JPS6089348A - Thermosetting resin molded shape with high conductive layer and manufacture thereof - Google Patents
Thermosetting resin molded shape with high conductive layer and manufacture thereofInfo
- Publication number
- JPS6089348A JPS6089348A JP58197972A JP19797283A JPS6089348A JP S6089348 A JPS6089348 A JP S6089348A JP 58197972 A JP58197972 A JP 58197972A JP 19797283 A JP19797283 A JP 19797283A JP S6089348 A JPS6089348 A JP S6089348A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- glass fiber
- fiber layer
- conductive
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Reinforced Plastic Materials (AREA)
- Laminated Bodies (AREA)
- Moulding By Coating Moulds (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
浅し
成形品およびその製造に関するものであり、さらに詳し
くは、成形品の中間層に高導電性層を設ける積層構造に
より、優れた電波反射特性を有する成形品を得ることを
目的とした熱硬化性樹脂組成物成形材料およびこれを用
いる成形方法に関する。Detailed Description of the Invention This invention relates to a shallow molded product and its production, and more specifically, to obtain a molded product with excellent radio wave reflection characteristics by a laminated structure in which a highly conductive layer is provided in the middle layer of the molded product. The present invention relates to a thermosetting resin composition molding material and a molding method using the same.
主としてガラス繊維を補強材とする強化プラスチックは
、軽量、強度特性、耐食性、成形加工性、デザインの自
由度、コストのパフォーマンス等、その優れた機能性を
生かして金属に代替する分野で1#要を伸ばし、近年さ
らに電磁波シールド特性および電波反射特性を要求され
る分野にまで及んでいる。Reinforced plastics, which are mainly made of glass fiber as a reinforcing material, have become the number one choice in the field of replacing metals due to their excellent functionality, such as light weight, strength, corrosion resistance, moldability, freedom of design, and cost performance. In recent years, it has expanded to include fields that require electromagnetic shielding properties and radio wave reflection properties.
電気絶縁性である強化プラスチックに高導電性を付与す
る方法としては、l〕樹脂マトリックス中て金属短繊維
、金jl4フレーク等の導電性物質を均一に分散する;
λ)金属繊維、表面金属化ガラス繊維、炭素繊維等の導
電性繊維のマットまたはクロスの導電性層を成形品内V
C形成する:等が挙げられる。A method for imparting high conductivity to electrically insulating reinforced plastics is as follows: 1) Uniformly dispersing conductive substances such as short metal fibers and gold flakes in a resin matrix;
λ) A conductive layer of a mat or cloth of conductive fibers such as metal fibers, surface metallized glass fibers, carbon fibers, etc. is placed inside the molded product.
C-forming: etc. can be mentioned.
樹脂マ) IJンクス中に導電性物質を均一に分散する
方法にはl)電磁波シールド特性−?電波反射特性を満
足するには、かなりの添加一を要するために、流動特性
や強度特性の低下を招く;コ)特に電波反射特性に対し
ては、充分な導電性物質の表面密度を得・ようとすれば
、これに伴って成形がより困難になる、等の欠点がある
。(Resin ma) How to uniformly disperse conductive substances in IJ links l) Electromagnetic shielding characteristics -? In order to satisfy the radio wave reflection properties, a considerable amount of addition is required, which leads to a decrease in flow properties and strength properties. However, there are disadvantages such as making molding more difficult.
これに対して、導電性繊維のマットまたはクロスの導電
性層を成形品内に形成する方法が種々検討されているが
、公知の方法では、l)成形時、導電性繊維層の破れ、
あるいは伸びが生じて、部分的に導電性層の表面密度が
低下する1、2)導電性層面の波打ち等により電波反射
特性が低下したり、不均一になる、等の欠点が残されて
いる。前者は、樹脂マトリックスが流動する時、導電性
層が移動するため、また後者は導電性層の移動と2#電
性繊維に固有の凹凸のためと考えられる。To deal with this, various methods of forming a conductive layer of a conductive fiber mat or cloth in a molded product have been studied, but the known methods do not allow l) tearing of the conductive fiber layer during molding;
Otherwise, elongation occurs, and the surface density of the conductive layer partially decreases. 1, 2) There are still drawbacks such as the radio wave reflection characteristics deteriorate or become uneven due to waving of the conductive layer surface, etc. . The former is thought to be because the conductive layer moves when the resin matrix flows, and the latter is thought to be due to the movement of the conductive layer and the irregularities inherent to the 2# conductive fiber.
