JP2001027694A - Solidified body of radioactive condensed waste substance and manufacture of the same - Google Patents

Solidified body of radioactive condensed waste substance and manufacture of the same

Info

Publication number
JP2001027694A
JP2001027694A JP2000032385A JP2000032385A JP2001027694A JP 2001027694 A JP2001027694 A JP 2001027694A JP 2000032385 A JP2000032385 A JP 2000032385A JP 2000032385 A JP2000032385 A JP 2000032385A JP 2001027694 A JP2001027694 A JP 2001027694A
Authority
JP
Japan
Prior art keywords
solidified
waste
waste material
compound
vitrified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000032385A
Other languages
Japanese (ja)
Inventor
Ryuichi Matsubara
龍一 松原
Mitsuyoshi Inobe
三嘉 射延
Takashi Miyake
崇史 三宅
Norio Shioji
則夫 塩地
Yoshikatsu Kawase
義勝 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000032385A priority Critical patent/JP2001027694A/en
Publication of JP2001027694A publication Critical patent/JP2001027694A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To use a large filling amount of sodium salt of a solidified body and make it insoluble in water by adding the compound of elements selected from alkali earth metal, transition metal, metalloid or the like to a vitrification base material, and forming to heat and melt them. SOLUTION: In a preprocessing process, radioactive waste liquid containing sodium compound is dried to become powder, and in a storing process, the powder is stored in a storage tank. In a first mixing process, the dried powder is weighed to supply the powder of SiO2 so as to be mixed at a constant rate. In a second mixing process, about 2-22 mol.% of one oxide out of CaO, B2O3, Al2O3, Fe2O3, TiO2 or the like is added to the mixed powder, and sodium oxide in a vitrified and solidified body is made about 26-35 wt.% to be mixed and agitated. In a heating melting process, the heating and melting temperature of a furnace is set at 850-1100 deg.C, and a mixture is put into a crucible to be heated or continuously heated in a cylindrical furnace. In a cooling and solidifying process, it is preferably forcedly cooled at about 500-600 deg.C by furnace outside air cooling, fan air cooling, water cooling or the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、使用済み核燃料再
処理施設等で発生する硝酸ナトリウムを含有する中、低
レベルの放射性濃縮廃物質の固化体、特にガラス固化体
と該固化体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solidified radioactively concentrated waste material containing sodium nitrate generated in a spent nuclear fuel reprocessing facility or the like, especially a vitrified solidified material and a method for producing the solidified material. About.

【0002】[0002]

【従来の技術】従来より使用済み核燃料再処理施設等で
生成される放射性廃液の処理は、いわゆるPurex法
等の湿式処理方法で行われており、かかる湿式処理方法
は、使用済み核燃料を硝酸で溶解し、その溶液からウラ
ンやプルトニウム等の核燃料物質を溶媒抽出して回収す
るものであるが、この処理過程において、核分裂生成物
を含む高レベル廃液と、微量の核分裂生成物を含む中低
レベル廃液とが発生し、高レベル廃液は溶融したホウケ
イ酸ガラスに溶かし込んで固化するという方法が確立さ
れているが、一方大量に発生する中低レベル廃液は従来
よりアスファルト固化法やセメント固化法が用いられて
いる。しかしながら前記中低レベル廃液中に含まれる硝
酸ナトリウム(NaNO)や亜硝酸ナトリウム(NaN
)は火薬や酸化剤等に用いられ、このため消防法に
よる第1類危険物薬品に指定されており、且つ水に対し
ては容易に溶解する。
2. Description of the Related Art Conventionally, the treatment of radioactive waste liquid generated in a spent nuclear fuel reprocessing facility or the like is performed by a wet treatment method such as the so-called Purex method. It dissolves and recovers nuclear fuel materials such as uranium and plutonium from the solution by solvent extraction.In this process, high-level waste liquid containing fission products and medium-low level It has been established that waste liquid is generated and high-level waste liquid is dissolved in molten borosilicate glass and solidified.On the other hand, medium- and low-level waste liquid that is generated in large quantities is conventionally treated by asphalt solidification or cement solidification. Used. However, sodium nitrate (NaNO 3 ) and sodium nitrite (NaN
O 2 ) is used as an explosive, an oxidizing agent, etc., and is therefore designated as a first-class dangerous substance by the Fire Service Law, and is easily dissolved in water.

【0003】このため前記アスファルト固化法では、前
記硝酸ナトリウム等と熱溶融状態にあるアスファルトが
化学反応を起こし、火災や爆発の危険がある。又セメン
ト固化法では雨水に曝した場合、前記廃液の溶出が起こ
り必ずしも二次汚染を防止できない。かかる従来技術の
欠点を解消するために、近年前記中低レベル廃液を乾燥
し、この乾燥物にSiOを主成分とするガラス化助剤
を混合し、この混合物を加熱溶融してガラス化反応を生
じせしめた後、冷却固化して、ガラス中に放射成分の酸
化物を封入固化する技術が提案されている。(特開昭6
0-146199,特開昭61-82200、特開昭61
-132898、特開昭61-200500,特開昭62
-12499、特開昭62-284298号、特開昭63
-300999)
[0003] Therefore, in the asphalt solidification method, there is a danger of fire or explosion due to a chemical reaction between the sodium nitrate or the like and asphalt in a hot-melt state. Also, in the cement solidification method, when exposed to rainwater, the waste liquid elutes, and secondary contamination cannot always be prevented. In order to solve the drawbacks of the prior art, in recent years, the above-mentioned medium-to-low level waste liquid has been dried, and a vitrification aid containing SiO 2 as a main component is mixed with the dried substance, and the mixture is heated and melted to form a vitrification reaction. A technique has been proposed in which after cooling, the solidified material is cooled and solidified to enclose and solidify an oxide of a radiation component in glass. (JP 6
0-146199, JP-A-61-82200, JP-A-61-61200
-132898, JP-A-61-200500, JP-A-62
-12499, JP-A-62-284298, JP-A-63
-300999)

【0004】[0004]

【発明が解決しようとする課題】しかしながら特開昭6
0-146199号においては、ガラス化母材にSiO
を用いないために、高温における安定性に疑問がある
のみならず、実施例1の記載から明らかなように、ガラ
ス化助剤としてホウ素とケイ酸カルシウムの複数種を用
いているために、その配合比が煩雑化する。又放射性濃
縮廃物質の封入ガラス化量が酸化ナトリウムNaO換
算で25重量%前後と尚十分でない。
However, Japanese Unexamined Patent Publication No.
No. 0-146199 discloses that the vitrified base material is made of SiO.
2Questions about stability at high temperatures
Not only that, as is clear from the description of Example 1,
Using multiple types of boron and calcium silicate
Therefore, the compounding ratio becomes complicated. Also radioactive
Sodium oxide Na2O exchange
About 25% by weight is still not enough.

【0005】又特開昭61-82200号においては、
ガラス化母剤にSiOを用いるも、添加剤としてホウ
酸、水酸化アルミニウム、炭酸カルシウムの三種の添加
剤が必要であり、その配合比の調整が煩雑化する。又加
熱溶融温度が1100〜1200℃と高温であり、溶融
設備に高耐熱性が必要である。又酸化ナトリウムNa
O換算での廃物質の封入ガラス化量が20重量%前後と
低い。
In Japanese Patent Application Laid-Open No. 61-82200,
SiO for vitrification matrix2Also used as an additive
Addition of three kinds of acid, aluminum hydroxide and calcium carbonate
Agents are required, and the adjustment of the compounding ratio becomes complicated. Again
The melting temperature is as high as 1100-1200 ° C
Equipment must have high heat resistance. Also sodium oxide Na 2
The amount of enclosed vitrified waste material in O conversion is around 20% by weight.
Low.

【0006】又特開昭61-132898号においても
同様であり、ガラス化母剤にSiO を用いるも、添加
剤としてホウ素化合物、アルミニウム化合物、アルカリ
土類化合物の三種の添加剤が必要であり、その配合比の
調整が煩雑化する。又加熱溶融温度も1200℃と高温
であり、溶融設備に高耐熱性が必要である。
In Japanese Patent Application Laid-Open No. 61-132898,
Similarly, the vitrification matrix is made of SiO 2Also use
Boron compounds, aluminum compounds, alkalis
Three kinds of additives of earth compounds are necessary, and the
Adjustment is complicated. Heating and melting temperature is as high as 1200 ° C
Therefore, high heat resistance is required for the melting equipment.

