JPS6088464A - Bi-polar transistor - Google Patents

Bi-polar transistor

Info

Publication number
JPS6088464A
JPS6088464A JP19615583A JP19615583A JPS6088464A JP S6088464 A JPS6088464 A JP S6088464A JP 19615583 A JP19615583 A JP 19615583A JP 19615583 A JP19615583 A JP 19615583A JP S6088464 A JPS6088464 A JP S6088464A
Authority
JP
Japan
Prior art keywords
layer
collector
collector layer
low concentration
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19615583A
Other languages
Japanese (ja)
Other versions
JPH0680674B2 (en
Inventor
Yasunari Umemoto
康成 梅本
Susumu Takahashi
進 高橋
Ken Yamaguchi
憲 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58196155A priority Critical patent/JPH0680674B2/en
Publication of JPS6088464A publication Critical patent/JPS6088464A/en
Publication of JPH0680674B2 publication Critical patent/JPH0680674B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Abstract

PURPOSE:To increase the operating speed and enhance the collector withstand voltage by a method wherein, with the thickness of a low concentration collector layer set in a specific range, this layer and a base layer are formed of hetero kinds of semiconductor, and the band gap of the collector layer is made larger than that of the base layer. CONSTITUTION:A high concentration collector layer 12, the low concentration collector layer 13, base layer 14, and an emitter layer 15 are successively formed on a substrate 11. A region for base electrode formation is formed by partial exposure of the base layer, and a region for collector electrode formation is formed by partial edposure of the collector layer 12. Finally, an emitter electrode 16, a base electrode 17, and a collector electrode 18 are formed. When the thickness LCI of the collector layer 13 is 0.03-0.2mum, the cut-off frequency fgamma can be increased, and the operating speed can be increased. Then, when the mixed crystal ratio (x) is determined (x>0.45) so that the band gap (b) at the point X may become smaller than that (a) at the point gamma, the band gap of the low concentration collector layer can be made smaller; accordingly, the collector withstand voltage can be made higher.

Description

【発明の詳細な説明】 〔発明の利用分野〕 この発明はプレーナ形のバイポーラ・トランジスタに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a planar bipolar transistor.

〔発明の背景〕[Background of the invention]

第1図は従来のプレーナ形のバイポーラ・トランジスタ
を示す図である。図においてlはGa Asからなる半
絶縁性基板、2はGaAsからなるn形の高濃度コレク
タ層、3はGa Asからなるn形の低濃度コレクタ層
、4はGa Asからなるp形のベース層で、低濃度コ
レクタ層3の半導体とベースN4の半導体とは同じGa
Asである。5はGa 6,7Af(、3 Asからな
るn形のエミツタ層、6はエミッタ電極、7はベース電
極、8はコレクタ電極である。
FIG. 1 shows a conventional planar bipolar transistor. In the figure, l is a semi-insulating substrate made of GaAs, 2 is an n-type high concentration collector layer made of GaAs, 3 is an n-type low concentration collector layer made of GaAs, and 4 is a p-type base made of GaAs. The semiconductor of the low concentration collector layer 3 and the semiconductor of the base N4 are the same Ga layer.
It is As. 5 is an n-type emitter layer made of Ga 6,7Af (, 3 As), 6 is an emitter electrode, 7 is a base electrode, and 8 is a collector electrode.

このような従来のバイポーラ・1・ランジスタにおいて
は、コレクタ耐用を高《するために、低濃度コレクタ層
3の厚さをたとえば04μmと太き《している結果、動
作速度が遅いという問題点がある。
In such a conventional bipolar transistor, the thickness of the low-concentration collector layer 3 is increased to, for example, 04 μm in order to increase the collector durability, resulting in the problem of slow operation speed. be.

〔発明の目的〕[Purpose of the invention]

この発明は上述の問題点を解決するためになされたもの
で、動作速度が速く、かつコレクタ耐用が高いプレーナ
形のバイポーラ・トランジスタを提供することを目的と
する。
The present invention was made to solve the above-mentioned problems, and it is an object of the present invention to provide a planar bipolar transistor that has high operating speed and long collector life.