本発明者らは、上記の導電性繊維を成形品内に形成する
方法における欠点に着目して、その改良法の検討を重ね
て本発明を完成するに到った。The present inventors have focused on the drawbacks of the method for forming conductive fibers in a molded article, and have completed the present invention by repeatedly studying ways to improve the method.
すなわち、本発明は、優れた電波反射特性を有する熱硬
化性樹脂成形品を提供することを目的とするものでおっ
て、短繊維倉主体としたガラス繊維層、導電性繊維層、
長繊維のガラス繊維層の3層の繊維層を熱硬化性樹脂が
包み込む構成であって、導電性層の成形物表面側に長繊
維のガラス繊維層が設けられており、この長繊維のガラ
ス繊維層側の成形物表面から0./−7,0mm の位
置f導電性層表面が形成されることを特徴とする熱硬化
性樹脂成形品およびその成形用樹脂組成物と成形法を提
示する。That is, an object of the present invention is to provide a thermosetting resin molded product having excellent radio wave reflection characteristics, which comprises a glass fiber layer mainly containing short fibers, a conductive fiber layer,
The thermosetting resin wraps three long fiber glass fiber layers, and the long fiber glass fiber layer is provided on the surface side of the molded product of the conductive layer. 0.0 from the surface of the molded product on the fiber layer side. A thermosetting resin molded article characterized in that a conductive layer surface is formed at a position f of /-7.0 mm, a resin composition for molding the same, and a molding method are presented.
本発明に用いられる短繊維を主体としたガラス繊維は、
強化プラスチックに一般に用いられるガラス繊維系補強
材であり、ガラス・マット、繊維の長さが1インチ前後
のチンブト9ストランド等のガラス基材が好適である。The glass fibers mainly consisting of short fibers used in the present invention are
This is a glass fiber reinforcing material commonly used for reinforced plastics, and glass mats, glass substrates such as Chimbuto 9 strands with fiber lengths of about 1 inch are suitable.
本発明の導電性繊維としては、アルミニウム、黄銅、鉄
等の金属繊維、表面金属化ガラス繊維、炭素繊維等が挙
げられ、繊維の形状は、長繊維、特12連続長繊維が好
適である。このうち表面金属化ガラス繊維にはアルミニ
ウムやニッケルで被覆したガラス繊維があげられるが、
これ♂元型が比較的小さく、表面の酸化による導電率の
低下が少ない点で好適であるが、特に、アルばニウムで
被覆した連続ガラス繊維マットは本発明に極めて好適で
ある。炭素繊維は、強度、弾性率に基づく各種グレード
を問わず、化学的に安定である点で好適である。Examples of the conductive fibers of the present invention include metal fibers such as aluminum, brass, and iron, surface metalized glass fibers, carbon fibers, etc., and the preferred shape of the fibers is long fibers, especially 12 continuous long fibers. Among these, surface-metalized glass fibers include glass fibers coated with aluminum or nickel.
This is preferable because the male prototype is relatively small and there is little reduction in electrical conductivity due to surface oxidation, and in particular, continuous glass fiber mat coated with aluminum is extremely suitable for the present invention. Carbon fibers are suitable because they are chemically stable, regardless of the various grades based on strength and modulus of elasticity.
本発明の長繊維のガラス繊維としては目抜平織程度に織
目を粗くしたガラス・クロスやコンティニュアス・スト
ランド嗜マット等が適する。Suitable long fiber glass fibers of the present invention include glass cloth with a coarse weave to the level of a plain weave, a continuous strand mat, and the like.
本発明に用いられる不飽和ポリエステル樹脂の組成は本
発明においては特て制限0対象となることはない。成形
性や成形品の変性を目的として、ビニルエステル樹脂や
7タル酸ジアリル樹脂等の他の熱硬化性樹脂、および、
さらに硬化剤の他、低収縮付与剤、増粘剤、充填材、離
型剤等を混合することは差し支えない。The composition of the unsaturated polyester resin used in the present invention is not particularly subject to any restrictions. For the purpose of moldability and modification of molded products, other thermosetting resins such as vinyl ester resin and diallyl heptalate resin, and
Furthermore, in addition to the curing agent, a low shrinkage agent, a thickener, a filler, a mold release agent, etc. may be mixed.
