing of 2.0 .mu.m was used.

【図面の簡単な説明】[Brief explanation of the drawing]

−6= 第1図は従来の0aAsFETの断面図、第2図ないし
第5図は本発明の一実施例を製造工程順に示した各断面
図である。第6図は従来のものと本発明のGaAsFE
Tにあ・けるgInの分布を示す特匪図である。 10・・・・・・半絶縁性0aAs基板、11・川・・
p−のG a A sバッファ一層、】2・・・・・・
(laAdA、sバッンア一層、13・・・・・・アク
ディプ層、21・・・・・・ゲート電極、22・=・・
−A、uLle−Ni 、 23−川・Ti −Pt、
 24・・・・・・Au0 7− −A【り−
-6= Fig. 1 is a sectional view of a conventional 0aAsFET, and Figs. 2 to 5 are sectional views showing an embodiment of the present invention in the order of manufacturing steps. Figure 6 shows GaAsFE of the conventional one and the present invention.
It is a special plot showing the distribution of gIn in T. 10...Semi-insulating 0aAs substrate, 11. River...
p-GaAs buffer, ]2...
(laAdA, sbanner layer, 13...acdip layer, 21...gate electrode, 22...=...
-A, uLle-Ni, 23-kawa Ti-Pt,
24...Au0 7- -A[ri-

Claims (1)

【特許請求の範囲】[Claims] 半絶縁性基板上にPgの低濃度の第1のバッファ一層と
、該第1のバッファ一層とへテロ接合された第2のバッ
ファ一層との2層からなるバッファ一層領域と、その上
に高濃度のアクティブ層とを有する半導体基板上に、ゲ
ート電極、ソース電極およびドレイン電極とを形成した
ことを特徴とする電界効果トランジスタ。
A buffer layer region consisting of two layers, a first buffer layer with a low concentration of Pg and a second buffer layer heterojunctioned with the first buffer layer, on a semi-insulating substrate, and a buffer layer region with a high concentration A field effect transistor characterized in that a gate electrode, a source electrode, and a drain electrode are formed on a semiconductor substrate having a high concentration active layer.
JP19859383A 1983-10-24 1983-10-24 Field effect transistor Pending JPS6089977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19859383A JPS6089977A (en) 1983-10-24 1983-10-24 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19859383A JPS6089977A (en) 1983-10-24 1983-10-24 Field effect transistor

Publications (1)

Publication Number Publication Date
JPS6089977A true JPS6089977A (en) 1985-05-20

Family

ID=16393763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19859383A Pending JPS6089977A (en) 1983-10-24 1983-10-24 Field effect transistor

Country Status (1)

Country Link
JP (1) JPS6089977A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53126282A (en) * 1977-04-08 1978-11-04 Thomson Csf Fet transistor
US4157556A (en) * 1977-01-06 1979-06-05 Varian Associates, Inc. Heterojunction confinement field effect transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4157556A (en) * 1977-01-06 1979-06-05 Varian Associates, Inc. Heterojunction confinement field effect transistor
JPS53126282A (en) * 1977-04-08 1978-11-04 Thomson Csf Fet transistor

Similar Documents

Publication Publication Date Title
US5449930A (en) High power, compound semiconductor device and fabrication process
JPH024140B2 (en)
JPS61198776A (en) Hetero-junction bipolar transistor and manufacture thereof
JPH04233736A (en) Compound semiconductor device
JPS6089977A (en) Field effect transistor
JP2964637B2 (en) Field effect transistor
JP3094500B2 (en) Field effect transistor
JP3230503B2 (en) Tunnel transistor and manufacturing method thereof
JPS6214105B2 (en)
JPS59181060A (en) Semiconductor device
JP3084820B2 (en) Compound semiconductor device
JPS5828753B2 (en) Method of manufacturing vertical field effect transistor
JP2541280B2 (en) Semiconductor device
JP2000208753A (en) Semiconductor device and its manufacture
JPH09252112A (en) High electron mobility transistor and iii-v compound semiconductor
JP3572560B2 (en) Compound semiconductor device
JPH0360178B2 (en)
JP3055244B2 (en) Semiconductor device and manufacturing method thereof
JPH03211839A (en) Compound semiconductor device and method of manufacturing the same
JP2671856B2 (en) Tunnel transistor and manufacturing method thereof
JPS6068661A (en) Semiconductor device
JP3093495B2 (en) Group 3-5 compound semiconductor field effect transistor
JP3122471B2 (en) Field effect transistor
JPH06283552A (en) Compound semiconductor device and manufacturing method thereof
JP2834172B2 (en) Field effect transistor