【0007】特開昭61-200500においては、ガ
ラス化母剤に硅砂、砂、粘土等のSiOを主成分とす
るものを用いてガラス化を行っている。しかしながら、
硅砂等を用いてガラス化をするには加熱溶融温度が12
00℃以上の高温が必要であり、溶融設備が高価になる
のみならず、硅砂、砂等で作られるソーダ・ケイ酸ガラ
スは酸化ナトリウムが20重量%以上含有すると、極端
に耐水性が悪くなり、放射性濃縮廃物質の溶出等の二次
汚染が生じるおそれがある。
In Japanese Patent Application Laid-Open No. 61-200500, vitrification is carried out using a vitrification base material containing SiO 2 as a main component such as silica sand, sand or clay. However,
For vitrification using silica sand, etc., the heating and melting temperature is 12
A high temperature of over 00 ° C is required, which not only makes the melting equipment expensive, but also makes the soda-silicate glass made of silica sand, sand, etc. extremely poor in water resistance if it contains 20% by weight or more of sodium oxide. Secondary contamination such as elution of radioactive waste.

【0008】又特開昭62-12499号は、前記のよ
うな放射性濃縮廃物質を処分するための基準が現段階で
は未確定であるために、これが確立した段階で再処理を
することができるように、前記乾燥体を400〜800
℃の低融点ガラスと混合している。このため、本技術で
はガラスの安定性及び二次汚染の面で問題が生じる。
Japanese Patent Application Laid-Open No. 62-12499 discloses that the standard for disposing of the radioactively concentrated waste material as described above has not been determined at this stage, so that it can be reprocessed at the stage when it is established. As described above, the dried body is 400 to 800
It is mixed with low-melting glass of ℃. For this reason, a problem arises in the present technology in terms of glass stability and cross-contamination.

【0009】特開昭62-284298号は、高濃度固
化体を岩石原料の中に埋め込んだ状態で水熱合成するも
ので基本的にガラス化技術とは異なる。
Japanese Patent Application Laid-Open No. 62-284298 discloses a method in which a high-concentration solidified material is embedded in a rock raw material and hydrothermally synthesized, and is basically different from the vitrification technique.

【0010】特開昭63-300999号も前記中低レ
ベルの放射性物質に水酸化アルミニウムや水酸化鉄を添
加して、前記放射性濃縮廃物質中の硝酸ナトリウムや亜
硝酸ナトリウムを加熱脱硝する技術であり、ガラス化技
術とは異なる。
Japanese Patent Application Laid-Open No. 63-300999 also discloses a technique in which aluminum hydroxide or iron hydroxide is added to the above-mentioned medium-to-low level radioactive substances to heat and denitrate sodium nitrate and sodium nitrite in the radioactively concentrated waste substances. Yes, different from vitrification technology.

【0011】本発明はかかる従来技術に鑑み、核燃料再
処理施設等で発生する、中低レベルの硝酸ナトリウムを
主成分とする廃物質の最終処理形態の一つである固化
体、特にガラス固化体を製造するに際し、該固化時に、
固化体のナトリウム塩の充填量を出来るだけ多くし、且
つ水に溶出しないガラス固化体を製造することを目的と
する。更に、本発明の他の目的とするところは、前記固
化体製造時の溶融温度が低い程、装置負荷の低減につな
がるために、本発明は、ガラス成分種及び溶融温度の低
減化の件等を実施し、ナトリウムを安定に保持できる放
射性濃縮廃物質のガラス固化体及び該固化体の製造方法
を提供することにある。
In view of the above prior art, the present invention provides a solidified material, particularly a vitrified material, which is one of the final treatment forms of waste materials mainly containing middle and low levels of sodium nitrate generated in a nuclear fuel reprocessing facility or the like. In producing, during the solidification,
It is an object of the present invention to increase the filling amount of the solidified sodium salt as much as possible and to produce a vitrified solid that does not elute in water. Furthermore, another object of the present invention is to reduce the load on the device as the melting temperature during the production of the solidified body is lower. The present invention is to provide a vitrified radioactive waste material capable of stably retaining sodium and a method for producing the solidified product.

【0012】[0012]

【課題を解決するための手段】本発明はかかる課題を解
決するために、請求項1記載の発明において、硝酸ナト
リウムその他のナトリウム化合物を含有する中、低レベ
ルの放射性濃縮廃物質(廃物質には廃液及び廃固形物の
両者を示す。)の乾燥体と、SiOとを母材とする廃
物質ガラス固化体において、前記以外のガラス化母材に
加えて、マグネシウムMg、カルシウムCa等のアルカ
リ土類金属、チタンTi、鉄Fe等の遷移金属、ホウ素
B若しくはアルミニウムAl等のメタロイド(As,S
b,Bi,Ge、B、ただしSiOは母材と一緒のた
めに除く。)のうちより選択された一の元素、より具体
的には鉄Fe、チタンTi、ホウ素B、カルシウムC
a、アルミニウムAl、若しくはマグネシウムMgより
選択された一の元素を含む化合物を添加して加熱溶融し
て形成したことを特徴とする廃物質ガラス固化体を提案
する。
According to the present invention, in order to solve the above-mentioned problems, a low-level radioactive waste material containing sodium nitrate and other sodium compounds (hereinafter referred to as waste material) is required. Represents both a waste liquid and a waste solid.) And a waste material vitrified body using SiO 2 as a base material, in addition to a vitrified base material other than the above, magnesium magnesium, calcium Ca, etc. Alkaline earth metals, transition metals such as titanium Ti and iron Fe, metalloids such as boron B or aluminum Al (As, S
b, Bi, Ge, B, except that SiO 2 is included together with the base material. ), More specifically, iron Fe, titanium Ti, boron B, calcium C
a, a waste material vitrified material characterized by being formed by adding a compound containing one element selected from a, aluminum Al, or magnesium Mg and heating and melting the compound.

【0013】即ち、前記廃物質の乾燥体とSiOのみ
でガラス固化体を製造しようとすると、溶融温度も高く
なり、且つ均質なガラスができにくい。このため前記二
種の母材に溶融温度及びガラスの粘性を低下させるため
の添加剤を加える必要があるが、該添加剤が複数の場合
は、その配合比の調整が煩雑化するのみならず、放射性
濃縮廃物質の封入ガラス化量が酸化ナトリウムNa
換算で25重量%以下となり尚十分でない。一方本発明
においては、前記廃物質の乾燥体とSiOからなるガ
ラス化母材に加えて、チタンTi、ホウ素B、カルシウ
ムCa、アルミニウムAl、鉄Fe、若しくはマグネシ
ウムMgより選択された一の元素を含む化合物であるた
めに、その配合比の調整が容易化するのみならず、放射
性濃縮廃物質の封入ガラス化量が酸化ナトリウムNa
O換算で26重量%以上、より具体的には上限を30〜
35重量%程度含有させることができる。
That is, when an attempt is made to produce a vitrified product using only the dried waste material and SiO 2 , the melting temperature becomes high and uniform glass is hardly produced. For this reason, it is necessary to add an additive for lowering the melting temperature and the viscosity of the glass to the two kinds of base materials, but when there are a plurality of such additives, not only the adjustment of the mixing ratio becomes complicated, but also , The amount of vitrification of radioactive condensed waste material is sodium oxide Na 2 O
It is still less than 25% by weight in conversion. On the other hand, in the present invention, one element selected from titanium Ti, boron B, calcium Ca, aluminum Al, iron Fe, or magnesium Mg in addition to the dried substance of the waste substance and the vitrified base material composed of SiO 2. , Not only facilitates the adjustment of the compounding ratio, but also the amount of vitrification of the radioactive condensed waste material is reduced to sodium oxide Na 2
26% by weight or more in terms of O, more specifically, the upper limit is 30 to
The content can be about 35% by weight.

【0014】請求項4記載の発明はかかる点を特定した
もので、前記廃物質ガラス固化体中に含有される酸化ナ
トリウムが、26〜35重量%であることを請求する。
尚、請求項4記載の発明において、上限を35重量%に
設定した理由は、35重量%以上では、安定してガラス
化しないためである。
The invention of claim 4 specifies this point, and claims that the waste material vitrified product contains 26 to 35% by weight of sodium oxide.
The reason why the upper limit is set to 35% by weight in the invention according to claim 4 is that if the amount is 35% by weight or more, vitrification does not occur stably.

【0015】尚、請求項1、3及び4記載の発明におい
て、前記選択された元素が同一元素であればその化合物
が例えば当該一の元素の酸化物と水酸化物の組み合わせ
若しくは錯体の場合も本発明に含まれる。そして好まし
くは、請求項2に記載のように、前記1のイオン化合物
は、CaO系、B系、Al系、Fe
系、FeO系若しくはTiO系のうちのいずれか一
の酸化化合物であるのが好ましい。そのなかでも特にC
aO系とTiO系とMgO系及びFe系が有利
である。
In the invention described in claims 1, 3 and 4, if the selected elements are the same element, the compound may be, for example, a combination or complex of an oxide and a hydroxide of the one element. Included in the present invention. And preferably, as described in claim 2, the ion compound of 1, CaO system, B 2 O 3 system, Al 2 O 3 system, Fe 2 O 3
It is preferably an oxide compound of any one of a system, an FeO 2 system and a TiO 2 system. Among them, especially C
aO system and TiO 2 system and MgO-based and Fe 2 O 3 system is advantageous.