良好な電波反射特性含有する熱硬化性樹脂成形品の成形
に際して、成形品の機械的強度を向上させろために、あ
る程度の成形品の肉厚およびリブ構造による補強が要求
される場合には、本発明の積層構成の裏側、すなわち短
繊維を主体としたガラス繊維層側に接して、適当な成形
用熱硬化性樹脂組成物を重ねて一体成形することは有効
であり、本発明て含有されるものである。この場合、成
形品のひずみ、変形、割れなどのトラブルを避けるため
に、樹脂混合物の成分が類似ないし共通のもの、すなわ
ち、短繊維を主体とするガラス繊維層に不飽和ポリエス
テル樹脂を主たる樹脂成分とする樹脂混合物を含浸した
樹脂組成物を一体成形することが好適である。When molding a thermosetting resin molded product that has good radio wave reflection properties, if a certain degree of wall thickness and rib structure reinforcement is required to improve the mechanical strength of the molded product, this book is recommended. It is effective to overlay and integrally mold a suitable thermosetting resin composition for molding on the back side of the laminated structure of the invention, that is, in contact with the glass fiber layer mainly composed of short fibers, and it is effective to integrally mold the thermosetting resin composition for molding. It is something. In this case, in order to avoid problems such as distortion, deformation, and cracking of the molded product, the resin mixture should have similar or common components. It is preferable to integrally mold a resin composition impregnated with a resin mixture.
本発明によって得られる高導電性繊維層を有する熱硬化
性樹脂成形品において、導電性層の表面は、長繊維のガ
ラス繊維層を介して成形表面から0,7〜1.0mm
の位置に形成される。このためには長繊維のガラス繊維
のマットまたはクロスの厚さと使用枚数及び樹脂混合物
の址を変えろことによって達成できる。長繊維のガラス
繊維層の存在は、成形時の導電性繊維層の移動を抑制す
るのに効果があると考える。導電性繊維層が成形品表面
にθ、tmm 以内に近接すると導電性層の移動と波打
ちが起る。また、長繊維のガラス繊維層を含む表面層の
厚さが/、Ommを越えると、電波反射特性が低下する
。本発明による成形品は導電性繊維層の凹凸が0.2m
m以下で極めて平坦である。In the thermosetting resin molded product having a highly conductive fiber layer obtained by the present invention, the surface of the conductive layer is 0.7 to 1.0 mm from the molding surface via the long fiber glass fiber layer.
It is formed at the position of This can be achieved by varying the thickness and number of long glass fiber mats or cloth used and the composition of the resin mixture. It is believed that the presence of the long fiber glass fiber layer is effective in suppressing movement of the conductive fiber layer during molding. When the conductive fiber layer approaches the surface of the molded article within θ, tmm, movement and waving of the conductive layer occur. Moreover, if the thickness of the surface layer including the long fiber glass fiber layer exceeds 0.00000 mm, the radio wave reflection characteristics will deteriorate. In the molded product according to the present invention, the unevenness of the conductive fiber layer is 0.2 m.
m or less and is extremely flat.
以下、実施例によって本発明をさらに詳しく説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.
実施例1
不飽和ポリエステル樹脂、低収縮付与剤、増粘剤、充填
材、硬化剤、離型剤から成る樹脂混合物を2枚のポリエ
チレンシートに各シート当たり/ J 00117m2
の均一の厚さにそれぞれ塗布した後、一方のシートの
樹脂混合物を塗布した面上rご71ンチの長さに切断し
たガラ、ス短繊維fggoll/m2の厚さに均一に散
布し、その上に 、もう一方の樹脂混合物を塗布したポ
リエチレンシートを樹脂混合物塗布面をガラス短繊維層
に接して重ね合わせた。このものを加圧ロールに通すこ
とにより樹脂混合物をガラス繊維に含浸させて、ガラス
含量コS%、単位重量3 、! kg/m 2のシート
状樹脂組成物(SMC−/) を作成した。Example 1 A resin mixture consisting of an unsaturated polyester resin, a low shrinkage agent, a thickener, a filler, a curing agent, and a mold release agent was applied to two polyethylene sheets per J 00117 m2.