〔発明の概要〕[Summary of the invention]

この目的を達成するため、この発明においては、低濃度
コレクタ層の厚さを0.03ないし02μmとし、」1
記低濃度コレクタ層とベース層を異種の半導体で形成し
、しかも」1記低濃度コレクタ層の半導体として上記ベ
ース層の半導体のバンド・ギャップよりも大なるハント
・ギャップを有するものを用いる。
In order to achieve this purpose, in the present invention, the thickness of the low concentration collector layer is set to 0.03 to 0.02 μm,
The low concentration collector layer and the base layer are formed of different types of semiconductors, and 1. A semiconductor for the low concentration collector layer has a Hunt gap larger than the band gap of the semiconductor for the base layer.

〔発明の実施例〕[Embodiments of the invention]

第2図はこの発明に係るバイポーラ・トランジスタを示
す図である。図において11はGa Asからなる半絶
縁性基板、12は厚さがl ノLm 、濃度が1018
〜101%「3のGa Asからなるn形の高濃度コレ
クタ層、13は厚さがO,l /IIT+ 、 9度が
1015〜1016cm ”のGaO,2”0.8 A
sからなる■1形の低濃度コレクタ層、14は厚さが(
y 1 pm 、 NW度が1018〜1019cm 
”のGa Asからなるp形のベース層、15は厚さが
Q、2It m 、濃度が1017cm−3のGao7
Aeo3Asからなるエミツタ層、16はAu Ge 
/Ni /Auからなるエミッタ電極、17はAu Z
uからなるベース電極、18はAuGe/Ni /Au
からなるコレクタ電極である。
FIG. 2 is a diagram showing a bipolar transistor according to the present invention. In the figure, 11 is a semi-insulating substrate made of GaAs, and 12 is a semi-insulating substrate with a thickness of l and a concentration of 1018.
~101% "3" n-type high concentration collector layer consisting of GaAs, 13 is GaO, 2" 0.8 A with thickness O,l/IIT+, 9 degrees 1015-1016 cm"
■1 type low concentration collector layer consisting of s, 14 has a thickness of (
y 1 pm, NW degree is 1018-1019 cm
15 is a p-type base layer made of GaAs with a thickness of Q, 2It m and a concentration of 1017 cm-3.
Emitter layer consisting of Aeo3As, 16 is Au Ge
/Ni /Au emitter electrode, 17 is Au Z
18 is AuGe/Ni/Au
It is a collector electrode consisting of.

このバイポーラ・トランジスタを製造するには、。To manufacture this bipolar transistor.

まず基板11上に、M B E (Mo1ecular
 Bearn Epitaxy )法またはMO−CV
D (Metal Organic−Chemical
 VapovDeposition )法により、順次
高濃度コレクタ層12、低濃度コレクタ層13、ベース
層14、エミツタ層15を形成する。つぎに、ホトレジ
ストをエツチング用マスクとしてl、エミツタ層15の
一部をエラチングによって取り除き、ベース層14の一
部を露出さ\ せ、ベース電極形成領域を形成し、また同様にしてエミ
ツタ層15、ベース層14、低濃度コレクタ層13の一
部を取り除いて高濃度コレクタ層12の一部を露出さぜ
、コレクタ電極形成領域を形成する。
First, on the substrate 11, M B E (Molecular
Bear Epitaxy) method or MO-CV
D (Metal Organic-Chemical
A highly doped collector layer 12, a lightly doped collector layer 13, a base layer 14, and an emitter layer 15 are sequentially formed by the VapovDeposition method. Next, using a photoresist as an etching mask, a part of the emitter layer 15 is removed by etching to expose a part of the base layer 14 to form a base electrode formation region, and in the same manner, the emitter layer 15, Parts of the base layer 14 and the lightly doped collector layer 13 are removed to expose a part of the highly doped collector layer 12 to form a collector electrode formation region.

最後に、エミツタ層15、ベース層14、高濃度コレク
タ層12上にそれぞれエミッタ電極16、ベース電極1
7、コレクタ電極18を形成する。
Finally, an emitter electrode 16 and a base electrode 1 are placed on the emitter layer 15, base layer 14, and high concentration collector layer 12, respectively.
7. Form the collector electrode 18.

ところで、バイポーラ・トランジスタの動作速度は遮断
周波数fTが高いほど速くなる。そして、遮断周波数[
Tは次式で表わされる。
Incidentally, the operating speed of a bipolar transistor increases as the cutoff frequency fT increases. And the cutoff frequency [
T is expressed by the following formula.