【0016】請求項3記載の発明は、前記一の化合物の
添加量が略2〜22モル%であることを特徴とする。け
だし前記範囲に設定することにより、ガラス化溶融温度
を1000℃以下に低減させること、Na溶出率を10
重量%以下に低減させること、及び放射性濃縮廃物質の
ガラス固化体への封入量が酸化ナトリウムNaO換算
で30重量%以上に増加させることができる。尚、溶融
温度が900℃以下に設定する場合は、前記化合物の添
加量は4〜18モル%に設定するのがよい。より具体的
には、添加物がB系で溶融温度が900℃以下に
設定する場合は、前記B系化合物の添加量は4〜
12モル%に、又ガラス化溶融温度を1000℃以下に
低減させる場合は、前記B系化合物の添加量は2
〜22モル%に設定するのがよい。
The invention according to claim 3 is characterized in that the addition amount of the one compound is about 2 to 22 mol%. By setting the temperature within the above range, the vitrification melting temperature can be reduced to 1000 ° C. or less, and the Na elution rate can be reduced to 10%.
% By weight or less, and the amount of the radioactive concentrated waste material enclosed in the vitrified body can be increased to 30% by weight or more in terms of sodium oxide Na 2 O. When the melting temperature is set to 900 ° C. or lower, the amount of the compound to be added is preferably set to 4 to 18 mol%. More specifically, when the additive is a B 2 O 3 system and the melting temperature is set to 900 ° C. or less, the amount of the B 2 O 3 based compound added is 4 to
In order to reduce the vitrification melting temperature to 12% by mol or less to 1000 ° C. or less, the amount of the B 2 O 3 based compound added is 2
It is good to set to ~ 22 mol%.

【0017】又添加物がCaO系で溶融温度が900℃
以下に設定する場合は、前記CaO系化合物の添加量は
4〜18モル%に、又ガラス化溶融温度を1000℃以
下に低減させる場合は、前記CaO系化合物の添加量は
3〜22モル%に設定するのがよい。更に、添加物がA
系で溶融温度が900℃以下に設定する場合
は、前記Al系化合物の添加量は4〜16モル%
に、又ガラス化溶融温度を1000℃以下に低減させる
場合は、前記Al系化合物の添加量は2〜22モ
ル%に設定するのがよい。更に又添加物がTiO系で
溶融温度が900℃以下に設定する場合は、前記TiO
系化合物の添加量は5〜19モル%に、又ガラス化溶
融温度を1000℃以下に低減させる場合は、前記Ti
系化合物の添加量は2〜22モル%に設定するのが
よい。
The additive is CaO-based and the melting temperature is 900 ° C.
When set below, the addition amount of the CaO-based compound is 4 to 18 mol%, and when the vitrification melting temperature is reduced to 1000 ° C. or less, the addition amount of the CaO-based compound is 3 to 22 mol%. It is good to set to. Further, the additive is A
When the melting temperature is set to 900 ° C. or less in the l 2 O 3 system, the amount of the Al 2 O 3 compound added is 4 to 16 mol%.
When the vitrification melting temperature is reduced to 1000 ° C. or lower, the amount of the Al 2 O 3 compound is preferably set to 2 to 22 mol%. Further, when the additive is TiO 2 and the melting temperature is set to 900 ° C. or less,
In order to reduce the addition amount of the di-based compound to 5 to 19 mol%, and to reduce the vitrification melting temperature to 1000 ° C. or less,
The addition amount of the O 2 -based compound is preferably set to 2 to 22 mol%.

【0018】更に、添加物がFe系で溶融温度が
900℃以下に設定する場合は、前記Fe系化合
物の添加量は4〜16モル%に、又ガラス化溶融温度を
1000℃以下に低減させる場合は、前記Fe
化合物の添加量は2〜22モル%に設定するのがよい。
Further, when the additive is Fe 2 O 3 type and the melting temperature is set at 900 ° C. or lower, the amount of the Fe 2 O 3 type compound is 4 to 16 mol% and the vitrification melting temperature is When the temperature is reduced to 1000 ° C. or lower, the amount of the Fe 2 O 3 compound to be added is preferably set to 2 to 22 mol%.

【0019】更に又添加物がMgO系で溶融温度が90
0℃以下に設定する場合は、前記MgO系化合物の添加
量は5〜19モル%に、又ガラス化溶融温度を1000
℃以下に低減させる場合は、前記MgO系化合物の添加
量は2〜22モル%に設定するのがよい。
Further, the additive is MgO-based and has a melting temperature of 90.
When the temperature is set to 0 ° C. or lower, the addition amount of the MgO-based compound is 5 to 19 mol%, and the vitrification melting temperature is 1000
When the temperature is reduced to not more than ℃, the amount of the MgO-based compound to be added is preferably set to 2 to 22 mol%.

【0020】又、前記廃物質ガラス固化体中に含有され
るガラス化母材としてのSiOの含有量は、50〜7
2重量%、より好ましくは60〜72重量%に設定する
ことによりガラス化が一層すすみ、放射性濃縮廃物質の
低減と溶融温度の低減が可能となる。
The content of SiO 2 as a vitrification base material contained in the waste material vitrified product is 50 to 7%.
By setting the content to 2% by weight, more preferably from 60 to 72% by weight, vitrification is further promoted, and it becomes possible to reduce the radioactive concentration waste material and the melting temperature.

【0021】請求項6記載の発明はかかる発明を効果的
に製造するための製造方法に関する発明で、使用済み核
燃料再処理施設等で発生する硝酸ナトリウムその他のナ
トリウム化合物を含有する中、低レベルの放射性濃縮廃
物質(廃物質には廃液及び廃固形物の両者を示す。)を乾
燥し、該乾燥物とSiOとともに、マグネシウムM
g、カルシウムCa等のアルカリ土類金属、チタンT
i、鉄Fe等の遷移金属、ホウ素B若しくはアルミニウ
ムAl等のメタロイドのうちより選択された一の元素、
より具体的には鉄Fe、チタンTi、ホウ素B、カルシ
ウムCa、アルミニウムAl、若しくはマグネシウムM
gより選択された一の元素を含む化合物の三成分からな
る混合物を加熱溶融してガラス化させた後、冷却固化し
てガラス固化体を製造することを特徴とする。
The invention according to claim 6 relates to a manufacturing method for effectively manufacturing such an invention, wherein low levels of sodium nitrate and other sodium compounds generated in a spent nuclear fuel reprocessing facility or the like are contained. The radioactive concentrated waste material (waste material indicates both waste liquid and waste solid) is dried, and the dried material and SiO 2 are dried together with magnesium M.
g, alkaline earth metals such as calcium Ca, titanium T
i, one element selected from transition metals such as iron Fe, and metalloids such as boron B or aluminum Al;
More specifically, iron Fe, titanium Ti, boron B, calcium Ca, aluminum Al, or magnesium M
g, a mixture comprising three components of a compound containing one element selected from g is heated and melted, vitrified, and then cooled and solidified to produce a vitrified body.

【0022】請求項7記載の発明は、前記三成分からな
る混合物の加熱溶融温度が、略850〜1100℃であ
ることを特徴とする。ここで850℃以上に限定した理
由は、前記放射性濃縮廃物質には、硝酸ナトリウムや亜
硝酸ナトリウムの他に微量の炭酸ナトリウムや硫酸ナト
リウムが含有されており、これらの融点が850℃前後
であることによる。
The invention according to claim 7 is characterized in that the heating and melting temperature of the mixture comprising the three components is approximately 850 to 1100 ° C. The reason for limiting the temperature to 850 ° C. or higher is that the radioactive concentrated waste material contains a small amount of sodium carbonate and sodium sulfate in addition to sodium nitrate and sodium nitrite, and their melting points are around 850 ° C. It depends.

【0023】請求項8記載の発明は、前記乾燥物とSi
からなるガラス母材中に、前記一のイオン化合物を
略2〜22モル%添加して加熱溶融することを特徴とす
る。
The invention according to claim 8 is characterized in that the dried product and Si
It is characterized in that about 2 to 22 mol% of the one ionic compound is added to a glass base material made of O 2 and then heated and melted.