After applying the resin mixture to a uniform thickness, sprinkle it evenly on the surface of one sheet coated with the resin mixture to a thickness of fggoll/m2 of short glass fibers cut to a length of 71 inches. On top of this, another polyethylene sheet coated with the resin mixture was placed on top of the other with the resin mixture coated side in contact with the short glass fiber layer. By passing this material through a pressure roll, the resin mixture is impregnated into the glass fibers, so that the glass content is S%, the unit weight is 3,! A sheet-like resin composition (SMC-/) of kg/m 2 was prepared.
次いで上記の不飽和ポリエステル樹脂混合物を2枚のポ
リエチレンシートに各シート肖たり3oo11/m2の
均一の厚さにそれぞれ塗布し、一方のシートの樹脂混合
物の塗布面上に、too 9/2のアルミニウム被覆ガ
ラス繊維マット(口一モグラスマット:米国うンディ社
)を置き、その上にもう一方のシートを樹脂混合物塗布
面をマットに接して重ね合わせ、加圧ロールを通してマ
ットに樹脂混合物を含浸させて、導電性シート状樹脂組
成物(SMC−,2)を作成した。The unsaturated polyester resin mixture described above was then applied to two polyethylene sheets to a uniform thickness of 3oo11/m2 per sheet, and on the coated side of the resin mixture of one sheet, an aluminum layer of too 9/2 was applied. A coated glass fiber mat (Kuchichimo Grass Mat: Undy Co., Ltd., USA) is placed, and the other sheet is placed on top of it with the resin mixture applied side in contact with the mat, and the mat is impregnated with the resin mixture through a pressure roll. A conductive sheet-like resin composition (SMC-, 2) was prepared.
SMC−/およびSMC−コは共に作成後直ちにlIO
℃の空気恒温槽にq日間入れて増粘した。Both SMC-/ and SMC-co are
It was placed in an air constant temperature bath at ℃ for q days to thicken it.
セミポジティブ金型の底面VC2/ cm X 、2
/ amの単位重量コ1097m”のガラスクロス(マ
イクログラス・クロスYEMコlO1:日本硝子繊維)
を置き、その上に/9cmx/9cmのSMC−一を、
さらにその上に/ 1 cm X / A cm(1)
SMG−/をそれぞれ両面のポリエチレンシートをは
ぎとって重ね合わせ、加熱圧縮成形によって、20cI
n×20 cm、厚さ約、y、Omm の平板を作製し
た。この平板から、4(コmm X ll−mmの試料
片を切り出し、ガラスクロス面の電波反射特性を測定し
た。結果は表−/VC示すように良好であった。Bottom surface of semi-positive mold VC2/cm
/am unit weight 1097m glass cloth (Microglass cloth YEM 1O1: Nippon Glass Fiber)
Place the /9cmx/9cm SMC-1 on top of it.
Further on top of that / 1 cm X / A cm (1)
The polyethylene sheets on both sides of each SMG-/ were peeled off and stacked on top of each other, and then heated and compressed to form a 20 cI
A flat plate of n×20 cm and a thickness of approximately y, Omm was prepared. A sample piece of 4 mm x 11 mm was cut out from this flat plate, and the radio wave reflection characteristics of the glass cloth surface were measured. The results were good as shown in Table VC.
実施例コ
SMO[シートモールディングコンパウンド]製造機を
用いて、実施例/+7)SMO−/と同じ組成のシート
状樹脂組成物(SMC−J)を作成し増粘処理を施した
。Example A sheet-like resin composition (SMC-J) having the same composition as Example /+7) SMO-/ was prepared using an SMO [sheet molding compound] manufacturing machine and subjected to a thickening treatment.
次VcSMC製造機によりSMC−Jを作成する過程に
おいて、ガラス短繊維の散布量をqto9/m とし、
さらにこのガラス短繊維層と一方のポリエチレンシート
の樹脂混合物塗布面との間に、1001!/m’ のア
ルミニウム被覆ガラス繊維マットを挾みこんだ組成のシ
ート状樹脂組成物(SMO−11)を作成し、増粘処理
を施した。Next, in the process of creating SMC-J using the VcSMC manufacturing machine, the amount of scattered glass short fibers was set to qto9/m,
Furthermore, between this short glass fiber layer and the resin mixture coated surface of one polyethylene sheet, 1001! A sheet-like resin composition (SMO-11) having a composition in which aluminum-coated glass fiber mats of /m' were sandwiched was prepared and subjected to a thickening treatment.