また、エミッタ空乏層充電11;!1間をτ1いベース
走行時間をτ3、コレクタ走行時間をτ8、コレクタ充
放電時間をτ。とすると、τ14.。は次式で表わされ
る。
Also, emitter depletion layer charging 11;! The base running time is τ3, the collector running time is τ8, and the collector charging/discharging time is τ. Then, τ14. . is expressed by the following equation.

rli’c :TI!H+T13−l−ry −l−r
c:そして、エミッタ空乏層充電時間τ。等の典型的な
値は、r]、2= 4ps、ec、τ、、= 1pse
c、 r、 = 3psec。
rli'c :TI! H+T13-l-ry-l-r
c: and emitter depletion layer charging time τ. Typical values such as r], 2 = 4 ps, ec, τ, , = 1 pse
c, r, = 3 psec.

τ。−7psecであり、コレクタ走行時間でゆ、コレ
クタ充放電時間τ。はそれぞれ全体の20%、約50係
と大きな比重を占めている。したがって、遮断周波数り
を高くして、バイポーラ・トう/ジスタの動作速度を速
くするためには、コレクタ走行時間τヶとコレクタ充放
電時間τ。との和を最小にすることが不可欠である。そ
して、低濃度コレクタ層中の電子の飽和速度をVs、低
濃度コレクタ層の厚さをLOIとすると、コレクタ走行
時間τゆは次式%式% また、低濃度コレクタ層の誘電率をε、コレクタ抵抗を
Rcとすると、コレクタ充放電時間で。は次式で表わさ
れる。
τ. -7 psec, which is the collector running time, and the collector charging/discharging time τ. They each account for a large proportion of the total, accounting for 20% or approximately 50 sections. Therefore, in order to increase the cut-off frequency and increase the operating speed of the bipolar transistor, the collector running time τ and the collector charging/discharging time τ are required. It is essential to minimize the sum of If the saturation velocity of electrons in the low concentration collector layer is Vs, and the thickness of the low concentration collector layer is LOI, then the collector transit time τ is expressed by the following formula (%). Also, the permittivity of the low concentration collector layer is ε, If the collector resistance is Rc, then the collector charging/discharging time. is expressed by the following formula.

上記の式によれば、たとえば厚さLOIが大きくなると
、コレクタ走行時間τゆが長くなるのに対して、コレク
タ充放電時間で。が短くなるから、コレクタ走行時間で
ゆとコレクタ充放電時間τ。との和を最小にする厚さL
OIすなゎ七遮断周波数f、rを最大にする厚さLOI
が存在する。
According to the above equation, for example, as the thickness LOI increases, the collector running time τ increases, whereas the collector charging/discharging time increases. becomes shorter, so the collector charging and discharging time τ is the collector running time. Thickness L that minimizes the sum of
Thickness LOI that maximizes OI Nawa 7 cutoff frequencies f and r
exists.

第3図Lt J’!−サLcr:と遮断周波数fTとの
関係を示すグラフで、曲線aはエミツタ層の寸法が2μ
m×2μ!ηの場合を示し、曲線l)はエミツタ層の寸
法か41tm X 4μmの場合を示す。このグラフか
ら明らかなように、上述実施例のように厚さLOIをQ
、171mとすれば、遮断周波数fTを高くすることが
できるから、バイポーラ・トランジスタの動作速度が速
(なる。
Figure 3 Lt J'! - Curve a is a graph showing the relationship between Lcr: and cutoff frequency fT.
m×2μ! Curve 1) shows the case where the emitter layer has dimensions of 41 tm x 4 μm. As is clear from this graph, as in the above embodiment, the thickness LOI is
, 171 m, the cutoff frequency fT can be increased, and the operating speed of the bipolar transistor is increased.

