JPH02127035A - Manufacture of electromagnetic wave shield sheet - Google Patents

Manufacture of electromagnetic wave shield sheet

Info

Publication number
JPH02127035A
JPH02127035A JP27944488A JP27944488A JPH02127035A JP H02127035 A JPH02127035 A JP H02127035A JP 27944488 A JP27944488 A JP 27944488A JP 27944488 A JP27944488 A JP 27944488A JP H02127035 A JPH02127035 A JP H02127035A
Authority
JP
Japan
Prior art keywords
sheet
fiber
fibers
metal fiber
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27944488A
Other languages
Japanese (ja)
Other versions
JPH0681708B2 (en
Inventor
Yasuharu Mizumoto
水元 康晴
Toshiaki Suzuki
利昭 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to JP27944488A priority Critical patent/JPH0681708B2/en
Publication of JPH02127035A publication Critical patent/JPH02127035A/en
Publication of JPH0681708B2 publication Critical patent/JPH0681708B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To form an electromagnetic wave shield sheet having excellent quality characteristics by forming a laminate sheet by integrating a porous metal fiber sheet and a transparent plastic sheet by sticking or extrusion. CONSTITUTION:A porous metal fiber sheet is formed by baking a sheet which is obtained by mixing natural organic fiber or synthetic fiber and metal fiber, making them into the sheet and then subjecting the sheet to thermocompression bonding. Next, this porous metal fiber sheet is integrated with a transparent plastic sheet by sticking or extrusion to form a laminate sheet, and thereby an electromagnetic wave shield sheet is manufactured. It is suitable to form the porous metal fiber sheet by applying wet-type manufacture to the natural organic fiber or the synthetic fiber and the metal fiber out of which the amount of the compounded metal fiber is set to be 30 to 60wt.% of the whole fiber sheet before baking, by applying heating and contact-bonding to the fiber sheet thus obtained and by baking the same thereafter.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、透視性、柔軟性に富みシールドルーム等の窓
ガラスに貼り付けたり、シールドカーテンとして使用し
たり、あるいはシールドすべき物品を直接包被するシー
トまたは袋物、更にはケーブルのシールド用金網の代替
として利用可能な電磁波シールドシートの製造方法に関
するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention has excellent transparency and flexibility, and can be applied to window glass of shield rooms, etc., used as a shield curtain, or directly applied to objects to be shielded. The present invention relates to a method for manufacturing an electromagnetic shielding sheet that can be used as a substitute for a covering sheet or bag, and also for a wire mesh for shielding cables.

(従来の技術) 近年電子機器の急速な発展に伴い、その筐体のプラスチ
ック化により、電子機器の作動中に発生する電磁波障害
が大きい社会問題となっている。
(Prior Art) In recent years, with the rapid development of electronic devices, their housings have become plastic, and electromagnetic interference generated during the operation of electronic devices has become a major social problem.

その防止対策の一端として各種の電磁波シールドシート
が開発されている。現在までに、提案あるいは実施され
ているプラスチックを基材とした電磁波シールド材の製
造技術としては、亜鉛溶射、導電性塗料、金属蒸着、化
学メツキ等の表面処理によ4方法と、プラスチックと金
属などの導電性材料の微細繊維、粒子、薄片等との混合
によって複合材料とする方法がある。これらの中で透視
性が要求されるシールドルームの窓や中の見えるシール
ド性能を有する袋物などのシートとしては、その代表的
な方法をあげれば(1)導電性金属をメツシュ状に蒸着
する方法、(2)導電性塗料をメツシュ状に印刷する方
法や、また(3)プラスチックの表面処理による導電性
の付与、例えば格子状のポリエステルネットなどの織布
にCu、Niなどをメツキした後、これを透明性のプラ
スチックシートでサンドウィンチ状にはさんで積層化す
る方法等が知られており、透明性の優れたプラスチック
のシート基材に導電性を付与する技術が注目されている
Various electromagnetic shielding sheets have been developed as part of the prevention measures. To date, there are four methods for producing electromagnetic shielding materials based on plastic that have been proposed or implemented: zinc spraying, conductive paint, metal vapor deposition, chemical plating, and other surface treatments; There is a method of making a composite material by mixing conductive materials such as fine fibers, particles, flakes, etc. Among these, the typical methods for producing sheets for windows in shielded rooms that require transparency and for bags that have shielding performance that allows the contents to be seen are (1) a method in which conductive metal is vapor-deposited in the form of a mesh; , (2) a method of printing a conductive paint in a mesh shape, and (3) imparting conductivity by surface treatment of plastics, for example, after plating Cu, Ni, etc. on a woven fabric such as a grid-like polyester net, A method is known in which this is sandwiched between transparent plastic sheets in a sandwich-like manner and laminated, and the technique of imparting conductivity to a highly transparent plastic sheet base material is attracting attention.