、実施例1と同様に、金型上に下からガラスクロス、S
MC−4’、SMC−Jと3層重ね合わせて圧縮成形し
、平板を作成し、さらに試料片を切りとって電波反射特
性を測定した。, As in Example 1, glass cloth and S are placed on the mold from below.
Three layers of MC-4' and SMC-J were piled up and compression molded to create a flat plate, and a sample piece was cut out to measure radio wave reflection characteristics.
実施例J
実施例−と同様のSMC製造機によりシート状樹脂組成
物を作成する過程において、樹脂混合/m’のアルミニ
ウム被覆ガラス繊維層、次いで7コtop/m2のガラ
スクロスの3層を同時に挾み込んだ樹脂組成物(SM’
C−1)を作成し、増粘処理をした。Example J In the process of creating a sheet-like resin composition using the same SMC manufacturing machine as in Example--, three layers of resin mixture/m' of aluminum coated glass fiber layer and then 7 top/m2 of glass cloth were simultaneously added. The sandwiched resin composition (SM'
C-1) was prepared and subjected to thickening treatment.
金星底面にガラスクロス側が接するようにSMC−4を
置き、その上に実施例コで作成したSMC−jを重ねて
、圧縮成形し、平板試料の電波反射特性を測定した。SMC-4 was placed so that the glass cloth side was in contact with the bottom surface of Venus, and the SMC-j prepared in Example 1 was placed on top of it, compression molded, and the radio wave reflection characteristics of the flat sample were measured.
実施例り
金型上にガラスクロス、実施例3で得たSMC−5、実
施例−で得たSMC−jを順次重ねて圧縮成形をし、平
板試料の電波反射特性を測定した。Example A glass cloth, SMC-5 obtained in Example 3, and SMC-j obtained in Example 3 were sequentially stacked on a mold and compression molded, and the radio wave reflection characteristics of the flat sample were measured.
実施例S
実施例−のSMG−ダを作成する過程において、アルミ
ニウム被覆ガラス繊維に代えて、gol/m2の炭素繊
維マット(クレハeベールマットV−コasp:呉羽化
学工業)コブライを挾んだシート状樹脂組成物(SMC
−4)を作成し、増粘処理をした。Example S In the process of creating the SMG-da of Example--, instead of the aluminum-coated glass fiber, a carbon fiber mat of gol/m2 (Kureha e-veil mat V-Coasp: Kureha Chemical Industry Co., Ltd.) was sandwiched. Sheet-shaped resin composition (SMC
-4) was prepared and subjected to thickening treatment.
金型上にガラスクロス、その上に炭素繊維マット面がガ
ラスクロスに接するようにsMC−Aを重ね、さらにそ
の上に実施例−で得たSMC’−3を重ねて圧縮成形を
し、平板試料の電波反射特性を測定した。Glass cloth was placed on the mold, sMC-A was layered on top of the glass cloth so that the carbon fiber mat surface was in contact with the glass cloth, and SMC'-3 obtained in Example 1 was layered on top of that and compression molded to form a flat plate. The radio wave reflection characteristics of the sample were measured.
実施例6
実施例308MC−!rを作成する過程において、アル
ミニウム被覆ガラス繊維に代えて、実施例5に記載の炭
素繊維マツトコプライを用いてシート状樹脂組成物(S
MC−7)を作成し、増粘処理をした。Example 6 Example 308MC-! In the process of creating R, a sheet-like resin composition (S
MC-7) was prepared and subjected to thickening treatment.
金型底面にガラスクロス面が接するようにSMC−7を
置き、その上に実施例コで得た5M0−3を重ねて、圧
縮成形をし、平板試料の電波反射特性を測定した。SMC-7 was placed so that the glass cloth surface was in contact with the bottom of the mold, 5M0-3 obtained in Example 1 was placed on top of it, compression molded, and the radio wave reflection characteristics of the flat sample were measured.
比較例1
実施例2において、ガラスクロスを除いて、3M0−1
’とSMC−Jの一枚のシート状樹脂組成物のみを20
、cm xコOcmの平板に圧縮成形したとき、SM
C−1のチャージ面積が/7cmX/7cmの場合チャ
ージ面積を除(成形品周辺部に導電性層の波打ちが見ら
れた。またSMOのチャージ面積が/?cmX/9cm
の場合、成形板の導電性層側表面が平滑でなかった。Comparative Example 1 In Example 2, except for the glass cloth, 3M0-1
' and SMC-J's sheet-shaped resin composition only.