第4図はGa1−xAlxASの混晶比Xと温度が29
7゜Kのときのバンド・ギャップとの関係を示すグラフ
で、曲線aは1点のバンド・ギャップを示し、曲線l〕
はX点のバンド・ギートツブを示す。このグラフかられ
かるように、従来のように低濃度コレクタ層3としjG
aAs(混晶比XがO)を用いたときには、低濃度コレ
クタ層3のノくンド・ギヤ・ノブが約1.4.eVであ
るのに対して、」二連実施例のように低濃度コレクタ層
13としてGaO,2AeO,B As (混晶比が0
.8)を用いたときには、低濃度コレクタ層13のバン
ド・ギャップが約2.OeVである。また、第5図は低
濃度コレクタ層の厚さLClとコレクタ耐圧との関係を
示すグラフで、曲線aはノ・ンド・ギャップが1,4 
eVの場合を示し、曲線すはノ\レド・ギャップが2.
OeVの場合を示す。このグラフから明らかなように、
従来のように低濃度コレクタ層3としてGa Asを用
いたとき()\ンド・ギヤ・ツブが1,4 e Vのと
き)には、厚さI−ahを0171mとすると、コレク
タ耐圧が約5.5■であるのに対して、上述実施例のよ
うに低濃度コレクタ層13としてGaQ、2 AI!o
、a Asを用いたとき(ノクンド・ギヤ・ノブが2、
Oe V (7,)とき)には、厚さLclをQ、1μ
mとしても、コレクタ耐圧が約7.5■となる。
Figure 4 shows the mixed crystal ratio X of Ga1-xAlxAS and the temperature of 29
This is a graph showing the relationship with the band gap at 7°K, where curve a shows the band gap at one point, and curve l]
indicates the band-geettle of point X. As can be seen from this graph, as in the conventional case, the low concentration collector layer 3 and jG
When aAs (mixed crystal ratio eV, as in the dual embodiment, GaO, 2AeO, B As (mixed crystal ratio is 0) is used as the low concentration collector layer 13.
.. 8), the band gap of the low concentration collector layer 13 is about 2. It is OeV. Further, FIG. 5 is a graph showing the relationship between the thickness LCl of the low concentration collector layer and the collector breakdown voltage.
The case of eV is shown, and the curve shows the case where the current gap is 2.
The case of OeV is shown. As is clear from this graph,
When GaAs is used as the low-concentration collector layer 3 as in the past (when the end gear knob is 1.4 eV), if the thickness I-ah is 0171 m, the collector withstand voltage is approximately 5.5■, whereas, as in the above embodiment, the low concentration collector layer 13 is made of GaQ, 2 AI! o
, a When using As (nokundo gear knob is 2,
Oe V (7,)), the thickness Lcl is Q, 1μ
Even if m, the collector withstand voltage is approximately 7.5 .mu.m.

なお、」二連実施例においては、低濃度コレクタ層13
の厚さLClを01μmとしたが、第3図グラフから明
らかなように、厚さLClを0.03ないし0.2μm
、さらに望ましくは0.05ないし0.15μmとすわ
ば、遮断周波数fTを高くすることができ、バイポーラ
・トランジスタの動作速度を速くすることが可能である
。また、」二連実施例においては、低濃度コレクタ層1
3をGao、2 Al(1,B Asで形成したが、G
a1−XAj’XAs (x>O)で低濃度コレクタ層
を形成ずればよい。そして、第4図に示すように、X点
のバンド・ギャップが1点のバンド・ギャップよりも小
さくなるように混晶比Xを定めれば(x )0.45)
、低濃度コレクタ層のバンド・ギャップをより大きくす
ることができ、コレクタ耐圧をより高くすることが可能
である。さらに、」一連実施例においては、ベース層1
4をGa Asで形成し、紙製)tl :l L/ り
’i1層13をGa I−x AI X Asで形成し
たが、ベース層と低濃度コレクタ層とをそれぞれ、In
PとInk−xA/xP(x)O)、 In AsとI
n1−XAl!。
In addition, in the double embodiment, the low concentration collector layer 13
The thickness LCl was set to 01 μm, but as is clear from the graph in Figure 3, the thickness LCl was set to 0.03 to 0.2 μm.
, more preferably 0.05 to 0.15 μm, the cutoff frequency fT can be increased and the operating speed of the bipolar transistor can be increased. In addition, in the double embodiment, the low concentration collector layer 1
3 was formed with Gao, 2 Al (1, B As, but G
A low concentration collector layer may be formed by a1-XAj'XAs (x>O). As shown in Figure 4, if the mixed crystal ratio X is set so that the band gap at point X is smaller than the band gap at one point, then (x)0.45)
, it is possible to further increase the band gap of the low concentration collector layer, and it is possible to further increase the collector breakdown voltage. Furthermore, in a series of embodiments, the base layer 1
4 was formed of GaAs, and the paper layer 13 was formed of Ga I-x AI
P and Ink-xA/xP(x)O), In As and I
n1-XAl! .