(本発明が解決しようとする課題) 前記した従来の技術において(1)の導電性金属をメツ
シュ状に蒸着する方法では、蒸着設備が高価な上に多工
程を必要とするため量産には適さないうえ、蒸着膜が人
単位と薄いために物理的表面強度が低く、引っ掻きゃ圧
力で剥がれ易く、しかも折り曲げによりヒビが入るなど
と可撓性に乏しく製造上歩留まりが悪いという難点があ
る。また(2)の導電性塗料をメソシュ状に印刷する方
法については大面積のシートに対してメツシュ状に印刷
するに際して目標とするシールド特性を得るためには塗
布量を多くする必要性があることがら全面均一に印刷す
る事や印刷枚数を多くする事により印刷部にシャープ性
を欠くなど技術的に問題がある。
(Problems to be Solved by the Invention) In the conventional technique described above, the method (1) of vapor depositing a conductive metal in a mesh shape is not suitable for mass production because the vapor deposition equipment is expensive and requires multiple steps. Moreover, since the deposited film is as thin as a human being, its physical surface strength is low, and it is easily peeled off by scratching or pressure, and it also suffers from poor flexibility, such as cracking when bent, resulting in poor manufacturing yields. In addition, regarding the method (2) of printing conductive paint in a mesh shape, it is necessary to increase the amount of coating in order to obtain the target shielding properties when printing in a mesh shape on a large area sheet. However, there are technical problems such as uniform printing over the entire surface and a lack of sharpness in the printed area due to the large number of sheets printed.

(3)の表面処理によるプラスチック成形体への導電性
の付与技術はいずれも二次加工を加えて、プラスチック
表面に導電性の薄層を形成させるものであるが、例えば
格子状のポリエステルネットなどの織布にCu、 Nj
などをメンキした後、これを透明性のプラスチックシー
トでサンドウィンチ状にはさんで積層化する方法は透明
性のプラスチックシートでの積層工程などの二次加工以
後でのテンションコントロールが難しく、テンションを
強くかけ過ぎるとメソシュ織布の交錯部にズレが生しメ
ツキ未処理部分があられれシールド特性が低下するとい
う技術的な問題がある。
All of the techniques for imparting conductivity to plastic molded bodies through surface treatment (3) involve secondary processing to form a conductive thin layer on the plastic surface; for example, grid-like polyester nets, etc. Cu, Nj on the woven fabric of
The method of layering the materials by sandwiching them between transparent plastic sheets in a sandwich-like manner is difficult to control the tension after secondary processing such as the lamination process using transparent plastic sheets. If it is applied too strongly, there is a technical problem in that the intersecting parts of the mesh fabric will be misaligned, and the unplated parts will be rough, reducing the shielding properties.

これに対してプラスチックに金属の微細繊維の導電性材
料を混合して得られる複合材料は、プラスチック中に導
電性材料が分散されているので、プラスチック表面に導
電層が現れている場合と比較して導電層の破壊や酸化に
よる性能の低下、あるいは導電層の剥離による電子機器
への影響が少ない。しかし、複合材とした場合導電性材
料は、プラスチック全体に分散されていることから高度
の導電性を付与するには、表面処理による場合と比較し
て、多量の導電性材料を添加する必要がある。
On the other hand, composite materials obtained by mixing plastic with a conductive material made of fine metal fibers have the conductive material dispersed in the plastic, so compared to a case where a conductive layer appears on the plastic surface. Therefore, there is little impact on electronic devices due to destruction of the conductive layer, deterioration in performance due to oxidation, or peeling of the conductive layer. However, in the case of composite materials, the conductive material is dispersed throughout the plastic, so in order to impart a high degree of conductivity, it is necessary to add a large amount of conductive material compared to the case of surface treatment. be.

