JPS6088400A - Method of solidifying silicon carbide - Google Patents

Method of solidifying silicon carbide

Info

Publication number
JPS6088400A
JPS6088400A JP19681483A JP19681483A JPS6088400A JP S6088400 A JPS6088400 A JP S6088400A JP 19681483 A JP19681483 A JP 19681483A JP 19681483 A JP19681483 A JP 19681483A JP S6088400 A JPS6088400 A JP S6088400A
Authority
JP
Japan
Prior art keywords
silicon carbide
silicon
glass
ash
clay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19681483A
Other languages
Japanese (ja)
Inventor
一郎 乃村
橋本 靖郎
伸二 高橋
長屋 喜一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP19681483A priority Critical patent/JPS6088400A/en
Publication of JPS6088400A publication Critical patent/JPS6088400A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は炭化ケイ素の同化処理方法に関する。[Detailed description of the invention] The present invention relates to a method for assimilating silicon carbide.

放射性1完棄物焼却炉には、1次燃焼室からの未燃物を
完全に燃焼させるために2次燃焼室が設けられており、
この2次燃焼室には、廃ガス中の未燃物をろ過し、その
表面で未燃物を燃焼させるためにポーラスC品温でも安
定な灰化ケイ素が充填されている。この炭化ケイ素は長
期間使用すると、隙間に灰等が涌り効率が落ちてくるた
め、半年にる。そこで、従来、この交換時に収出した灰
化ケイ素は放射性1j′6棄物としてドラム缶につめて
fV′Wされていた。ところが、最近この閑管ドラム缶
が増えるに連れ、灰化ケイ素のドラム缶への充填率の悪
さが目立つ状席となり、またドラム缶が破れた場合、灰
化ケイ素とこれに一緒に詰め込まれていた灰等が飛散し
てしまうという問題があった。
Radioactive 1 waste incinerators are equipped with a secondary combustion chamber to completely burn the unburned materials from the primary combustion chamber.
This secondary combustion chamber is filled with silicon ash, which is stable even at the temperature of porous C, in order to filter unburned substances in the exhaust gas and burn the unburned substances on its surface. If this silicon carbide is used for a long period of time, ash etc. will seep into the gaps and the efficiency will decrease, so it will last for half a year. Conventionally, the silicon ash recovered during this exchange was packed into drums as radioactive 1j'6 waste and subjected to fV'W. However, as the number of empty drums has increased recently, the poor filling rate of silicon ash into the drums has become noticeable, and when the drums are torn, the silicon ash and the ash packed together with the drums have become conspicuous. There was a problem that the particles would scatter.

本発明はこのような問題を解決することを目的とし、炭
化ケイ素と、硫酸ソーダと、酸イζグイ素を主成分とす
る粘土とを混合し、この混合物を溶融炉で高温で溶融し
、生成したガラス質の物質を容にgに流し込み、徐々に
冷却して力゛ラス固化体とする構成の炭化ケイ素の同化
処理方法を提供することによって、その目的を達成する
ものであり、これにより、灰化ケイ素を堅固で熱にも強
I/−1耐水溶性のガラス同化体とすることができ、も
って、容aへの充填率を向上させることができるととも
に、容器がh−破れたとしても灰化ケイ素や灰等を全く
飛散させなくて済むものである。
The purpose of the present invention is to solve such problems by mixing silicon carbide, sodium sulfate, and clay whose main components are acidic acid ζ This objective is achieved by providing a method for assimilating silicon carbide, in which the generated glassy substance is poured into a container and gradually cooled to form a vitreous solidified body. , silicon ash can be made into a glass assimilate that is strong, heat resistant, I/-1 water soluble, and can improve the filling rate into the container a, as well as prevent damage to the container even if it is broken. Also, there is no need to scatter silicon ash or ash at all.

以下本発明の方法を一実施例全紙す1ン1而に其づいて
詳細に説明する。
The method of the present invention will be explained in detail below with reference to one embodiment.