入S(X、>O)、11151)とlnl XAt’x
Sb(x)O)+InPとrnl−XGaxP(x)>
0)、 GaAsとGa P x Asl −x−(X
>O)とて形成してもよい。そして、第6図ないし第1
0図はそ゛れぞれ上記半導体の混晶比Xと温度が300
0にのときのハント゛・ギャップとの関係を示すグラフ
で、線aはr点のハンド・ギャップを示し、線すはX点
のハンド・ギャップを示す。これらのグラフから明らか
なように、これらの半導体でベース層、低濃度コレクタ
層を形成した場合にも、低濃度コレクタ層の半導体の混
晶比XをX点のバンド・ギャップが1点のバント゛・ギ
ャップよりも小さくなるように定めれば、低濃度コレク
タ層のバンド・ギャップをより大きくすることがてき、
コレクタ耐圧をより高くすることが可能である。
Input S(X, > O), 11151) and lnl XAt'x
Sb(x)O)+InP and rnl-XGaxP(x)>
0), GaAs and Ga P x Asl -x-(X
>O). And Figures 6 to 1
Figure 0 shows the mixed crystal ratio X and temperature of the above semiconductor at 300, respectively.
This is a graph showing the relationship between the hand gap and the hand gap when the value is 0. Line a shows the hand gap at point r, and line 2 shows the hand gap at point X. As is clear from these graphs, even when the base layer and the low-concentration collector layer are formed using these semiconductors, the mixed crystal ratio・If it is set to be smaller than the gap, the band gap of the low concentration collector layer can be made larger.
It is possible to further increase the collector breakdown voltage.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明に係るバイポーラ・トラ
ンジスタにおいては、動作速度が速く、かつコレクタ耐
圧が高い。このように、この発明(7) Il+ !B
 I:tW+ 薯−r−* 乙−
As explained above, the bipolar transistor according to the present invention has high operating speed and high collector breakdown voltage. Thus, this invention (7) Il+! B
I:tW+ 薯-r-* Otsu-

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のバイポーラ・トランジスタを示す図、第
2図はこの発明に係るバイポーラ・トランジスタを示す
図、第3図は低濃度コレクタ層の厚さI、c■と遮断周
波数fTとの関係を示すグラフ、第4図はGa I−x
 AlXAsの混晶比Xとバンド・ギートツプとの関係
を示すグラフ、第5図は低濃度コレクタ層の厚さLCl
とコレクタ耐圧との関係を示すグラフ、第6図ないし第
10図はそれぞれInl。 ΔexP + In+ x Alx As+ In+ 
−z Aex Sb 、 In1x Ga。 P、 GaPXAs1.の混晶比Xとバンド・ギャップ
との関係を示すグラフである。 IJ・・・半絶縁性基板 12・・・高濃度コレクタ層 13・・・低濃度コレクタ層 14・・・ベース層 15・・・エミツタ層 代理人弁理士 中村純之助 ′引・11支i 6 オ3 図 4 さ Lct (、tlm) QaAs 混晶比エ AβAs オフ図 1nAs 3L J’a トし χ AlAs才8庁 ■1lSb ラ昆晶I−(、χ At Sb才10図
FIG. 1 is a diagram showing a conventional bipolar transistor, FIG. 2 is a diagram showing a bipolar transistor according to the present invention, and FIG. 3 is a diagram showing the relationship between the thicknesses I and c of the low concentration collector layer and the cutoff frequency fT. The graph shown in Fig. 4 is Ga I-x
A graph showing the relationship between the mixed crystal ratio X of AlXAs and the band top.
The graphs shown in FIGS. 6 to 10 showing the relationship between the voltage and the collector breakdown voltage are Inl. ΔexP + In+ x Alx As+ In+
-zAexSb, In1xGa. P, GaPXAs1. 2 is a graph showing the relationship between the mixed crystal ratio X and the band gap. IJ...Semi-insulating substrate 12...High concentration collector layer 13...Low concentration collector layer 14...Base layer 15...Emitter layer Patent attorney Junnosuke Nakamura' 11 support i 6 O 3 Figure 4 Lct (, tlm) QaAs Mixed crystal ratio AβAs Off figure 1nAs 3L J'a