また、導電性の微細繊維やフィラーを可塑化させたプラ
スチックに添加するとその添加量の増加に伴い、プラス
チック組成物の見掛は上の粘度が急速に上昇する。この
ため混練などの工程において導電性材料のプラスチック
中への均一な分散が困難となるだけでなく、均一な分散
を達成するために混練を強化すると導電性材料に作用す
る剪断力が増加するため、金属微細繊維などではそのア
スペクト比が著しく低下して、予期した導電性付与効果
が得られない場合が多い。
Furthermore, when conductive fine fibers or fillers are added to plasticized plastic, the apparent viscosity of the plastic composition increases rapidly as the amount added increases. This not only makes it difficult to uniformly disperse the conductive material into the plastic during processes such as kneading, but also increases the shearing force acting on the conductive material when kneading is strengthened to achieve uniform dispersion. In many cases, the aspect ratio of metal fine fibers and the like is significantly lowered, and the expected effect of imparting conductivity cannot be obtained.

本発明は、その手段の特殊性により、導電層が現れてい
る場合に比較して、導電層の破壊や酸化による性能の低
下あるいは剥離による心配のない導電性を示す複合プラ
スチック材料を提供するものである。
The present invention provides a composite plastic material that exhibits electrical conductivity without the risk of deterioration in performance due to destruction or oxidation of the conductive layer, or peeling, compared to the case where the conductive layer is exposed, due to the special nature of the means used. It is.

(課題を解決するための手段) 本発明は、上記従来の技術の有する課題を解決し、品質
性能の良い電磁波シールドシートの製造方法を提供する
ことを目的とし、その概要は以下のとおりである。
(Means for Solving the Problems) The purpose of the present invention is to solve the problems of the above-mentioned conventional techniques and provide a method for manufacturing an electromagnetic shielding sheet with good quality and performance, the outline of which is as follows. .

本発明の電磁波シールドシートの製造方法は、まず天然
有機繊維もしくは合成繊維と金属繊維とを湿式抄造法に
より混抄し、つぎに得られた繊維シートを加熱圧着処理
したあと還元性ガスまたは不活性ガス雰囲気中にて焼成
して金属繊維からなる多孔質状シートを製造する。さら
にこの天然有機繊維もしくは合成繊維を完全に焼成除去
した多孔質金属繊維シートと、透明プラスチックフィル
ムと貼り合わせ、または押し出し加工により一体化して
電磁波シールドシートが製造される。本発明で製造され
る焼結した金属繊維シートは、いわは長さと幅と厚みの
ある立体的な網状構造をしているわけであるが、本発明
では金属繊維シートを加熱圧着してこの厚みを実質的に
個々の単繊維の大きさ(数ミクロン単位)にほぼ等しい
厚みにまで減することにより、二次元網状構造となし、
これを透明プラスチックフィルムと積層して固着される
ので透視性が維持される。金属繊維と有機繊維との混合
抄造にあたっては、通常の製紙製造工程における抄造法
が用いられる。また金属繊維シートの焼結にあたっては
金属の溶融点以下の温度で、かつステンレスの如き酸化
し易い金属繊維の場合には酸化防止するため還元性ガス
雰囲気また不活性ガス雰囲気たとえば水素、窒素または
COガス雰囲気で焼成するのが望ましい。
The method for manufacturing the electromagnetic shielding sheet of the present invention is to first mix natural organic fibers or synthetic fibers and metal fibers using a wet papermaking method, then heat and press the resulting fiber sheet, and then press the sheet with a reducing gas or inert gas. A porous sheet made of metal fibers is produced by firing in an atmosphere. Further, an electromagnetic shielding sheet is manufactured by combining the porous metal fiber sheet from which the natural organic fibers or synthetic fibers have been completely removed by baking with a transparent plastic film or by extrusion processing. The sintered metal fiber sheet produced by the present invention has a three-dimensional network structure with length, width, and thickness. A two-dimensional network structure is created by reducing the thickness to a thickness approximately equal to the size of each individual fiber (in units of several microns),
Since this is laminated and fixed with a transparent plastic film, transparency is maintained. For mixed papermaking of metal fibers and organic fibers, a papermaking method in a normal paper manufacturing process is used. In addition, the metal fiber sheet is sintered at a temperature below the melting point of the metal, and in the case of easily oxidized metal fibers such as stainless steel, a reducing gas atmosphere or an inert gas atmosphere such as hydrogen, nitrogen or CO is used to prevent oxidation. It is preferable to fire in a gas atmosphere.