図において、(1)は放射性廃棄物焼却炉の2次燃焼室
から収出された炭化ケイ素、(2)は原子力発電所から
発生する濃縮廃液を°乾燥機(図示せず)により乾燥し
て得られた硫酸ソーダ、(3)は酸化ケイ素を主成分と
する粘土で、14) (5) (6)はそれぞれの貯留
ホッパである。(7)は各貯留ホッパ(4+ (51(
61から所定の混合比で供給された灰化ケイ素(υ、硫
)竣ソーダ(2)および粘土(3)を粉砕混合する粉砕
混合器、(8)は粉砕混合器(7)で粉砕混合された混
合物(9)を高温で溶融する溶融炉である。明は溶融炉
(8)で生成されたガラス質の物質αυを流し込まれ、
これを固化する同化容器で、ガラス質の物質u11を徐
々に冷却すべく徐冷炉(6)に挿入して設けられている
In the figure, (1) is silicon carbide recovered from the secondary combustion chamber of a radioactive waste incinerator, and (2) is concentrated waste liquid generated from a nuclear power plant that is dried using a dryer (not shown). The obtained sodium sulfate, (3) is clay whose main component is silicon oxide, and (14), (5), and (6) are the respective storage hoppers. (7) is for each storage hopper (4+ (51(
A pulverizing mixer for pulverizing and mixing ash silicon (υ, sulfur) finished soda (2) and clay (3) supplied from 61 at a predetermined mixing ratio; This is a melting furnace that melts the mixed mixture (9) at high temperature. Akira is poured with the glassy substance αυ produced in the melting furnace (8),
This is an assimilation vessel for solidifying this, and it is inserted into the lehr (6) to gradually cool the glassy substance u11.

このような構成で、先ず、各貯留ホッパL4) (5)
 L6)から灰化ケイ素(υ、硫酸ソーダ(2)および
粘土(3)を敗出し、粉砕混合器(7)に供給する。な
お、このとき用いる粘土(3)は、生成するガラスの柱
状向上のために約20〜30%のAt20. 、CaO
等のガラス形成醒化物を含んでいることが望ましい、7
また各物質の混へは、4f#、酸ソーダ(2)が1に苅
して灰化ケイ素(υと粘土(3)の合計重量が1.2〜
1Bであることが望ましく、このとき灰化ケイ素(1)
は粘土(3)の重量の半分以下でなければうまくガラス
化しない17次に、粉砕混合器(7)でこれらの粉砕混
合を汀う。このとき、炭化ケイ素(1)は小石位の固ま
りであるので、充分に時間をかけて粉砕混合する。粉砕
混合が不充分の場合、均質なガラスになりにくいので注
ばを要する。次に、粉砕混合した混合物(5J)を溶融
炉(8)に供給する。溶融炉(8)の加熱方式としては
、品周波加熱、マイクロ波加熱、ジュール加熱等の方式
が適用可能でるる。溶梱(炉(8)の中で混合物(9)
は以下のような反応を起こす。
With this configuration, first, each storage hopper L4) (5)
Ashed silicon (υ, sodium sulfate (2) and clay (3) are extracted from L6) and supplied to the crushing mixer (7).The clay (3) used at this time is used to improve the columnar shape of the glass produced. About 20-30% At20.,CaO
It is desirable that it contains glass-forming atomized substances such as
In addition, to mix each substance, add 4 f#, acid soda (2) to 1, and add 1.2 to 1.2 to
1B is preferable, in which case silicon ash (1)
vitrification will not be successful unless it is less than half the weight of the clay (3).17 Next, these crushed mixtures are sifted in a crush mixer (7). At this time, since silicon carbide (1) is a pebble-sized lump, sufficient time is required for pulverization and mixing. If the grinding and mixing is insufficient, it will be difficult to form a homogeneous glass, so pouring will be necessary. Next, the pulverized mixture (5 J) is supplied to the melting furnace (8). As a heating method for the melting furnace (8), methods such as high frequency heating, microwave heating, Joule heating, etc. can be applied. Melting (mixture (9) in furnace (8)
causes the following reaction.

Na 2SO,+n(Sio2+MOx)−HnS i
C+lO2−ma201IMOx ・(n−+4n)S
 i02+SO2↑+lηC02↑ここで、SiO−4
−MOx は粘土、MOxv′1A1203、CaO等
のガラy、形成酸化物、Na 20 ・nMOx ・C
n−1−+n )S102が生成するガラスUυでめる
。灰化ケイ素(υは空気中では表面に5i02を形成し
、2000’C以上にならないと分解しないが、本発明
方法によれば、加熱によりその表面に形成される5I0
2とNa25o4が反応するため、1,200 ”C8
度で溶融する。また、炭化ケイ素(1)に含まれる炭素
は硫酸ソーダ(2)に対して超元剤として作用し、ガラ
ス化反応を促進させる。反応により発生したSO2,C
O2等の廃ガヌ側は、排ガス処理設備(図示せず)にお
いて処理する。次に、生成したガラス質の物質O])は
固化谷器四に流し込み、徐冷炉(2)で徐々に冷却して
ガラス同化体とする。次に、実験例をあげる。
Na2SO,+n(Sio2+MOx)-HnS i
C+lO2-ma201IMOx ・(n-+4n)S
i02+SO2↑+lηC02↑Here, SiO-4
-MOx is clay, MOxv'1A1203, galley such as CaO, formed oxide, Na 20 ・nMOx ・C
n-1-+n) S102 produces glass Uυ. Ashed silicon (υ) forms 5I02 on the surface in air and does not decompose unless the temperature exceeds 2000'C, but according to the method of the present invention, 5I0 formed on the surface by heating.
2 reacts with Na25o4, so 1,200 "C8
Melt at 300°C. Furthermore, carbon contained in silicon carbide (1) acts as a super-priming agent for sodium sulfate (2), promoting the vitrification reaction. SO2,C generated by the reaction
Waste gas such as O2 is treated in an exhaust gas treatment facility (not shown). Next, the produced glassy substance O]) is poured into a solidification vessel (4) and gradually cooled in an annealing furnace (2) to form a glass assimilate. Next, I will give an experimental example.