, when compression molded into a flat plate of cm x Ocm, SM
When the charged area of C-1 was /7cmX/7cm, the charged area was subtracted (waving of the conductive layer was observed around the molded product. Also, the charged area of SMO was /?cmX/9cm).
In this case, the surface of the molded plate on the conductive layer side was not smooth.
比較例ユ
実施例ダの圧縮成形の際、ガラスクロス側にさらに実施
例Jで得られたSMC−Jを一枚重ねて圧縮成形をして
、平板試料の電波反射特性を測定した。この成形板のガ
ラスクロス層側の成形表面から導電性繊維層面までの距
離は/、/〜ハ、2 mm であった。During the compression molding of Comparative Example and Example D, a sheet of SMC-J obtained in Example J was further stacked on the glass cloth side and compression molded, and the radio wave reflection characteristics of the flat sample were measured. The distance from the molding surface on the glass cloth layer side of this molded plate to the conductive fiber layer surface was 2 mm.
Claims (1)
維のガラス繊維層(C)との中間層として導電性繊維層
(B)を設けた3層からなる繊維層に不飽和ポリエステ
ル樹脂を主たる樹脂成分とする樹脂混合物を含浸し一体
に成形硬化してなる熱硬化性樹脂成形品であって、(C
)層側の成形表面からQ、/ −/、0 、mm の位
置に導電性繊維層(日の表面が設けられることを特徴と
する熱硬化性樹脂成形品。 ユ 導電性繊維層(B)が表面金属化ガラス繊維である
特許請求の範囲第1項記載の成形品。 3 表面金属化ガラス繊維がアルミニウムで被覆された
ガラス繊維である特許請求の範囲第一項記載の成形品。 l 導電性繊維層(B)が炭素繊維である特許請求の範
n第1項記載の成形品。 S 短繊維を主体としたガラス繊維層(支)に不飽和ポ
リエステル樹脂を主たる樹脂成分とする樹脂混合物を含
浸させて得られる成形用熱硬化性樹脂組成物と長繊維の
ガラス繊維層IC)との中間に、導電性繊維層CB)に
不飽和ポリエステル樹脂を主たる樹脂成分とする樹脂混
合物を含浸して得られる成形用熱硬化性樹脂組成物を挾
み、一体に成形硬化させ、且つ(C)層側の成形表面か
ら0./〜I’、Ommの位置に導電性繊維層(B)の
表面が設けられることを特徴とする熱硬化性樹脂成形品
の製造方法。 乙 導電性繊維層(B)が表面金属化ガラ又繊維である
特許請求の範囲第S項記載の製造方法。 ? 表面金属化ガラス繊維がアルミニウムで被覆された
ガラス繊維である特許請求の範囲第6項記載の製造方法
。 g 導電性繊維層(9)が炭素繊維である′#許請求の
範囲第5項記載の製造方法。 デ 短maを主体としたガラス繊維層囚と導電性繊維層
(B)のコ層から成る繊維層に不飽和ポリエステル樹脂
を主たる樹脂成分とする樹脂混合物を含浸させて得られ
る成形用熱硬化性樹脂組成物の(B)層側に、長繊維の
ガラス繊維層(r5を設けて、一体に成形硬化させ、且
つ(C)層側の成形表面からQ、/ −/、Omm の
位置に導電性繊維層(E)の表面が設けられることを特
徴とする熱硬化性樹脂成形品の製造方法。 10、導電性繊維層(B)が表面金属化ガラス繊維であ
る特許請求の範囲第9項記載の製造方法。 /i 表面金属化ガラス繊維がアルミニウムで被覆され
たガラス繊維である特許請求の範囲第を項記載の製造方
法。 lユ 導電性繊維層の)が炭素繊維である特許請求の範
囲第9項記−の製造方法。 13 短繊維を主体としたガラス繊維層囚と長繊維のガ
ラス繊維層(C)との中間層として、導電性繊維層CB
)を設けた8層からなる繊維層に不飽和ポリエステルを
主たる樹脂成分とする樹脂混合物を含浸させて得られる
成形用熱硬化性樹脂組成物を、一体に成形硬化させ、且
つ(C)層側の成形表面から0.1〜7.0mm の位
置に導電性繊維層(B)の表面が設けられることを特徴
とする熱硬化性樹脂成形品の製造方法。・l弘 導電性
繊維層の)が表面金属化ガラス繊維である特許請求の範
囲第13項記載の製造方法。 is 表面金属化ガラス繊維がアルミニウムで被覆され
たガラス繊維である特許請求の範囲第1弘項記載の製造
方法。 16 導電性繊維層の)が炭素繊維である特許請求の範
FIB第73項紀載り製造方法。 17 短繊維を主体としたガラス繊維層囚と長繊維のガ
ラス繊維層(C)との中間層として導電性繊維層(B)
を設けた3層からなる繊維層に不飽和ポリエステル樹脂
を主たる樹脂成分とする樹脂混合物を含浸させて得られ
る成形用熱硬化性樹脂組成物の(C)層側に長繊維のガ
ラス繊維層+D)を設けて、一体に成形硬化させ、且つ
、<03層側の成形表面からOo−〜/、(7mm の
位置に導電性繊維層の)の表面が設けられることを特徴
とする熱硬化性樹脂成形物の製造方法。 /& 導電性繊維層(B)が表面金属化ガラス繊維であ
る特許請求の範囲第11項記載の製造方法。 79 表面金属化ガラス繊維がアルミニウムで被覆され
たガラス繊維でおる特許請求の範囲第1g項記載の製造
方法。 諷 導電性繊維層(B)が炭素繊維である特許請求の範
囲第1’1項記載の製造方法。[Claims] l A three-layer fiber comprising a glass fiber layer (71) mainly consisting of short fibers and a conductive fiber layer (B) as an intermediate layer between a glass fiber layer (C) made of long fibers. A thermosetting resin molded product obtained by impregnating a layer with a resin mixture containing an unsaturated polyester resin as the main resin component and integrally molding and curing the product,