(作 用) 本発明で用いられる導電性を有する金属繊維としては経
時的な性能の低下を起こさないように酸化されにくいニ
ッケルや貴金属、ステンレス鋼、銀、のほか、特殊な酸
化防止処理を施した黄銅、銅、アルミニウムなどが好ま
しく、これらは単独でも2種以上の混合物としても用い
られる。金属繊維の径としては2〜20μmφ特に4〜
12μmφのものが、繊維長さとしては2〜20鶴特に
3〜lO簡の繊維が好ましい、また混抄に用いる天然有
機繊維ついてはセルロース繊維、皮繊維、植物繊維が、
また合成繊維についてはポリアミド繊維、ポリアルキレ
ン繊維、ポリエステル繊維などが好ましい、その繊維の
径は10〜40IImφ、繊維長さ0.5〜2fiが好
ましく、特に合成繊維にあってはポリアルキレン繊維、
特にポリエチレン繊維、ポリプロピレン繊維が好ましい
(Function) The conductive metal fibers used in the present invention include nickel, precious metals, stainless steel, and silver, which are difficult to oxidize, as well as those treated with special oxidation prevention treatment to prevent deterioration of performance over time. Preferred are brass, copper, aluminum, etc., and these may be used alone or as a mixture of two or more. The diameter of the metal fiber is 2 to 20 μmφ, especially 4 to 20 μmφ.
Fibers with a diameter of 12 μm are preferable, and fibers with a fiber length of 2 to 20 mm, especially 3 to 10 mm, are preferable.As for the natural organic fibers used for mixed papermaking, cellulose fibers, leather fibers, and vegetable fibers are preferable.
As for synthetic fibers, polyamide fibers, polyalkylene fibers, polyester fibers, etc. are preferable.The diameter of the fibers is preferably 10 to 40 IImφ, and the fiber length is 0.5 to 2fi.In particular, the synthetic fibers include polyalkylene fibers,
Particularly preferred are polyethylene fibers and polypropylene fibers.

金属繊維と有機バインダーとして作用する天然有機繊維
又は合成繊維との配合比率は電磁波シールド特性に大き
な影響を及ぼすが、焼成後の金属繊維の交絡具合により
透視性への影響もある。本発明者らは該配合比率につい
て鋭意検討した結果、焼成前の全繊維(金属繊維+有機
繊維)シート中で金属繊維が30〜60重量%になるよ
うに配合を選択することにより、より良好な緒特性を得
ることを見い出したものである。金属繊維が60重量%
を越える場合では焼成後の透視性に乏しく、一方30重
量%未満では焼成後充分なt磁波シールド性が得られな
いばかりでなく次の工程に必要な引っ張り強度も弱くな
る。
The blending ratio of metal fibers and natural organic fibers or synthetic fibers that act as organic binders has a large effect on electromagnetic shielding properties, but the degree of entanglement of the metal fibers after firing also affects transparency. The inventors of the present invention conducted extensive studies on the blending ratio, and found that by selecting the blend so that the metal fibers accounted for 30 to 60% by weight in the total fiber (metal fiber + organic fiber) sheet before firing, it was possible to achieve better results. It was discovered that the same characteristics can be obtained. 60% metal fiber by weight
If it exceeds 30% by weight, the transparency after firing will be poor, while if it is less than 30% by weight, not only will sufficient T-magnetic wave shielding properties not be obtained after firing, but the tensile strength required for the next step will also be weakened.

本発明で用いられる透明プラスチックシートは通常の押
し出し成形または加熱貼り合わせによる積層成形に使用
可能な熱可塑性樹脂であれば、特に制約されるものでな
い、このような熱可塑性樹脂としては例えばポリオレフ
ィン系、ポリスチレン系、ポリ塩化ビニル系、ポリアク
リル酸エステル系、ポリメタアクリル酸エステル系、ポ
リブタジェン系、ポリアミド類、ポリエステル類もしく
はこれらの変成物、共重合物J混合物などが挙げられる
。これらの熱可塑性樹脂は、その成形性や成形物の物性
要求により選択できる。
The transparent plastic sheet used in the present invention is not particularly limited as long as it is a thermoplastic resin that can be used for lamination molding by ordinary extrusion molding or heat bonding. Examples of such thermoplastic resins include polyolefin-based resins, Examples include polystyrene, polyvinyl chloride, polyacrylic ester, polymethacrylic ester, polybutadiene, polyamides, polyesters, modified products thereof, and mixtures of copolymers. These thermoplastic resins can be selected depending on the moldability and physical property requirements of the molded product.