〈実験例〉 炭化ケイ素(1)22%、硫酸ソーダt2137%、粘
土(3)41%の重量パーセントで混合した試料を電気
溶融炉(8)により溶融した。粘土(3)にはアルミナ
等の安定酸化物を29%含むものを用いた。腎融′温度
は1.200°Cとし、2時間溶融した。生成したガラ
ス質の物質uI)は固化容器ttU K流し込み、徐冷
炉@で5時111かけて徐冷した。こうして得たガラス
の組成は、!1)10259%、Na、、023%、ア
ルミナ等の安定酸化物18%でめった。次に、作成した
ガラスについったところ、アルカリ溶出喰は22mgで
めった。これにより、作成したガラスは、並質ガラスと
同等もしくはそれ以上の性能で必ることが分った。
<Experimental Example> A sample prepared by mixing 22% of silicon carbide (1), 2137% of sodium sulfate, and 41% of clay (3) by weight was melted in an electric melting furnace (8). Clay (3) containing 29% of stable oxide such as alumina was used. The kidney melting temperature was 1.200°C, and the mixture was melted for 2 hours. The produced glassy substance uI) was poured into a solidification container ttUK, and was slowly cooled in a slow cooling furnace @ for 5:11 hours. The composition of the glass thus obtained is! 1) 10259%, Na, 023%, stable oxide such as alumina 18%. Next, when applied to the prepared glass, the amount of alkali eluted was 22 mg. As a result, it was found that the glass produced had performance equivalent to or better than that of ordinary glass.

以上本発明方法によれば、灰化ケイ素を堅固で熱にも強
い耐水M性のガラス同化体とすることができ、もって′
4蕗への充填率を向上させることができるとともに、容
器が万−破れたとしても灰化ケイ素や灰等を全く飛散さ
せなくて済む。また、不発明方法を、放射性廃棄物焼却
の2次燃焼室から収出される灰化ケイ素および賦子力発
電所から発生する製糊廃液を121.燥して得られる硫
酸ソーダe!6理するのに適用すれば、炭化ケイ素に付
着している放射性廃棄物をガラスの内部に封じ込めた伏
恋で同化でさるとともに硫酸ソーダも伴に処理でき、至
って効果的である。さらに、生成したガラス同化体は耐
水溶性に優れ、堅固で熱にも強いことから、長期間の保
管に安定であり、放射性発棄物の処理として適用するこ
とかできる。
As described above, according to the method of the present invention, silicon ash can be made into a hard, heat-resistant, water-resistant glass assimilated material, and as a result,
It is possible to improve the filling rate of the container, and even if the container is torn, there is no need to scatter silicon ash, ash, etc. at all. In addition, the uninvented method was applied to ashed silicon recovered from the secondary combustion chamber of radioactive waste incineration and sizing waste liquid generated from a power plant. Sodium sulfate obtained by drying e! When applied to the treatment of silicon carbide, radioactive waste attached to silicon carbide can be assimilated using a silica sealed inside glass, and soda sulfate can also be treated, making it extremely effective. Furthermore, the produced glass assimilate has excellent water solubility resistance, is solid, and is resistant to heat, so it is stable for long-term storage and can be applied as a treatment for radioactive waste.