) A thermosetting resin molded product characterized in that a conductive fiber layer (surface) is provided at a position Q, / −/, 0, mm from the molded surface on the layer side. U Conductive fiber layer (B) The molded article according to claim 1, wherein the surface metalized glass fiber is a glass fiber coated with aluminum. 3. The molded article according to claim 1, wherein the surface metalized glass fiber is a glass fiber coated with aluminum. The molded article according to claim n, paragraph 1, wherein the fiber layer (B) is carbon fiber.S: A resin mixture containing an unsaturated polyester resin as a main resin component in a glass fiber layer (support) mainly composed of short fibers. A resin mixture containing an unsaturated polyester resin as the main resin component is impregnated into the conductive fiber layer CB) between the thermosetting resin composition for molding obtained by impregnating the resin composition with the long fiber glass fiber layer IC). The resulting thermosetting resin composition for molding is sandwiched between the molding resin compositions and molded and cured together, and the molding surface on the layer (C) side has a 0. A method for producing a thermosetting resin molded article, characterized in that the surface of the conductive fiber layer (B) is provided at a position of /~I', Omm. B. The manufacturing method according to claim S, wherein the conductive fiber layer (B) is surface metalized glass fiber. ? 7. The manufacturing method according to claim 6, wherein the surface metallized glass fiber is a glass fiber coated with aluminum. g. The manufacturing method according to claim 5, wherein the conductive fiber layer (9) is carbon fiber. A thermosetting material for molding obtained by impregnating a fiber layer consisting of a glass fiber layer mainly composed of short ma and a conductive fiber layer (B) with a resin mixture whose main resin component is unsaturated polyester resin. A long fiber glass fiber layer (r5) is provided on the (B) layer side of the resin composition, and is integrally molded and cured, and conductive at a position of Q, / - /, Omm from the molded surface on the (C) layer side. A method for manufacturing a thermosetting resin molded product, characterized in that the surface of the conductive fiber layer (E) is provided. 10. Claim 9, wherein the conductive fiber layer (B) is surface metalized glass fiber. The manufacturing method according to claim 1, wherein the surface metallized glass fiber is a glass fiber coated with aluminum. The manufacturing method of item 9. 13 A conductive fiber layer CB is used as an intermediate layer between the glass fiber layer mainly composed of short fibers and the glass fiber layer (C) made of long fibers.