金属繊維シートと透明プラスチックシートとの積層にあ
たっては、貼り合せまたは押し出し加工が採用されるが
、例えばカレンダー加工される場合、ロールでの加工温
度は通常160℃〜180℃の温度で加熱されており、
両者は積層される。熱可塑性合成樹脂は圧延条件に応じ
て可塑化されているので積層装置(図示せず)でこの可
塑性を保持している合成樹脂であれば硬質、軟質いずれ
でも使用可能である0通常カレンダーロールの最下部の
口−ルにバックアップロールを設置し、最下部ロールと
このバックアップロール間で圧延して加熱積層された一
体化した樹脂シートは冷却される。
When laminating a metal fiber sheet and a transparent plastic sheet, bonding or extrusion processing is used. For example, in the case of calender processing, the processing temperature in rolls is usually heated at a temperature of 160°C to 180°C. ,
Both are laminated. Thermoplastic synthetic resins are plasticized according to rolling conditions, so either hard or soft synthetic resins that retain this plasticity can be used in a laminating machine (not shown). A backup roll is installed in the lowermost hole, and the integrated resin sheet that has been rolled and heated and laminated between the lowermost roll and the backup roll is cooled.

また、本発明では金属繊維シートと透明プラスチックシ
ートとの積層物の製造方法として説明したが、押し出し
成形もしくは貼り合わせ成形した後の積層樹脂シートは
プレス成形、真空成形あるいは圧空成形の加熱手段によ
って樹脂成形品の製造にも供され、電磁波障害防止シー
ルドルーム用のシートとしてばかりでなく、電子機器の
筐体のプラスチック化にも供される。
In addition, although the present invention has been described as a method for manufacturing a laminate of a metal fiber sheet and a transparent plastic sheet, the laminated resin sheet after extrusion molding or bonding molding is made of resin by heating means such as press molding, vacuum forming, or pressure forming. It is also used to manufacture molded products, and is used not only as a sheet for shielded rooms to prevent electromagnetic interference, but also for making plastic housings for electronic devices.

多孔質状金属繊維シートの製造方法は次に述べる通りで
あり、金属繊維としてはステンレス繊維を使用した場合
について説明する。まず、集束剤により処理されたステ
ンレス繊維と有機バインダーとルでの合成繊維とを冷水
に分散しアジテータなど低速撹拌機でゆっくり撹拌し繊
維を解離させてスラリー状の繊維の水性サスペンション
を作成する。得られたスラリー状の水性サスペンション
は湿式抄紙機により乾燥ドラムで圧着乾燥する。
The method for manufacturing the porous metal fiber sheet is as described below, and the case where stainless steel fibers are used as the metal fibers will be described. First, stainless steel fibers treated with a sizing agent and synthetic fibers with an organic binder are dispersed in cold water and slowly stirred with a low-speed stirrer such as an agitator to dissociate the fibers to create a slurry-like aqueous suspension of fibers. The obtained slurry-like aqueous suspension is pressed and dried on a drying drum using a wet paper machine.

この場合の湿式抄紙機は長網・丸網を問わないがプレス
圧、ドライヤー温度の設定条件が均一な繊維シートを得
るのに重要なポイントになるので特に注意を要する。得
られた繊維シートはカレンダーなどのプレス装置を用い
て加熱圧着処理を行う。
In this case, the wet paper machine may be used for fourdrinier or circular paper, but special care must be taken as setting conditions such as press pressure and dryer temperature are important points in obtaining a uniform fiber sheet. The obtained fiber sheet is subjected to heat-pressing treatment using a press device such as a calendar.