【図面の簡単な説明】[Brief explanation of drawings]

図1苗は木う辻明方7左の一寥施佐1を7七す下辺1ヅ
f治る。 (1)・・・炭化ケイ素、(2)・・・硫酸ソーダ、i
3)・・・栢土、(8)・・・k融炉、(【Il・・・
固化谷語、Uυ・・・ガラス質の物質代理人 森 本 
義 弘
Fig. 1 Seedlings are cured on the left side of Kiutsuji Akira 7. (1)...Silicon carbide, (2)...Soda sulfate, i
3)...Modern earth, (8)...K melting furnace, ([Il...
Solidification valley language, Uυ... glassy substance agent Morimoto
Yoshihiro

Claims (1)

【特許請求の範囲】[Claims] 1、灰化ケイ素と、硫酸ソーダと、酸化ケイ素を主成分
とする粘土とを混合し、この混合物を溶融炉で高温で溶
融し、生成したガラス質の物質を容器に流し込み、徐々
に冷却してガラスl1ff化体とすることを時機とする
炭化ケイ素の同化処理方法。
1. Mix silicon ash, sodium sulfate, and clay mainly composed of silicon oxide, melt this mixture at high temperature in a melting furnace, pour the resulting glassy substance into a container, and gradually cool it. A method for assimilating silicon carbide by converting it into a glass l1ff product.
JP19681483A 1983-10-19 1983-10-19 Method of solidifying silicon carbide Pending JPS6088400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19681483A JPS6088400A (en) 1983-10-19 1983-10-19 Method of solidifying silicon carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19681483A JPS6088400A (en) 1983-10-19 1983-10-19 Method of solidifying silicon carbide

Publications (1)

Publication Number Publication Date
JPS6088400A true JPS6088400A (en) 1985-05-18

Family

ID=16364098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19681483A Pending JPS6088400A (en) 1983-10-19 1983-10-19 Method of solidifying silicon carbide

Country Status (1)

Country Link
JP (1) JPS6088400A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171399A (en) * 1987-01-09 1988-07-15 株式会社神戸製鋼所 Processing method of radioactive waste

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49109800A (en) * 1973-02-21 1974-10-18
JPS559111A (en) * 1978-07-06 1980-01-23 Tokyo Shibaura Electric Co Device and method of solidifying radioactive with glass
JPS5728298A (en) * 1980-06-20 1982-02-15 Kraftwerk Union Ag Method of finally storing radioactive waste by vitrification
JPS5847300A (en) * 1981-09-16 1983-03-18 株式会社東芝 Method and apparatus for solidifying radioactive waste by ceramics

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49109800A (en) * 1973-02-21 1974-10-18
JPS559111A (en) * 1978-07-06 1980-01-23 Tokyo Shibaura Electric Co Device and method of solidifying radioactive with glass
JPS5728298A (en) * 1980-06-20 1982-02-15 Kraftwerk Union Ag Method of finally storing radioactive waste by vitrification
JPS5847300A (en) * 1981-09-16 1983-03-18 株式会社東芝 Method and apparatus for solidifying radioactive waste by ceramics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171399A (en) * 1987-01-09 1988-07-15 株式会社神戸製鋼所 Processing method of radioactive waste

Similar Documents

Publication Publication Date Title
JPS6046394B2 (en) Method for solidifying high-level radioactive waste liquid using glass
EP0767762A1 (en) Production of mineral fibres
PT1037861E (en) Briquettes for mineral fibre production and their use
CN111687168A (en) Method for co-melting waste incineration ash
JPS63289498A (en) Solidifying agent for radioactive waste
JPS6088400A (en) Method of solidifying silicon carbide
JPS6121794A (en) Utilization of steel making slag
KR840000817B1 (en) Sintered aggregates
CN104676595B (en) Method for lowering quantity and toxicity of flying ash of household garbage incineration plant
JPS59164669A (en) Manufacture of crystallized matter
JPS6042698A (en) Method of vitrifying radioactive waste
JPS60142297A (en) Method of treating radioactive waste
JPS60100100A (en) Method of solidifying silicon carbide
JP2001027694A (en) Solidified body of radioactive condensed waste substance and manufacture of the same
USH1013H (en) Process for the immobilization and volume reduction of low level radioactive wastes from thorium and uranium processing
US4339254A (en) Glass manufacture employing a silicon carbide refining agent
JP4084432B2 (en) Manufacturing method of inorganic material
RU2044594C1 (en) Heat-insulating mixture
JP2001518440A (en) Manufacture of ceramic tiles from industrial waste
JP3624033B2 (en) Artificial lightweight aggregate
JPS58145628A (en) Block made of glassy material
JPS58132699A (en) Method of melting and solidifying radioactive waste
JPS6124074B2 (en)
GB2168279A (en) Feeder made from exothermic heating composition for castings
JPH06170352A (en) Method for melting asbestos waste