【0024】請求項9記載の発明は、前記混合物を加熱
溶融してガラス化させた後に行う冷却固化を、炉内自然
放冷以外の冷却手段、例えば炉外放冷、ファン空冷や水
冷等にて少なくとも略500℃まで強制冷却を行うこと
を特徴とする。ここで500℃と設定したのは前記ガラ
ス固化体の転移点が500〜600℃前後であり、この
転移点を通過するまで強制冷却した方が、Naの溶出が
少なくなる。又前記略500〜600℃通過後は自然放
冷でも強制空冷でもいずれでも良いが、いずれにしても
前記ガラス固化体にクラックが入らない程度の冷却速度
で冷却を行う必要がある。
According to a ninth aspect of the present invention, the cooling and solidifying performed after heating and melting the mixture to vitrify the mixture are performed by cooling means other than natural cooling in the furnace, such as cooling outside the furnace, fan cooling, water cooling, and the like. Forcibly cooling to at least about 500 ° C. Here, the transition point of the vitrified material is set to 500 ° C. at around 500 to 600 ° C., and the elution of Na is reduced by forcibly cooling until passing through this transition point. After passing the temperature of about 500 to 600 ° C., either natural cooling or forced air cooling may be used. In any case, it is necessary to perform cooling at such a cooling rate that cracks do not enter the vitrified body.

【0025】請求項10移載の発明は、硝酸ナトリウム
その他のナトリウム化合物を含有する中、低レベルの放
射性濃縮廃物質(廃物質には廃液及び廃固形物の両者を
示す。)の乾燥体と、SiOとを母材とする廃物質ガ
ラス固化体において、前記以外のガラス化母材に加え
て、マグネシウムMg、カルシウムCa等のアルカリ土
類金属、チタンTi、鉄Fe等の遷移金属、ホウ素B若
しくはアルミニウムAl等のメタロイドのうちより選択
された一の元素を含む化合物(その化合物が例えば当該
元素の酸化物と水酸化物の組み合わせ若しくは錯体の場
合も含む)を添加して加熱溶融してガラス化させた後に
行う冷却固化を、中心温度と表層温度の差を100℃以
下になるようにした形状で冷却固化を行うことを特徴と
する。
According to a tenth aspect of the present invention, there is provided a dried product of a low-level radioactively concentrated waste material (waste material indicates both waste liquid and waste solid) while containing sodium nitrate and other sodium compounds. In the vitrified waste material whose base material is SiO 2 and SiO 2 , in addition to the vitrified base materials other than the above, alkaline earth metals such as magnesium Mg and calcium Ca, transition metals such as titanium Ti and iron Fe, and boron B or a compound containing one element selected from metalloids such as aluminum Al (including the case where the compound is a combination or complex of an oxide and a hydroxide of the element) is added and heated and melted. It is characterized in that the cooling and solidification performed after vitrification is performed in a shape in which the difference between the center temperature and the surface layer temperature is 100 ° C. or less.

【0026】けだし、冷却エネルギーとの関係で中心温
度と表層温度の差を100℃以下になるような形状、例
えば細径や中空径に設定することにより、請求項9記載
の発明と同様な効果を得ることが出来る。
The same effect as in the ninth aspect of the present invention can be obtained by setting the difference between the center temperature and the surface layer temperature to 100 ° C. or less, for example, a small diameter or a hollow diameter in relation to the cooling energy. Can be obtained.

【0027】[0027]

【発明の実施の形態】以下、本発明を図に示した実施例
を用いて詳細に説明する。但し、この実施例に記載され
る構成部品の寸法、形状、その相対配置などは特に特定
的な記載がない限り、この発明の範囲をそれのみに限定
する趣旨ではなく単なる説明例に過ぎない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to an embodiment shown in the drawings. However, unless otherwise specified, dimensions, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the invention, but are merely illustrative examples.

【0028】図1は本発明の実施形態に係る中、低レベ
ルの放射性濃縮廃物質(廃物質には廃液及び廃固形物を
含む)のガラス固化体の製造手順を示すフロー図であ
る。本フロー図は、使用済み核燃料再処理施設等で発生
する硝酸ナトリウムその他のナトリウム化合物を含有す
る中、低レベルの放射性濃縮廃液を乾燥し且つ粉体化す
る前処理工程(S1)と、該前処理工程(S1)で得られた
乾燥粉体を貯蔵し秤量された任意の量を排出する貯蔵工
程(S2)と、該貯蔵工程(S2)より定量排出された乾燥
粉体とシリカSiO粉体を、「NaO:SiO
算」で、約3:7〜4:6(重量%)の割合で混合する
第一混合工程(S3)と、該第一混合工程(S3)で混合さ
れた「NaO+SiO」混合粉体に、CaO、B
、Al、Fe、FeO若しくはTi
のうちのいずれか一の酸化化合物を略2〜22重量
%添加して混合する第二混合工程(S5)と、前記乾燥物
とシリカSiOと一の酸化化合物の三成分からなる混
合物を加熱溶融する加熱溶融工程(S6)と、前記加熱溶
融工程(S6)により溶融ガラス化させた溶融体を冷却固
化してガラス固化体を製造する冷却固化工程(S7)と、
前記加熱溶融工程(S6)で排出されたNO等のオフガ
スを処理する工程(S8)と、前記冷却固化工程(S7)で
得られた廃物質ガラス固化体を貯蔵庫に搬送する搬送工
程(S9)とよりなる。ただし、オフガスを処理する工程
(S8)は、必要に応じて入れる。
FIG. 1 is a flow chart showing the procedure for producing a vitrified low concentration radioactive waste material (waste material includes waste liquid and waste solid) according to the embodiment of the present invention. This flow chart shows a pretreatment step (S1) of drying and pulverizing a low-level radioactive concentrated waste liquid containing sodium nitrate and other sodium compounds generated in a spent nuclear fuel reprocessing facility or the like, A storage step (S2) for storing the dried powder obtained in the processing step (S1) and discharging a weighed amount; a dry powder and a silica SiO 2 powder discharged quantitatively from the storage step (S2) The mixture is mixed in a first mixing step (S3) in which the body is mixed in a ratio of about 3: 7 to 4: 6 (% by weight) in “Na 2 O: SiO 2 conversion”, and in the first mixing step (S3). CaO and B 2 are added to the “Na 2 O + SiO 2 ” mixed powder.
O 3 , Al 2 O 3 , Fe 2 O 3 , FeO 2 or Ti
A second mixing step (S5) of adding and mixing approximately 2 to 22% by weight of any one of the oxidized compounds of O 2 , and a mixture of the dried product, silica SiO 2, and one oxidized compound A heating and melting step (S6) of heating and melting; and a cooling and solidifying step (S7) of cooling and solidifying the melt vitrified in the heating and melting step (S6) to produce a vitrified body.
A step (S8) of treating off-gas such as NO X discharged in the heating and melting step (S6), and a transport step (S9) of transporting the waste material vitrified product obtained in the cooling and solidifying step (S7) to a storage. ). However, the step (S8) of treating the off-gas is included as needed.

【0029】前処理工程(S1)は、放射性濃縮廃液を乾
燥し且つ粉体化する乾燥処理装置よりなる。貯蔵工程
(S2)は前記粉体を貯蔵する貯蔵槽と貯蔵槽の底部に設
けられた定量排出部とよりなる。前記第一混合工程(S
3)は、前記秤量した乾燥粉体に対し、シリカSiO
粉体を定量供給して、前記割合で混合する混合装置で、
例えばスクリューミキサ若しくはロータリミキサ等から
なる。
The pretreatment step (S1) comprises a drying apparatus for drying and pulverizing the radioactive concentrated waste liquid. Storage process
(S2) comprises a storage tank for storing the powder and a fixed amount discharge section provided at the bottom of the storage tank. The first mixing step (S
3) is a method in which the weighed dry powder is mixed with silica SiO 2
A mixing device that supplies a fixed amount of powder and mixes the powder in the ratio described above.
For example, it comprises a screw mixer or a rotary mixer.

【0030】該第2混合工程(S5)も同様に、例えばス
クリューミキサ若しくはロータリミキサ等から構成さ
れ、「NaO+SiO」混合粉体に、CaO、B
、Al、Fe、FeO若しくはTi
のうちのいずれか一の酸化化合物を略2〜22モル
%添加して、廃物質ガラス固化体中に含有される酸化ナ
トリウムが、26〜35重量%になるようにした後、前
記ミキサを利用して撹拌混合させる。
Similarly, the second mixing step (S5) also includes, for example, a screw mixer or a rotary mixer, and adds “Na 2 O + SiO 2 ” mixed powder to CaO, B 2
O 3 , Al 2 O 3 , Fe 2 O 3 , FeO 2 or Ti
About 2 to 22 mol% of any one of the oxidized compounds of O 2 is added so that the sodium oxide contained in the vitrified waste material becomes 26 to 35 wt%, and then the above-mentioned mixer is used. Stir and mix using.