これによりステンレス繊維相互間の接触状態が良くなり
、これに伴い体積固有抵抗は低く安定して電磁波シール
ド効果が向上する。この繊維シートを水素を注入した還
元雰囲気中にて高温焼成し、有機バインダーを完全除去
しステンレス繊維相互間を焼結し多孔質状金属繊維シー
トを得ることができる。本発明は該多孔質状金属繊維シ
ートを透明プラスチックシートで両面よりドライラミネ
ーション方式またはサーマルラミネーション方式により
貼り合わせ電磁波シールド用シートを製造する。また押
し出しラミネーション方式を用いて透明性の良い樹脂を
押し出しながらステンレス繊維焼結シートを樹脂中に埋
め込み電磁波シールド用シートを製造することもできる
This improves the state of contact between the stainless steel fibers, resulting in a low and stable volume resistivity and improved electromagnetic shielding effect. This fiber sheet is fired at high temperature in a reducing atmosphere injected with hydrogen to completely remove the organic binder and sinter the stainless steel fibers to obtain a porous metal fiber sheet. In the present invention, a sheet for electromagnetic shielding is produced by laminating the porous metal fiber sheet with a transparent plastic sheet from both sides by a dry lamination method or a thermal lamination method. It is also possible to manufacture an electromagnetic shielding sheet by extruding a highly transparent resin and embedding a sintered stainless steel fiber sheet in the resin using an extrusion lamination method.

(実施例) 以下、本発明を実施例および比較例をもって詳細に説明
する。
(Examples) Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples.

(実施例1) 繊維径8μmφ、繊維長61−のステンレス繊維(東京
製綱■製、商品名サスミック) 30重量部と繊維長1
.6NのSWP繊維(ポリエチレン繊維タイプ、三片石
油化学工業■製、商品名E−790)70重量部を常温
の水に分散し、10分間アジテータで撹拌した。このス
ラリー状の水性サスペンションを長網式抄紙機で米坪量
45g/ rdを目標に抄紙し、脱水プレスして得た湿
潤繊維シートを100 ’Cで圧着加熱し乾燥シートを
得た。この繊維シートを更にカレンダーで15kg/c
fl、 125℃で加熱圧着処理し感電性シートを得た
。このシートを水素を用いた高温(1120℃)の還元
性雰囲気の中で焼成処理を行った結果、ステンレス繊維
同志が焼結した多孔質で透視性のある金属繊維シートを
得た。この金属繊維シートを中心にしてサーマルラミネ
ーション装置を用いて、板ガラスとの接着性の良いエチ
レン・エチルアクリレート共重合体樹脂(三片・デュポ
ンポリケミカル■製、商品名AS252)フィルムでサ
ンドウィッチ状に積層し、透視性のある電磁波シールド
シートを得た。このシートの電磁波シールド特性をアト
パンテスト社法により測定したところ500MHzにお
いて電界35dBm 、磁界34dBmの減衰量が得ら
れ、充分なシールド効果が確認された。さらに光透過率
も62%を得られ、窓用の電磁波シールドシートとして
使用出来るものであった。
(Example 1) 30 parts by weight of stainless steel fiber with a fiber diameter of 8 μmφ and a fiber length of 61 mm (manufactured by Tokyo Seizo Co., Ltd., trade name: Susmic) and a fiber length of 1
.. 70 parts by weight of 6N SWP fiber (polyethylene fiber type, manufactured by Mikata Petrochemical Industry ■, trade name E-790) was dispersed in water at room temperature, and stirred with an agitator for 10 minutes. This slurry-like aqueous suspension was made into paper using a Fourdrinier paper machine with a target weight of 45 g/rd, and a wet fiber sheet obtained by dehydration pressing was pressed and heated at 100'C to obtain a dry sheet. This fiber sheet is further calendered to 15kg/c.
fl, and was heat-pressed at 125° C. to obtain an electrically sensitive sheet. This sheet was fired in a high-temperature (1120° C.) reducing atmosphere using hydrogen, resulting in a porous and transparent metal fiber sheet in which the stainless steel fibers were sintered together. Using a thermal lamination device, this metal fiber sheet is laminated in a sandwich-like manner with an ethylene-ethyl acrylate copolymer resin (manufactured by Mikata DuPont Polychemicals, product name: AS252) film that has good adhesion to plate glass. A transparent electromagnetic shielding sheet was obtained. When the electromagnetic shielding properties of this sheet were measured using the Atopan Test Co., Ltd. method, an attenuation of 35 dBm in electric field and 34 dBm in magnetic field was obtained at 500 MHz, confirming a sufficient shielding effect. Furthermore, a light transmittance of 62% was obtained, and the sheet could be used as an electromagnetic wave shielding sheet for windows.