) A thermosetting resin composition for molding obtained by impregnating a fiber layer consisting of 8 layers with a resin mixture containing unsaturated polyester as the main resin component is integrally molded and cured, and (C) layer side A method for producing a thermosetting resin molded article, characterized in that the surface of the conductive fiber layer (B) is provided at a position of 0.1 to 7.0 mm from the molding surface. 14. The manufacturing method according to claim 13, wherein the conductive fiber layer) is surface-metallized glass fiber. The manufacturing method according to claim 1, wherein the surface metallized glass fiber is a glass fiber coated with aluminum. 16. A manufacturing method described in Claim FIB Paragraph 73, wherein the conductive fiber layer) is carbon fiber. 17 Conductive fiber layer (B) as an intermediate layer between the glass fiber layer mainly consisting of short fibers and the glass fiber layer (C) consisting of long fibers.
A long fiber glass fiber layer+D is provided on the (C) layer side of the thermosetting resin composition for molding obtained by impregnating a three-layer fiber layer with a resin mixture containing an unsaturated polyester resin as the main resin component. ) is formed and cured integrally, and a surface of Oo-~/, (of the conductive fiber layer) is provided at a position of 7 mm from the molded surface on the <03 layer side. A method for manufacturing resin molded products. /& The manufacturing method according to claim 11, wherein the conductive fiber layer (B) is surface metalized glass fiber. 79. The manufacturing method according to claim 1g, wherein the surface metallized glass fiber is aluminum-coated glass fiber. The manufacturing method according to claim 1'1, wherein the conductive fiber layer (B) is carbon fiber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58197972A JPS6089348A (en) | 1983-10-22 | 1983-10-22 | Thermosetting resin molded shape with high conductive layer and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58197972A JPS6089348A (en) | 1983-10-22 | 1983-10-22 | Thermosetting resin molded shape with high conductive layer and manufacture thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6089348A true JPS6089348A (en) | 1985-05-20 |
JPH0370626B2 JPH0370626B2 (en) | 1991-11-08 |
Family
ID=16383382
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58197972A Granted JPS6089348A (en) | 1983-10-22 | 1983-10-22 | Thermosetting resin molded shape with high conductive layer and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6089348A (en) |
-
1983
- 1983-10-22 JP JP58197972A patent/JPS6089348A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0370626B2 (en) | 1991-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5089326A (en) | EMI shielded composites and process of making same | |
US4434023A (en) | Method for producing plate heater | |
JPH04163109A (en) | Manufacture of fiber-reinforced thermoplastic resin molding material | |
JPS60159009A (en) | Composite material, which can be press-machined, of olefin polymer reinforced by glass/carbon fiber mat and manufacturethereof | |
JPS5984497A (en) | Electromagnetic shielding or reflecting frp plate and methodof producing same | |
JPS6294000A (en) | Electromagnetic interference shielding compound | |
WO2020040289A1 (en) | Carbon fiber sheet material, prepreg, molded article, carbon fiber sheet material production method, prepreg production method, and molded article production method | |
JPH0639930A (en) | Reinforced conductive plastic | |
JPS5873199A (en) | Radio wave shielding housing | |
JP6890141B2 (en) | Carbon fiber sheet material, molded body, carbon fiber sheet material manufacturing method and molded body manufacturing method | |
JPS6089348A (en) | Thermosetting resin molded shape with high conductive layer and manufacture thereof | |
JPH0774278B2 (en) | Stamping sheet material | |
JPS6088198A (en) | Conductive fiber mat | |
JPS6129083B2 (en) | ||
JPS63294610A (en) | Conductive molding plate and its manufacture | |
JPS60113996A (en) | Electromagnetic shielding reinforced plastic material | |
JPS63503417A (en) | Electrical resistance sheet and method of manufacturing the same | |
JPS5975927A (en) | Production of conductive composition material | |
JPS6011351A (en) | Thermoplastic resin impregnated fiber laminate | |
JP2005144867A (en) | Fiber-reinforced inorganic molded sheet and its production method | |
JPH02127035A (en) | Manufacture of electromagnetic wave shield sheet | |
JPS614304A (en) | Production of electromagnetic wave reflector | |
JPS59138439A (en) | Conductive sheet for molding smc | |
JPH0453175B2 (en) | ||
JPS5853111A (en) | Conductive composite material |