Claims (2)

【特許請求の範囲】[Claims] (1) プレーナ形のバイポーラ・トランジスタにおい
て、低濃度コレクタ層の厚さが0.03ないし02μm
であり、上記低濃度コレクタ層とベース層とが異種の半
導体であって、かつ〜に記低濃度コレクタ層の半導体の
バント”・ギャップが」二記へ一部層の半導体のハント
・ギャップよりも大なることを特徴とするバイポーラ・
トランジスタ。
(1) In a planar bipolar transistor, the thickness of the low concentration collector layer is 0.03 to 02 μm.
, the low concentration collector layer and the base layer are different types of semiconductors, and the bunt gap of the semiconductor in the low concentration collector layer is larger than the hunt gap of the semiconductor in some layers. bipolar, which is characterized by a large
transistor.
(2) 上記ベース層をGa Asて形成し、上記低濃
度コレクタ層をGa 1−xA/xAs (x )o斗
5 )で形成したことを特徴とする特許 バイポーラ・1・ランノスタ。
(2) A patented bipolar 1-lannoster characterized in that the base layer is formed of GaAs, and the low concentration collector layer is formed of Ga1-xA/xAs(x)oto5).
JP58196155A 1983-10-21 1983-10-21 Bipolar transistor Expired - Lifetime JPH0680674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58196155A JPH0680674B2 (en) 1983-10-21 1983-10-21 Bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58196155A JPH0680674B2 (en) 1983-10-21 1983-10-21 Bipolar transistor

Publications (2)

Publication Number Publication Date
JPS6088464A true JPS6088464A (en) 1985-05-18
JPH0680674B2 JPH0680674B2 (en) 1994-10-12

Family

ID=16353118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58196155A Expired - Lifetime JPH0680674B2 (en) 1983-10-21 1983-10-21 Bipolar transistor

Country Status (1)

Country Link
JP (1) JPH0680674B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4994882A (en) * 1986-11-05 1991-02-19 University Of Illinois Semiconductor device and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5373979A (en) * 1976-12-14 1978-06-30 Nippon Telegr & Teleph Corp <Ntt> Transistor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5373979A (en) * 1976-12-14 1978-06-30 Nippon Telegr & Teleph Corp <Ntt> Transistor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4994882A (en) * 1986-11-05 1991-02-19 University Of Illinois Semiconductor device and method

Also Published As

Publication number Publication date
JPH0680674B2 (en) 1994-10-12

Similar Documents

Publication Publication Date Title
US6797994B1 (en) Double recessed transistor
EP1210736B1 (en) Method of forming a double recessed transistor
EP0551110B1 (en) Compound semiconductor devices
US6410945B1 (en) Heterojunction bipolar transistor and its manufacturing process
JPH05160161A (en) High electron mobility transistor
JPH10199896A (en) Manufacture of semiconductor device and semiconductor device
JPS6088464A (en) Bi-polar transistor
JPH11163316A (en) Field-effect transistor and manufacture thereof
JPH0249465A (en) Compound semiconductor device and manufacture thereof
JPS6242569A (en) Field effect transistor
JP3373386B2 (en) Semiconductor device and manufacturing method thereof
JPS59181060A (en) Semiconductor device
US6787817B2 (en) Compound semiconductor having a doped layer between the gate and an ohmic contact of an active region
Tanaka et al. Low-voltage operation GaAs spike-gate power FET with high power-added efficiency
JP3082401B2 (en) Selective etchant and method for manufacturing semiconductor device
JPS6027172A (en) Fet device
JP2595780B2 (en) Semiconductor device and manufacturing method thereof
JPH06310521A (en) Bipolar transistor
JP2564296B2 (en) Semiconductor device
CN105140286B (en) II type hetero-junctions tunneling field-effect transistors based on GaAsN GaAsSb materials
DE102022124451A1 (en) TRANSISTOR WITH ENCLOSING EXTRINSIC BASE
JPH01233770A (en) Bipolar transistor and manufacture thereof
JPS63236358A (en) Semiconductor device
JPH01166571A (en) Semiconductor device
JPH11176840A (en) Field-effect transistor and its manufacture