(実施例2) ステンレス繊維40重量部と泗P@維60重量部の配合
で実施例1の製造条件を用い、焼成前の米坪量45g/
 rdの導電性シートを得た。この繊維シートを実施例
1と同様の条件で焼成し多孔質の金属繊維シートを作成
した。この焼成処理後の金属繊維シートを押出しラミネ
ーション方式を用い、変成ポリエチレン(住友化学工業
■製、商品名ボンドファースト7B−A)をフィルム厚
さ60AImで押し出し、焼成シートを芯にサンドウィ
ンチ状に樹脂中に埋め込み、仮ガラスとの接着性の良い
透視性のある電磁波シールドシートを得た。このシート
の電磁波シールド特性を測定したところ500M)Iz
において電界37dBm 、磁界39dBmの減衰量を
得られ充分なシールド効果が確認された。さらに光透過
率も55%が得られ実用上支障のないものであった。
(Example 2) Using the manufacturing conditions of Example 1 with a blend of 40 parts by weight of stainless steel fiber and 60 parts by weight of pineapple, the weight per square meter before firing was 45 g/
A rd conductive sheet was obtained. This fiber sheet was fired under the same conditions as in Example 1 to produce a porous metal fiber sheet. Using the extrusion lamination method, extrude the fired metal fiber sheet to extrude modified polyethylene (manufactured by Sumitomo Chemical, trade name: Bond First 7B-A) to a film thickness of 60 AIm, and use the fired sheet as a core to sandwich the resin. A translucent electromagnetic shielding sheet with good adhesion to the temporary glass was obtained. When we measured the electromagnetic shielding properties of this sheet, it was 500M)Iz
Attenuation of the electric field of 37 dBm and magnetic field of 39 dBm was obtained, confirming a sufficient shielding effect. Furthermore, a light transmittance of 55% was obtained, which was not a problem in practical use.

(発明の効果) 本発明は、上記のごとき構成を有するのでステンレス繊
維自体が有する導電性をシート状の複合積層物の中に充
分効かずことが出来、プラスチック被覆層により保護さ
れているため物理的な破損・摩耗を受けず安定した電磁
波シールド特性を得ることが出来、またステンレス繊維
の太さが8μmφと極細の繊維であることにより優れた
透視性もあることから、高度の導電性を示し、プラスチ
ック材料への導電性付与技術をはじめとする一層広い用
途への展開が可能である。
(Effects of the Invention) Since the present invention has the above-mentioned configuration, the conductivity of the stainless steel fibers themselves can be effectively absorbed into the sheet-like composite laminate, and since the stainless steel fibers are protected by the plastic coating layer, physical It is possible to obtain stable electromagnetic shielding properties without being subject to mechanical damage or abrasion, and because the stainless steel fibers are ultra-fine fibers with a thickness of 8 μmφ, they have excellent transparency, so they exhibit a high degree of conductivity. This technology can be applied to a wider range of applications, including technology for imparting electrical conductivity to plastic materials.

代理人 弁理士 竹  内   守Agent Patent Attorney Mamoru Takeuchi

Claims (1)

【特許請求の範囲】 1)天然有機繊維もしくは合成繊維と金属繊維とを混合
抄造した後、熱圧着して得られるシートを焼成すること
により多孔質状の金属繊維シートを作成し、ついで該多
孔質状の金属繊維シートと透明プラスチックシートを貼
り合せまたは押し出し加工により一体化した積層シート
を形成せしめる事を特徴とする電磁波シールドシートの
製造方法。 2)焼成前の全繊維(金属繊維+有機繊維)シートのう
ち金属繊維が30〜60重量%になるように配合するこ
とにより天然有機繊維もしくは合成繊維と金属繊維とを
湿式抄造により得られた繊維シートを加熱圧着処理した
後、焼成して多孔質状金属繊維シートを製造することを
特徴とする請求項1記載の電磁波シールドシートの製造
方法。
[Claims] 1) A porous metal fiber sheet is created by mixing and forming natural organic fibers or synthetic fibers and metal fibers, and then baking the sheet obtained by thermocompression bonding. A method for producing an electromagnetic shielding sheet, which comprises forming a laminated sheet by laminating or extruding a textured metal fiber sheet and a transparent plastic sheet. 2) Natural organic fibers or synthetic fibers and metal fibers were obtained by wet papermaking by blending the metal fibers to 30 to 60% by weight of the total fiber (metal fiber + organic fiber) sheet before firing. 2. The method for producing an electromagnetic shielding sheet according to claim 1, wherein the fiber sheet is heat-pressed and then fired to produce a porous metal fiber sheet.
JP27944488A 1988-11-07 1988-11-07 Method of manufacturing electromagnetic wave shield sheet Expired - Fee Related JPH0681708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27944488A JPH0681708B2 (en) 1988-11-07 1988-11-07 Method of manufacturing electromagnetic wave shield sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27944488A JPH0681708B2 (en) 1988-11-07 1988-11-07 Method of manufacturing electromagnetic wave shield sheet