【0031】加熱溶融工程(S6)は、加熱溶融温度が略
850〜1100℃に設定可能な、電気炉若しくは高周
波加熱炉等から構成され、前記乾燥物とシリカSiO
と一の酸化化合物の三成分からなる混合物を坩堝に入れ
てバッチ的に加熱してもよく、又円筒型電気炉を用いて
連続的に加熱溶融してもよい。
The heating and melting step (S6), the heating melting temperature can be set at approximately 850 to 1100 ° C., it is composed of an electric furnace or a high-frequency heating furnace or the like, the dried product and silica SiO 2
The mixture comprising the three components of the above-mentioned oxide compounds may be placed in a crucible and heated batchwise, or may be continuously heated and melted using a cylindrical electric furnace.

【0032】冷却固化工程(S7)は、前記加熱炉内で自
然放冷してもよく、前記坩堝を常温下に引き出して炉外
放冷しても良いが、好ましくは例えば炉外放冷、ファン
空冷や水冷等にて少なくとも略500〜600℃まで強
制冷却を行うのがよい。又前記略500〜600℃通過
後は自然放冷でも強制空冷でもいずれでも良いが、いず
れにしても前記ガラス固化体にクラックが入らない程度
の冷却速度で冷却を行う必要がある。
In the cooling and solidifying step (S7), the crucible may be naturally cooled in the heating furnace, or the crucible may be drawn out at room temperature and cooled outside the furnace. It is preferable to perform forced cooling to at least approximately 500 to 600 ° C. by fan cooling or water cooling. After passing the temperature of about 500 to 600 ° C., either natural cooling or forced air cooling may be used. In any case, it is necessary to perform cooling at such a cooling rate that cracks do not enter the vitrified body.

【0033】図2は加熱溶融工程(S6)と冷却固化工程
(S7)の加熱冷却温度線図で、前記乾燥物とシリカSi
と一の酸化化合物の三成分からなる混合物を坩堝に
入れて電気加熱炉で加熱を行い、バッチ的に1000
℃、3時間加熱した後、坩堝を外に取り出し、室温にて
炉外放冷を実施したもの(B)、中心温度が500℃にな
るまでファンにより強制冷却した後、室温にて炉外放冷
を実施したもの(A)の2種類についてNa溶出率を調べ
てみた。この結果、「NaO:SiO:B
30:60:10」の第1の試料1においても、Na溶出
率が2.7%(試料1B)から1.6%(試料1A)に、又
「NaO:SiO:TiO=30:60:10」の
第2の試料2においても、Na溶出率が0.5%(試料2
B)から0.3%(試料2A)と夫々 Na溶出率が低減して
いることが理解される。尚、坩堝を外に取り出し、室温
にて炉外放冷を実施したもの(B)でも基準値には入って
おり、炉内放冷の場合に問題となりやすいことが理解さ
れる。
FIG. 2 shows a heating and melting step (S6) and a cooling and solidifying step.
In the heating / cooling temperature diagram of (S7), the dried product and silica Si
A mixture consisting of three components of O 2 and one oxide compound is placed in a crucible and heated in an electric heating furnace, and the mixture is mixed in batches of 1000.
After heating at 3 ° C. for 3 hours, the crucible was taken out and allowed to cool outside the furnace at room temperature (B). After being forcedly cooled by a fan until the center temperature reached 500 ° C., the crucible was released outside the furnace at room temperature. The Na elution rate was examined for two types (A) which were cooled. As a result, “Na 2 O: SiO 2 : B 2 O 3 =
Also in the first sample 1 of “30:60:10”, the Na elution rate was changed from 2.7% (sample 1B) to 1.6% (sample 1A), and “Na 2 O: SiO 2 : TiO 2 = Also in the second sample 2 of “30:60:10”, the Na elution rate was 0.5% (sample 2).
From B), it is understood that the Na elution rate is reduced to 0.3% (sample 2A). The crucible was taken out of the furnace and cooled outside the furnace at room temperature (B).

【0034】次に円筒型電気炉を用いて加熱溶融した場
合を説明する。図8は、坩堝周囲に発熱体46を囲撓し
た電気炉40で「NaO:SiO:B=3
0:60:10」の第1の試料1を、1000℃、3時間
加熱した後、底部孔41より溶出されて冷却固化させた
ガラス体43を示し、Aは前記底部孔径を41太径(略
15cm)にして自然放冷したもの、Bは前記底部孔径
41をAの1/5以下の細径(略3cm)にして自然放冷
したもの、CはBをファン47にて強制空冷したもので
ある。底部孔径41の断面形状は任意であり、例えば中
空薄肉にしても良い。
Next, the case of melting by heating using a cylindrical electric furnace will be described. FIG. 8 shows an electric furnace 40 in which a heating element 46 is bent around a crucible and “Na 2 O: SiO 2 : B 2 O 3 = 3”.
0:60:10 "shows a glass body 43 which was eluted from the bottom hole 41 after heating the first sample 1 at 1000 ° C. for 3 hours and cooled and solidified. (B is about 15 cm) and naturally cooled, B is naturally cooled by setting the bottom hole diameter 41 to a small diameter (about 3 cm) of 1/5 or less of A, and C is forced air cooling of B by a fan 47 Things. The sectional shape of the bottom hole diameter 41 is arbitrary, and may be, for example, a hollow thin wall.

【0035】かかる実施例の冷却速度を調べてみると、
図9に示すように、Aの実施例ものは表層と中心部で2
00℃付近まで温度差が100℃以上あるのに対し、B
の実施例もCの実施例も中心部と表層部の温度差はみら
れない。そして図10に示すように、表層部と中心部の
温度差がNa溶出率に与える影響は温度差が100℃以
上あるAの実施例のものは溶出率にも大きな有意差が現
れた。
When examining the cooling rate of this embodiment,
As shown in FIG. 9, the embodiment A has two layers in the surface layer and the central portion.
While the temperature difference is 100 ° C or more up to around 00 ° C, B
No difference in temperature between the central portion and the surface portion is observed in both the embodiment of Example 1 and the embodiment of Example C. As shown in FIG. 10, the influence of the temperature difference between the surface layer portion and the central portion on the Na elution rate showed a significant difference in the elution rate in the example of A in which the temperature difference was 100 ° C. or more.

【0036】図1に戻り、図1におけるオフガス処理工
程(S8)は、前記加熱溶融炉で発生したNOの除去、
酸化しきれずに残っている可燃性ガスの酸化、及び高温
のガスからの粉塵及びそれに含まれる放射能の除去等を
行う。ただし、オフガスを処理する工程(S8)は必要
に応じて入れる。
Returning to FIG. 1, the off-gas treatment step (S8) in FIG. 1 is for removing NO X generated in the heating and melting furnace.
It oxidizes combustible gas remaining without being completely oxidized, and removes dust and radioactivity contained therein from high-temperature gas. However, the step (S8) of processing the off-gas is inserted as needed.

【0037】さて本発明による廃物質ガラス固化体は、
前記工程手順に基づいて製造されるが、本発明の効果を
下記に示すような実験室段階でのシミュレーションによ
り確認した。先ず、中、低レベルの放射性濃縮廃液を乾
燥粉体に類似するものとして、炭酸ナトリウム(硝酸ナ
トリウムを用いるのがより好ましいが、安全の面からN
COを用いた。)を用い、又シリカとして珪石を
用い、両者がNaO、SiO換算で、約3:7(重
量%)の割合になるように混合した粉体を乳鉢上で混合
し、これを原料粉体とした。
Now, the vitrified waste material according to the present invention is:
Although manufactured according to the above-mentioned process procedure, the effects of the present invention were confirmed by a simulation at a laboratory stage as shown below. First, as a medium- or low-level radioactive concentrated waste liquid similar to a dry powder, sodium carbonate (preferably sodium nitrate is used,
a 2 CO 3 was used. ) And silica are used as silica, and the powders are mixed in a mortar in such a manner that they are mixed in a ratio of about 3: 7 (% by weight) in terms of Na 2 O and SiO 2. It was a powder.

【0038】この原料粉体に、添加剤としてB
0モル%(無添加)、2モル%、5モル%、10モル%、
15モル%、20モル%添加した夫々の三成分混合粉体
を、乳鉢上で均一混合し、夫々白金坩堝中に約50gと
なるように投入する。次に前記夫々の添加割合で三成分
混合粉体を投入した白金坩堝を、電気加熱炉中に装入し
た後、室温から所定の温度(900若しくは1000℃
の二種類の加熱温度)まで、300℃/hの昇温速度で
昇温させた後、900若しくは1000℃の加熱温度に
て3時間保持した。その後、電気加熱炉を開け、坩堝を
外に取り出し、中心温度が500℃になるまでファンに
より強制冷却した後室温にて炉外放冷を実施した。
To this raw material powder, 0 mol% (no addition) of B 2 O 3 as an additive, 2 mol%, 5 mol%, 10 mol%,
Each of the three-component mixed powder to which 15 mol% and 20 mol% are added is uniformly mixed in a mortar, and each is poured into a platinum crucible so as to be about 50 g. Next, the platinum crucible into which the three-component mixed powder was charged at the respective addition ratios was charged into an electric heating furnace, and then the temperature was changed from room temperature to a predetermined temperature (900 or 1000 ° C.).
) At a heating rate of 300 ° C / h, and then maintained at a heating temperature of 900 or 1000 ° C for 3 hours. Thereafter, the electric heating furnace was opened, the crucible was taken out, and the core was forcibly cooled with a fan until the center temperature reached 500 ° C., and then the furnace was allowed to cool outside at room temperature.

【0039】この結果、図3(A)に示すように、加熱温
度が1000℃の場合では、Na溶出率を10重量%以
下に低減させることのできるB量は2〜22モル
%、又、溶融温度が900℃の場合は、Na溶出率を1
0重量%以下に低減させることのできるB量は4
〜12モル%であった。尚、Na溶出率評価は、前記実
験手順で得られたガラス固化体をすり鉢上で約5mm径
以下の塊に粉砕し、この粉砕粉を5g採取し、100m
lの純水中に浸漬させた。その後、沸騰するまで、水温
を上昇させ、90分浸漬させた。その後、室温まで冷却
し、ボアフィルターを通して、ろ過し、ろ液中のNa濃
度を炎光光度法にて測定した。最後に、固化体中に含ま
れるNa量に対し、ろ液中に溶出したNa量比からNa
溶出率を算出して行う。
As a result, as shown in FIG. 3A, when the heating temperature is 1000 ° C., the amount of B 2 O 3 that can reduce the Na elution rate to 10% by weight or less is 2 to 22 mol%. When the melting temperature is 900 ° C., the Na elution rate is 1
The amount of B 2 O 3 that can be reduced to 0% by weight or less is 4
1212 mol%. In addition, the Na elution rate evaluation was performed by grinding the vitrified material obtained in the above experimental procedure into a lump having a diameter of about 5 mm or less on a mortar, collecting 5 g of the pulverized powder, and measuring 100 g of the powder.
1 of pure water. Then, the water temperature was raised until boiling, and immersion was performed for 90 minutes. Thereafter, the mixture was cooled to room temperature, filtered through a bore filter, and the Na concentration in the filtrate was measured by flame photometry. Finally, the ratio of the amount of Na eluted into the filtrate to the amount of Na contained in the solid
The elution rate is calculated and performed.

【0040】次に前記BをCaOに変更して同様
な実験を行った結果を図3(B)に示す。本図では、加熱
温度が1000℃の場合では、Na溶出率を10重量%
以下に低減させることのできるCaO量は3〜22モル
%、又、溶融温度が900℃の場合は、Na溶出率を1
0重量%以下に低減させることのできるCaO量は4〜
18モル%であった。
Next, FIG. 3B shows the result of a similar experiment conducted by changing the B 2 O 3 to CaO. In this figure, when the heating temperature is 1000 ° C., the Na elution rate is 10% by weight.
The amount of CaO that can be reduced below is 3 to 22 mol%, and when the melting temperature is 900 ° C., the Na elution rate is 1%.
The amount of CaO that can be reduced to 0% by weight or less is 4 to
It was 18 mol%.

【0041】次に前記BをAlに変更して
同様な実験を行った結果を図4(A)に示す。本図では、
加熱温度が1000℃の場合では、Na溶出率を10重
量%以下に低減させることのできるAl量は2〜
22モル%、又、溶融温度が900℃の場合は、Na溶
出率を10重量%以下に低減させることのできるAl
量は4〜16モル%であった。
Next, FIG. 4A shows the result of a similar experiment conducted by changing B 2 O 3 to Al 2 O 3 . In this figure,
When the heating temperature is 1000 ° C., the amount of Al 2 O 3 that can reduce the Na elution rate to 10% by weight or less is 2 to 2.
When the melting temperature is 22 ° C. and the melting temperature is 900 ° C., Al 2 can reduce the Na elution rate to 10% by weight or less.
O 3 content was 4-16 mol%.

【0042】次に前記BをTiOに変更して同
様な実験を行った結果を図4(B)に示す。本図では、加
熱温度が1000℃の場合では、Na溶出率を10重量
%以下に低減させることのできるTiO量は3〜22
モル%、又、溶融温度が900℃の場合は、Na溶出率
を10重量%以下に低減させることのできるTiO
は5〜20モル%であった。
Next, FIG. 4B shows the result of a similar experiment conducted by changing B 2 O 3 to TiO 2 . In this figure, when the heating temperature is 1000 ° C., the amount of TiO 2 that can reduce the Na elution rate to 10% by weight or less is 3 to 22%.
When the melting temperature was 900 ° C., the amount of TiO 2 capable of reducing the Na elution rate to 10% by weight or less was 5 to 20 mol%.

【0043】次に前記BをFeに変更して
同様な実験を行った結果を図5(A)に示す。本図では、
加熱温度が1000℃の場合では、Na溶出率を10重
量%以下に低減させることのできるFe量は2〜
22モル%、又、溶融温度が900℃の場合は、Na溶
出率を10重量%以下に低減させることのできるFe
量は4〜16モル%であった。gO系化合物の添
加量は2〜22モル%に設定するのがよい。
Next, FIG. 5A shows the result of a similar experiment conducted by changing B 2 O 3 to Fe 2 O 3 . In this figure,
When the heating temperature is 1000 ° C., the amount of Fe 2 O 3 that can reduce the Na elution rate to 10% by weight or less is 2 to 2.
22 mol%, and, if the melting temperature is 900 ° C., Fe 2 capable of reducing the Na dissolution rate in 10 wt% or less
O 3 content was 4-16 mol%. The addition amount of the gO 2 compound is preferably set to 2 to 22 mol%.

【0044】次に前記BをMgOに変更して同様
な実験を行った結果を図5(B)に示す。本図では、加熱
温度が1000℃の場合では、Na溶出率を10重量%
以下に低減させることのできるMgO量は3〜22モル
%、又、溶融温度が900℃の場合は、Na溶出率を1
0重量%以下に低減させることのできるTiO量は5
〜19モル%であった。
Next, FIG. 5B shows the result of a similar experiment conducted by changing B 2 O 3 to MgO. In this figure, when the heating temperature is 1000 ° C., the Na elution rate is 10% by weight.
The amount of MgO that can be reduced below is 3 to 22 mol%, and when the melting temperature is 900 ° C., the Na elution rate is 1%.
The amount of TiO 2 that can be reduced to 0% by weight or less is 5%
1919 mol%.

【0045】次に前記ガラス固化体について、外観観察
(目視により、固化体の透明度、残留結晶等を確認)と
結晶性評価(X線回析法にて、非晶質物質であることを
確認)を行ったところ、図6及び図7から明らかなよう
に、Na溶出率を10重量%以下に低減させることので
きたガラス固化体についてはいずれも透明度があり、残
留結晶等がなく且つ非晶質状にガラス化していることが
確認された。従って本実施形態によれば、NaをNa
Oとして30重量%以上含有し、且つ溶融温度が100
0℃以下と低く、且つNa溶出率が10重量%以下と低
減した安定なNaガラス固化体の製造が可能になった。
Next, the vitrified product was observed for its appearance (visually confirming the transparency and residual crystals of the vitrified product) and evaluated for crystallinity (by X-ray diffraction, it was confirmed that it was an amorphous substance). 6) and 7), the vitrified material whose Na elution rate could be reduced to 10% by weight or less has transparency, has no residual crystals and the like, and is amorphous. It was confirmed that the material was vitrified. Therefore, according to the present embodiment, Na is converted to Na 2
O content of 30% by weight or more and melting temperature of 100
It has become possible to produce a stable solidified glass of Na having a low temperature of 0 ° C. or less and a reduced Na elution rate of 10% by weight or less.

【0046】[0046]

【発明の効果】以上記載のごとく本発明によれば、中低
位レベルの放射性濃縮廃物質をNaO換算で、従来よ
り5重量%も多い30重量%以上含有出来、且つ(溶融
温度が1000から900℃以下と低く、且つ二次汚染
時のNa溶出率が10重量%以下と低減した安定なガラ
ス固化体の製造及び提供が可能となる。
According to the present invention as described above, wherein, according to the present invention, radioactive concentration waste material medium low level terms of Na 2 O, conventionally can contain 5 wt% often 30 wt% or more and (the melting temperature of 1000 To 900 ° C. or lower, and a stable vitrified body whose Na elution rate at the time of secondary contamination is reduced to 10% by weight or less can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施形態に係る中、低レベルの放射
性濃縮廃物質(廃物質には廃液及び廃固形物を含む)のガ
ラス固化体の製造手順を示すフロー図である。
FIG. 1 is a flow chart showing a manufacturing procedure of a vitrified body of a low-level radioactive concentrated waste material (waste material includes a waste liquid and a waste solid) according to an embodiment of the present invention.

【図2】 図1の加熱溶融工程と冷却固化工程における
温度分布線図と、該温度分布で行った夫々の試料におけ
るNa溶出率を示す。
FIG. 2 shows a temperature distribution diagram in a heating-melting step and a cooling-solidification step in FIG. 1, and a Na elution rate in each sample performed at the temperature distribution.

【図3】 NaO、SiOからなるガラス母材に、
、CaOのうちのいずれか一の酸化化合物を適
宜量添加してNa溶出率との関係を調べたグラフ図で、
(A)は添加化合物がB、(B)は添加化合物がCa
Oの場合を示す。
FIG. 3 shows a glass base material composed of Na 2 O and SiO 2 ,
FIG. 5 is a graph showing the relationship between the Na elution rate and an appropriate amount of any one of B 2 O 3 and CaO,
(A) is an additive compound of B 2 O 3 , (B) is an additive compound of Ca
The case of O is shown.

【図4】 NaO、SiOからなるガラス母材に、
Al、若しくはTiOのうちのいずれか一の酸
化化合物を適宜量添加してNa溶出率との関係を調べた
グラフ図で、(A)は添加化合物がAl、(B)は添
加量がTiO の場合を示す。
FIG. 4 Na2O, SiO2The glass base material consisting of
Al2O3Or TiO2Any one of the acids
Was added in an appropriate amount to determine the relationship with the Na elution rate
In the graph, (A) shows that the additive compound is Al2O3, (B) is attached
Addition of TiO 2The case of is shown.

【図5】 NaO、SiOからなるガラス母材に、
Fe、若しくはMgOのうちのいずれか一の酸化
化合物を適宜量添加してNa溶出率との関係を調べたグ
ラフ図で、(A)は添加化合物がFe、(B)は添加
化合物がMgOの場合を示す。
FIG. 5 shows a glass base material composed of Na 2 O and SiO 2 ,
Fe 2 O 3, or any one of the oxide compounds of the MgO appropriately added amount graph of examining the relationship between Na dissolution rate, (A) additive compound is Fe 2 O 3, (B) Indicates the case where the additive compound is MgO.

【図6】図3及び図4の添加化合物がB、Ca
O、Al、TiO夫々のガラス体の選択された
いくつかについて行った外観観察と結晶性評価とNa溶
出率との関係を示す試験結果である。
[6] the addition compounds of Figures 3 and 4 are B 2 O 3, Ca
O, an Al 2 O 3, TiO 2 respectively The test results showing the relationship of glass load of selected external observation conducted on some and the crystal evaluation and Na dissolution rate.

【図7】図5の添加化合物がFe、MgOの夫々
のガラス体の選択されたいくつかについて行った外観観
察と結晶性評価とNa溶出率との関係を示す試験結果で
ある。
7 is a test result showing the relationship between the observation of appearance, the evaluation of crystallinity, and the Na elution rate performed on selected glass bodies of each of the additive compounds of Fe 2 O 3 and MgO in FIG. 5.

【図8】 坩堝周囲に発熱体46を囲撓した電気炉底部
孔より溶出されて冷却固化させたガラス体を示し、前記
底部孔径を太径(略15cm)にして自然放冷したもの
A、前記底部孔径を細径(略3cm)にして自然放冷した
ものB、Bをファンにて強制空冷したものCを夫々示
す。
FIG. 8 shows a glass body eluted from a bottom hole of an electric furnace surrounding a heating element 46 around a crucible and cooled and solidified, and the bottom hole diameter is set to a large diameter (about 15 cm) and naturally cooled A; A sample B having the bottom hole diameter reduced to a small diameter (about 3 cm) and naturally cooled, and a sample C obtained by forcibly cooling the B with a fan are shown.

【図9】 図8に示す実施例A、B、Cの冷却速度を示
すグラフ図である。
FIG. 9 is a graph showing the cooling rates of Examples A, B, and C shown in FIG.

【図10】 図8に示す実施例A、B、Cの表層部と中
心部のNa溶出率を示す表図である。
FIG. 10 is a table showing the Na elution rate of the surface layer portion and the central portion of Examples A, B, and C shown in FIG.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三宅 崇史 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 塩地 則夫 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 川瀬 義勝 東京都千代田区丸の内二丁目5番1号三菱 重工業株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Takashi Miyake 2-1-1, Shinhama, Arai-machi, Takasago City, Hyogo Prefecture Inside the Takasago Research Laboratories, Mitsubishi Heavy Industries, Ltd. No. 1 Inside Mitsubishi Heavy Industries, Ltd. Takasago Research Laboratory (72) Inventor Yoshikatsu Kawase 2-5-1 Marunouchi, Chiyoda-ku, Tokyo Inside Mitsubishi Heavy Industries, Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 硝酸ナトリウムその他のナトリウム化合
物を含有する中、低レベルの放射性濃縮廃物質(廃物質
には廃液及び廃固形物の両者を示す。)の乾燥体と、S
iOとを母材とする廃物質ガラス固化体において、前
記以外のガラス化母材に加えて、マグネシウムMg、カ
ルシウムCa等のアルカリ土類金属、チタンTi、鉄F
e等の遷移金属、ホウ素B若しくはアルミニウムAl等
のメタロイドのうちより選択された一の元素を含む化合
物(その化合物が例えば当該元素の酸化物と水酸化物の
組み合わせ若しくは錯体の場合も含む)を添加して加熱
溶融して形成したことを特徴とする放射性濃縮廃物質の
固化体。
1. A dried product of a low-level radioactively concentrated waste material (waste material includes both waste liquid and waste solid) containing sodium nitrate and other sodium compounds;
In the waste material vitrified body using iO 2 as a base material, in addition to the vitrified base material other than the above, alkaline earth metals such as magnesium Mg, calcium Ca, titanium Ti, iron F
transition metal such as e, a compound containing one element selected from metalloids such as boron B or aluminum Al (including when the compound is, for example, a combination or complex of an oxide and a hydroxide of the element). A solidified radioactively concentrated waste material formed by adding, heating and melting.
【請求項2】 前記化合物が、MgO系、CaO系、B
系、Al 系、Fe系、FeO系若
しくはTiO系のうちのいずれか一の酸化化合物であ
ることを特徴とする請求項1記載の放射性濃縮廃物質の
固化体。
2. The compound according to claim 1, wherein the compound is MgO-based, CaO-based,
2O3System, Al2O 3System, Fe2O3System, FeO2Descent
Or TiO2An oxidizing compound of any one of the systems
2. The radioactively concentrated waste material according to claim 1,
Solidified body.
【請求項3】 前記化合物の添加量が略2〜22モル%
であることを特徴とする請求項1記載の放射性濃縮廃物
質の固化体。
3. The compound is added in an amount of about 2 to 22 mol%.
The solidified radioactively concentrated waste material according to claim 1, wherein:
【請求項4】 前記廃物質ガラス固化体中に含有される
酸化ナトリウムが、26〜40重量%である請求項1記
載の放射性濃縮廃物質の固化体。
4. The solidified waste of radioactively concentrated waste according to claim 1, wherein the amount of sodium oxide contained in the solidified waste of the waste is 26 to 40% by weight.
【請求項5】前記廃物質ガラス固化体中に含有されるガ
ラス化母材としてのSiOの含有量が50〜72重量
%である請求項1記載の放射性濃縮廃物質の固化体。
5. The solidified radioactively concentrated waste material according to claim 1, wherein the content of SiO 2 as a vitrification base material contained in the waste material vitrified material is 50 to 72% by weight.
【請求項6】 使用済み核燃料再処理施設等で発生する
硝酸ナトリウムその他のナトリウム化合物を含有する
中、低レベルの放射性濃縮廃物質(廃物質には廃液及び
廃固形物の両者を示す。)を乾燥し、 該乾燥物とSiOとともに、マグネシウムMg、カル
シウムCa等のアルカリ土類金属、チタンTi、鉄Fe
等の遷移金属、ホウ素B若しくはアルミニウムAl等の
メタロイドのうちより選択された一の元素を含む化合物
の三成分からなる混合物を加熱溶融してガラス化させた
後、冷却固化して固化体を製造することを特徴とする放
射性濃縮廃物質の固化体の製造方法。
6. A low-level radioactive enriched waste material (waste liquid indicates both waste liquid and waste solid) while containing sodium nitrate and other sodium compounds generated in a spent nuclear fuel reprocessing facility or the like. Dry, together with the dried product and SiO 2 , alkaline earth metals such as magnesium Mg, calcium Ca, titanium Ti, iron Fe
A mixture consisting of three components of a compound containing one element selected from transition metals such as transition metals such as boron B or aluminum Al is heated and melted, vitrified, and then cooled and solidified to produce a solidified body. A method for producing a solidified radioactively concentrated waste material.
【請求項7】 前記三成分からなる混合物の加熱溶融温
度が、略850〜1100℃である請求項5記載の放射
性濃縮廃物質の固化体の製造方法。
7. The method for producing a solidified radioactively concentrated waste material according to claim 5, wherein the heating and melting temperature of the mixture of the three components is approximately 850 to 1100 ° C.
【請求項8】 前記乾燥物とSiOからなるガラス母
材中に、前記一のイオン化合物を略2〜22モル%添加
して加熱溶融することを特徴とする請求項5記載の放射
性濃縮廃物質の固化体の製造方法。
8. The radioactive waste according to claim 5, wherein about 2 to 22 mol% of the one ionic compound is added to the glass base material composed of the dried product and SiO 2 and heated and melted. A method for producing a solidified substance.
【請求項9】 前記混合物を加熱溶融してガラス化させ
た後に行う冷却固化を、炉内自然放冷以外の冷却手段に
て少なくとも略500℃まで強制冷却を行うことを特徴
とする請求項5記載の放射性濃縮廃物質の固化体の製造
方法。
9. The cooling and solidifying performed after heating and melting the mixture to vitrify the mixture is forcibly cooled to at least about 500 ° C. by cooling means other than natural cooling in the furnace. A method for producing a solidified radioactively concentrated waste material according to the above.
【請求項10】 硝酸ナトリウムその他のナトリウム化
合物を含有する中、低レベルの放射性濃縮廃物質(廃物
質には廃液及び廃固形物の両者を示す。)の乾燥体と、
SiOとを母材とする廃物質ガラス固化体において、
前記以外のガラス化母材に加えて、マグネシウムMg、
カルシウムCa等のアルカリ土類金属、チタンTi、鉄
Fe等の遷移金属、ホウ素B若しくはアルミニウムAl
等のメタロイドのうちより選択された一の元素を含む化
合物(その化合物が例えば当該元素の酸化物と水酸化物
の組み合わせ若しくは錯体の場合も含む)を添加して加
熱溶融してガラス化させた後に行う冷却固化を、中心温
度と表層温度の差を100℃以下になるようにした形状
で冷却固化を行うことを特徴とする放射性濃縮廃物質の
固化体。
10. A dried product of a low-level radioactively concentrated waste material (waste material indicates both a waste liquid and a waste solid material) containing sodium nitrate and other sodium compounds;
In a waste material vitrified body using SiO 2 as a base material,
In addition to the vitrified base material other than the above, magnesium Mg,
Alkaline earth metals such as calcium Ca, transition metals such as titanium Ti and iron Fe, boron B or aluminum Al
A compound containing one element selected from metalloids such as (including the case where the compound is, for example, a combination or complex of an oxide and a hydroxide of the element) was added, heated and melted, and vitrified. A solidified radioactive waste material, wherein the solidification by cooling is performed in such a manner that the difference between the center temperature and the surface layer temperature is 100 ° C. or less.
JP2000032385A 1999-05-10 2000-02-09 Solidified body of radioactive condensed waste substance and manufacture of the same Withdrawn JP2001027694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000032385A JP2001027694A (en) 1999-05-10 2000-02-09 Solidified body of radioactive condensed waste substance and manufacture of the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP12792299 1999-05-10
JP11-127922 1999-05-10
JP2000032385A JP2001027694A (en) 1999-05-10 2000-02-09 Solidified body of radioactive condensed waste substance and manufacture of the same

Publications (1)

Publication Number Publication Date
JP2001027694A true JP2001027694A (en) 2001-01-30

Family

ID=26463750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000032385A Withdrawn JP2001027694A (en) 1999-05-10 2000-02-09 Solidified body of radioactive condensed waste substance and manufacture of the same

Country Status (1)

Country Link
JP (1) JP2001027694A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100697535B1 (en) 2005-12-15 2007-03-20 라춘기 Vitrification method of radioactive wastes by using organic sludges as energy source and glass matrix
KR100735828B1 (en) 2004-11-03 2007-07-06 라춘기 Vitrification method of combustible and uncombustible radioactive waste by thermal explosive combustion method
JP2009501121A (en) * 2005-07-15 2009-01-15 コミツサリア タ レネルジー アトミーク Confinement process of material by vitrification
US20110144408A1 (en) * 2008-07-28 2011-06-16 Commissariat A L'energie Atomique Et Aux Energies Process for waste confinement by vitrification in metal cans
JP2015094611A (en) * 2013-11-11 2015-05-18 株式会社東芝 Treatment method of radioactive contaminated water and treatment device thereof
KR101524588B1 (en) * 2013-12-04 2015-06-01 한국수력원자력 주식회사 Vitrification compositions and vitrification method of low-level radioactive wastes

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100735828B1 (en) 2004-11-03 2007-07-06 라춘기 Vitrification method of combustible and uncombustible radioactive waste by thermal explosive combustion method
JP2009501121A (en) * 2005-07-15 2009-01-15 コミツサリア タ レネルジー アトミーク Confinement process of material by vitrification
KR100697535B1 (en) 2005-12-15 2007-03-20 라춘기 Vitrification method of radioactive wastes by using organic sludges as energy source and glass matrix
US20110144408A1 (en) * 2008-07-28 2011-06-16 Commissariat A L'energie Atomique Et Aux Energies Process for waste confinement by vitrification in metal cans
US10538448B2 (en) * 2008-07-28 2020-01-21 Commissariat A L'energie Atomique Et Aux Energies Alternatives Process for waste confinement by vitrification in metal cans
JP2015094611A (en) * 2013-11-11 2015-05-18 株式会社東芝 Treatment method of radioactive contaminated water and treatment device thereof
KR101524588B1 (en) * 2013-12-04 2015-06-01 한국수력원자력 주식회사 Vitrification compositions and vitrification method of low-level radioactive wastes

Similar Documents

Publication Publication Date Title
US4514329A (en) Process for vitrifying liquid radioactive waste
Roth et al. Vitrification of high-level liquid waste: glass chemistry, process chemistry and process technology
US5637127A (en) Plasma vitrification of waste materials
Ray et al. A review of iron phosphate glasses and recommendations for vitrifying hanford waste
Metcalfe et al. Candidate wasteforms for the immobilization of chloride-containing radioactive waste
Tan et al. Vitrification of an intermediate level Magnox sludge waste
Heath et al. Hot-isostatically pressed wasteforms for Magnox sludge immobilisation
US4094809A (en) Process for solidifying high-level nuclear waste
JP2001027694A (en) Solidified body of radioactive condensed waste substance and manufacture of the same
US5656009A (en) Process for immobilizing plutonium into vitreous ceramic waste forms
Paul et al. The use of surrogates in waste immobilization studies: a case study of plutonium
Mendel High-level waste glass
Rigby et al. Melting behaviour of simulated radioactive waste as functions of different redox iron-bearing raw materials
JP4129237B2 (en) Glass for solidifying radioactive waste
Advocat et al. Melted synthetic zirconolite-based matrices: Effect of cooling rate and heat treatment on ceramic microstructure and chemical durability
Barlow et al. Synthesis of simulant ‘lava-like’fuel containing materials (LFCM) from the Chernobyl reactor Unit 4 meltdown
Ojovan et al. Application of glass composite materials for nuclear waste immobilization
Ojovan et al. Glassy and glass composite nuclear wasteforms
Ojovan et al. Glass Crystalline Materials as Advanced Nuclear Wasteforms. Sustainability 2021, 13, 4117
Kim et al. Development and Testing of ICV Glasses for Hanford LAW
US5597516A (en) Process for immobilizing plutonium into vitreous ceramic waste forms
CN109721242B (en) Low-melting-point glass for curing volatile nuclide Tc/Re and preparation and use methods thereof
Rudolph et al. Lab-scale R+ D work on fission product solidification by vitrification and thermite processes
Morgan et al. Interactions of simulated high level waste (HLW) calcine with alkali borosilicate glass
Lee et al. Processing ceramics for radioactive waste immobilisation

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070501