Publications (2)

Publication Number Publication Date
JPH02127035A true JPH02127035A (en) 1990-05-15
JPH0681708B2 JPH0681708B2 (en) 1994-10-19

Family

ID=17611153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27944488A Expired - Fee Related JPH0681708B2 (en) 1988-11-07 1988-11-07 Method of manufacturing electromagnetic wave shield sheet

Country Status (1)

Country Link
JP (1) JPH0681708B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0908920A2 (en) * 1997-10-13 1999-04-14 Bridgestone Corporation Display panel
US8322542B2 (en) 2002-03-15 2012-12-04 Lg Display Co., Ltd. Cassette for receiving substrates
US10714367B2 (en) 2014-01-21 2020-07-14 Bum Je WOO Fume-removing device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0908920A2 (en) * 1997-10-13 1999-04-14 Bridgestone Corporation Display panel
EP0908920A3 (en) * 1997-10-13 2000-07-12 Bridgestone Corporation Display panel
US6255778B1 (en) 1997-10-13 2001-07-03 Bridgestone Corporation Plasma display panel having electromagnetic wave shielding material attached to front surface of display
US8322542B2 (en) 2002-03-15 2012-12-04 Lg Display Co., Ltd. Cassette for receiving substrates
US10714367B2 (en) 2014-01-21 2020-07-14 Bum Je WOO Fume-removing device
US11114325B2 (en) 2014-01-21 2021-09-07 Bum Je WOO Fume-removing device
US11152239B2 (en) 2014-01-21 2021-10-19 Bum Je WOO Fume-removing device
US11201071B2 (en) 2014-01-21 2021-12-14 Bum Je Woo Fume-removing device

Also Published As

Publication number Publication date
JPH0681708B2 (en) 1994-10-19

Similar Documents

Publication Publication Date Title
US4429216A (en) Conductive element
US20050039329A1 (en) Method for making conductive circuits using powdered metals
US2963535A (en) Shielded printed circuit electrical component
DE3644310A1 (en) CERAMICALLY COATED LAMINATE AND METHOD FOR THE PRODUCTION THEREOF
JPS5998841A (en) Polymer composite body, which has emi/rfi shielding layer and can be pressed by die
US5124198A (en) Metal fiber mat/polymer composite
JPH02127035A (en) Manufacture of electromagnetic wave shield sheet
JPH0624808A (en) Glass fiber for laminated board and manufacture of laminated board
JPS6088198A (en) Conductive fiber mat
JPH01158799A (en) Manufacture of transparent electromagnetic wave shielding sheet
JP2606504B2 (en) Electromagnetic wave shielding material and method of manufacturing the same
JP2003258490A (en) Electromagnetic wave shielding material, and manufacturing method thereof
JPS6286055A (en) Electromagnetic wave shielding material
KR20030052234A (en) Floor Mat with Electromagnetic Interference Shielding and Asorbing Function
JP2889474B2 (en) Composite laminate and method for producing the same
JP2859215B2 (en) Manufacturing method of high electromagnetic wave shielding composite sheet
CN1034183A (en) Novel fire resistant combined mica plate and preparation method thereof
JPS6011351A (en) Thermoplastic resin impregnated fiber laminate
KR100878568B1 (en) The heating fabric and the manufacturing method
JPH07266435A (en) Manufacture of laminated sheet
JP2779649B2 (en) Manufacturing method of printed wiring board
JPS59215862A (en) Conductive sheet and manufacture thereof
JPH0453175B2 (en)
JP2009016564A (en) Manufacturing method of resin molded object for shielding electromagnetic wave
JPS6089348A (en) Thermosetting resin molded shape with high conductive layer and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees