JPS6086255A - Preparation of high-strength conductive copper alloy - Google Patents

Preparation of high-strength conductive copper alloy

Info

Publication number
JPS6086255A
JPS6086255A JP19354883A JP19354883A JPS6086255A JP S6086255 A JPS6086255 A JP S6086255A JP 19354883 A JP19354883 A JP 19354883A JP 19354883 A JP19354883 A JP 19354883A JP S6086255 A JPS6086255 A JP S6086255A
Authority
JP
Japan
Prior art keywords
strength
copper alloy
owt
conductive copper
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19354883A
Other languages
Japanese (ja)
Inventor
Susumu Kawauchi
川内 進
Masahiro Tsuji
正博 辻
Junji Miyake
淳司 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP19354883A priority Critical patent/JPS6086255A/en
Publication of JPS6086255A publication Critical patent/JPS6086255A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prepare an inexpensive high-strength conductive copper alloy excellent in strength, springiness and corrosion resistance, by applying heat treatment to a copper alloy having a specific composition containing Zn, Sn and Al, and further containing As, Sb or B under a proper condition after final cold rolling. CONSTITUTION:An alloy containing, on a wt. basis, 10-40% Zn, 0.05-1.0% Sn and 0.05-1.0% Al and further containing one or more of 0.005-0.1% As and 0.005-0.1% Sb in the sum total of 0.005-0.2% and, further 0.005-0.1% B, 0.005-0.3% Pb and one or more of Ni, Si, Fe, Co, Cr, Mn, Te, In, Ti, Zr, Hf, Be, Mg, Ag, Cd and Ge in the sum total of 0.005-2.0% and comprising the remainder of Cu and inevitable impurities is heat treated at 150-700 deg.C for 30sec- 20hr after final cold rolling to obtain a high-strength conductive copper alloy enhanced in strength, especially, tensile strength, elongation and springiness simultaneously and also excellent in corrosion resistance.

Description

【発明の詳細な説明】 本発明は、後記する銀合金を150℃〜700℃で30
秒〜20時間熱処理し1強度、特に引張強さ、伸び、ば
ね性を同時に向上させる製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a silver alloy to be heated at 150°C to 700°C for 30°C.
The present invention relates to a manufacturing method that simultaneously improves strength, especially tensile strength, elongation, and springiness by heat treatment for 20 seconds to 20 hours.

従来、丹銅及び黄銅は、その優れた加工性並びに低コス
ト材料であるため、電子、電気部品材料としても広範囲
に使用されていた。しかし近年2機器装置の小型化、@
量化により、更に強度の増加が強く要望されており、′
!!た耐食性が劣るため耐食性の向上に対しても強い要
望がある。
Traditionally, red copper and brass have been widely used as materials for electronic and electrical components because of their excellent workability and low cost. However, in recent years, the miniaturization of two-device devices, @
There is a strong demand for further increase in strength through quantification;
! ! Since the corrosion resistance is poor, there is a strong desire to improve the corrosion resistance.

本発明は、この点に鉦みなされた安価で強度。The present invention takes advantage of this point in that it is inexpensive and strong.

ばね性に優れ、耐食性にも優れた合金の性質を最大限に
発揮させるだめの製造方法に関するものであり2本発明
で定めた熱処理条件においてのみ最も優れた性質の発現
が可能となることを見出した。
The present invention relates to a method of manufacturing a stopper that maximizes the properties of an alloy that has excellent spring properties and excellent corrosion resistance, and it has been discovered that the best properties can only be exhibited under the heat treatment conditions specified in the present invention. Ta.

そして本発明は、亜鉛1o〜40 wt% 、偲005
〜1. Owt係、アルミニウム0.05〜1.0wt
%を含み、さらにヒ素α005〜0.1wt幅、アンチ
モン0.005〜o、1wt%の内何れか1種又は2種
を合計0005〜0.2wt係含み、さらにホウ素0.
0G5〜0.1 wt%、 ニッケル0.005〜1.
Owt% 、ケイ素0.005−1.OwttIb、鉄
0.005〜1.0 wt% 、鉛0.005〜0.3
 wt%、コバルト0.005〜1.0wt%、クロム
0005〜1.0wt%、マンガン0.005〜1.0
wt%、テルル0005〜1.0wt%、インジウム0
.005〜1.0wt覧チクチタン0.005〜1.O
係、ジルコニウムo、 o o s〜1. OwttI
)、 ハフニウム0.005−1.0 wt% 、ベリ
リウム0.005−1.Owt% 、 マグネシウム0
.005〜1. Owt係、銀0005〜1.0wt%
、カドミウム0、[l O5〜to wt%、ゲルマニ
ウム0.005〜1.Owt%の内何れか1種又は2種
以上を合計0.005〜2.0wt1含み、残部銅及び
不可避的々不純物からなる合金を最終冷間圧延の後に1
50℃〜700℃で30秒〜20時間熱処理し1強度、
ばね性を向上させる高力導電鋸合金の製造方法に関する
ものである。
And the present invention uses zinc 10 to 40 wt%, 005
~1. Owt, aluminum 0.05~1.0wt
%, and further contains any one or two of arsenic α005-0.1 wt%, antimony 0.005-0,1 wt% in a total amount of 0005-0.2 wt%, and further boron 0.005-0.2 wt%.
0G5~0.1 wt%, nickel 0.005~1.
Owt%, silicon 0.005-1. OwttIb, iron 0.005-1.0 wt%, lead 0.005-0.3
wt%, cobalt 0.005-1.0 wt%, chromium 0005-1.0 wt%, manganese 0.005-1.0
wt%, tellurium 0005-1.0wt%, indium 0
.. 005-1.0wt titanium 0.005-1. O
Section, zirconium o, o o s~1. OwttI
), hafnium 0.005-1.0 wt%, beryllium 0.005-1. Owt%, magnesium 0
.. 005-1. Owt section, silver 0005~1.0wt%
, cadmium 0, [lO5~to wt%, germanium 0.005~1. After the final cold rolling, an alloy containing one or more of Owt% of 0.005 to 2.0wt1 in total and the balance consisting of copper and unavoidable impurities is
Heat treated at 50°C to 700°C for 30 seconds to 20 hours to obtain 1 strength.
The present invention relates to a method for manufacturing a high-strength conductive saw alloy that improves spring properties.

これにより9本発明の方法で製造すると第1図に示すよ
うに、引張強さと伸び及びばね限界値を同時に著しく向
上させることができた。
As a result, when 9 was manufactured using the method of the present invention, as shown in FIG. 1, it was possible to significantly improve the tensile strength, elongation, and spring limit value at the same time.

次に合金成分の限定理由を説明する。亜鉛の含有d°を
10〜40wt%とする理由は、亜鉛含有量が10wt
%未満では強度が低く、亜鉛含有量が40 wt%をこ
えるとβ相の析出が多量となり、材料性質が安定しなく
なるためである。
Next, the reason for limiting the alloy components will be explained. The reason why the zinc content d° is set to 10 to 40 wt% is that the zinc content is 10 wt%.
If the zinc content is less than 40 wt%, the strength will be low, and if the zinc content exceeds 40 wt%, a large amount of β phase will precipitate, making the material properties unstable.

錫の含有量を0,05〜1. Owt%とする理由は。The tin content is 0.05 to 1. The reason for setting it as Owt% is.

6含有量が0.05 wt係未満では強度が低く、6含
有量が1. Owt%をこえると加工性が低下し。
If the 6 content is less than 0.05 wt, the strength is low; When it exceeds Owt%, workability decreases.

導電性の低下も著しくなるためである。This is because the conductivity is also significantly reduced.

アルミニウムの含有量を[105〜1.0 wt4とす
る理由は、アルミニウム含有量が0.05 wt4未満
では強度が低く、アルミニウム含有量が1、0 wdを
こえると加工性が低下し、導電性の低下も著しく々るた
めである。
The reason for setting the aluminum content to 105 to 1.0 wt4 is that if the aluminum content is less than 0.05 wt4, the strength will be low, and if the aluminum content exceeds 1.0 wd, the workability will decrease and the conductivity will decrease. This is because the decrease in

前記所定量のヒ素、アンチモンの内何れか1をこえると
加工性が低下し、導電性の低下も著しくなるためである
This is because if the predetermined amount of either arsenic or antimony exceeds either one, the workability decreases and the conductivity decreases significantly.

副成分として前記所定量のホウ素、ニッケル。The predetermined amounts of boron and nickel as subcomponents.

’y イlt= + 鉄* 鉛r コバルト、クロム、
マンガン、テルル、インジウム、チタン、ジルコニウム
'y Ilt= + Iron* Lead r Cobalt, chromium,
Manganese, tellurium, indium, titanium, zirconium.

ハフニウム、ベリリ、ウム、マグネシウム、銀。hafnium, berylli, um, magnesium, silver.

カドミウム、ゲルマニウムから々る群よ’)iA択され
た1種以上の総量が0.005 wt%未満では高強度
の合金が得られず、また2、 Owt%をこえると導電
性の低下及び半田付は性の低下が著しくなるためである
If the total amount of one or more of the selected elements is less than 0.005 wt%, a high-strength alloy cannot be obtained, and if it exceeds 0.005 wt%, conductivity decreases and soldering occurs. This is because the decline in sex becomes significant.

熱処理温度を150℃〜700℃に限定したのは150
℃未満では熱処理効果が現われず。
150 limited the heat treatment temperature to 150℃ to 700℃
Below ℃, the heat treatment effect does not appear.

また700℃をこえる温度では短時間で軟化してしまう
ためである。そして最も好ましい熱処理温度は200℃
〜6oo℃である。
This is also because at temperatures exceeding 700°C, it softens in a short period of time. And the most preferable heat treatment temperature is 200℃
~6oo°C.

熱処理時間を30秒〜20時間に限定したのは60秒未
満では材料特性が安定せず、20時間をこえると経済的
価値がなくなるからである。
The reason why the heat treatment time is limited to 30 seconds to 20 hours is because if it is less than 60 seconds, the material properties will not be stable, and if it exceeds 20 hours, it will lose its economic value.

第1図は熱処理前後の引張強さとばね限界値の関係を表
わすグラフであるが2本発明の熱処理後では引張強さと
ばね限界値がいずれも著しく向上している。
FIG. 1 is a graph showing the relationship between the tensile strength and the spring limit value before and after heat treatment.2 After the heat treatment of the present invention, both the tensile strength and the spring limit value are significantly improved.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

実施例 第1表に示した組成の合金を溶解し、厚さ30脚の鋳塊
を得た。次に鋳塊を約700℃で熱間圧延し、厚さ80
聞にした後、條鈍を行い。
Example An alloy having the composition shown in Table 1 was melted to obtain an ingot having a thickness of 30 legs. Next, the ingot was hot rolled at about 700℃ to a thickness of 80℃.
After listening, perform the jodutsu.

最終王妃で厚さ0.5闇にし20mCで1時間熱処理す
る。この試料を約10重景係の硫酸で酸洗し、引張強さ
、伸び、ばね限界値を測定し゛た。
The final layer is made to a thickness of 0.5 mm and heat treated at 20 mC for 1 hour. This sample was pickled with about 10% sulfuric acid, and its tensile strength, elongation, and spring limit were measured.

第1表よシ熱処理後、引張強さ、伸び、ばね限界値が同
時に向上している。
As shown in Table 1, after heat treatment, tensile strength, elongation, and spring limit value were improved at the same time.

以上の実施例及び第1図より本発明の製造方法で強度、
ばね性が向上し、電気、電子部品材オ」、特に導電性ば
ね材料として優れた合金となる。
From the above examples and FIG. 1, the manufacturing method of the present invention has a
It has improved spring properties, making it an excellent alloy for electrical and electronic component materials, especially as a conductive spring material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は合金5の熱処理前後の引張強さとばね限界値の
関係を表わすグラフである。 特許出願人 日本鉱業株式会社 代理人 弁理士(7569)並用啓志 第1図 引張強さ (Kg /mm2)
FIG. 1 is a graph showing the relationship between the tensile strength and spring limit value of Alloy 5 before and after heat treatment. Patent applicant Nippon Mining Co., Ltd. Agent Patent attorney (7569) Keishi Junyo Figure 1 Tensile strength (Kg/mm2)

Claims (1)

【特許請求の範囲】[Claims] (1) 亜鉛10〜40wt係、懇0,05〜1. O
wt係。 アルミニウム0.05〜1. Owt96を含み、さら
にヒ素[1005〜0.1wt幅、アンチモン0.00
5〜α1wt%の内何れか1秤又は2種を合計0、0 
O5〜0.2wt妬含み、さらにホウ素0. O05〜
11wt%、=ッケ# 0.005−1. Owtdb
、ケイ素0.005−1.Owteり、鉄O4OO5−
1,0wt4 、鉛0005〜0.3wtqb、コバル
ト0.0 O5〜1.0wt%。 クロムO,OO5〜1.0wttl)、マンガン0.0
05〜1、o wt4 、テルル0.005〜1.Ow
14 、インジウム0005〜1.0wt%、チタン0
.005〜1.0wt%。 ジルコニウム0005〜towt%、ハフニウム0、O
D 5−1.Owt% 、ベリリウム0.005〜1.
Owt% 。 マグネシウム0.005〜1.0wt%、銀0.005
〜1、 Owt96 、 カドミウム0.005〜1.
Owt%、ゲルマニウム0005〜1.0Wt4の内何
れか1種又は2種以上を合計Q、005〜2.Owt%
含み、残部銅及び不可避的な不純物からなる合金を最終
冷間圧延の後に150℃〜700℃で30秒〜20時間
熱処理し1強度、ばね性を向上させる高力導電銅合金の
製造方法。
(1) Zinc 10~40wt, 0.05~1. O
wt person. Aluminum 0.05~1. Contains Owt96, and further arsenic [1005~0.1wt width, antimony 0.00
A total of 0, 0 of any one or two of 5 to α1wt%
Contains O5~0.2wt, plus 0.2wt boron. O05~
11wt%,=kke #0.005-1. Owtdb
, silicon 0.005-1. Owte, iron O4OO5-
1.0wt4, lead 0005~0.3wtqb, cobalt 0.0O5~1.0wt%. Chromium O, OO5~1.0wttl), manganese 0.0
05-1, o wt4, tellurium 0.005-1. Ow
14, indium 0005~1.0wt%, titanium 0
.. 005-1.0wt%. Zirconium 0005~twt%, Hafnium 0, O
D5-1. Owt%, beryllium 0.005-1.
Owt%. Magnesium 0.005-1.0wt%, silver 0.005
~1, Owt96, cadmium 0.005~1.
Owt%, germanium 0005 to 1.0Wt4, total Q of any one or two or more of germanium 0005 to 1.0Wt4, 005 to 2. Owt%
1. A method for producing a high-strength conductive copper alloy, which improves strength and springiness by heat-treating an alloy consisting of copper and unavoidable impurities at 150° C. to 700° C. for 30 seconds to 20 hours after final cold rolling.
JP19354883A 1983-10-18 1983-10-18 Preparation of high-strength conductive copper alloy Pending JPS6086255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19354883A JPS6086255A (en) 1983-10-18 1983-10-18 Preparation of high-strength conductive copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19354883A JPS6086255A (en) 1983-10-18 1983-10-18 Preparation of high-strength conductive copper alloy

Publications (1)

Publication Number Publication Date
JPS6086255A true JPS6086255A (en) 1985-05-15

Family

ID=16309892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19354883A Pending JPS6086255A (en) 1983-10-18 1983-10-18 Preparation of high-strength conductive copper alloy

Country Status (1)

Country Link
JP (1) JPS6086255A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7246404B2 (en) 2000-12-19 2007-07-24 Takahira Takemoto Mop and mop wringer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7246404B2 (en) 2000-12-19 2007-07-24 Takahira Takemoto Mop and mop wringer

Similar Documents

Publication Publication Date Title
CA1126056A (en) Copper-nickel-silicon-chromium alloy having improved electrical conductivity
MXPA05002640A (en) Age-hardening copper-base alloy and processing.
JPH0625388B2 (en) High strength, high conductivity copper base alloy
JPS5834536B2 (en) Copper alloy for lead material of semiconductor equipment
JPS60245753A (en) High strength copper alloy having high electric conductivity
JPH036341A (en) High strength and high conductivity copper-base alloy
JPS6058783B2 (en) Method for manufacturing copper alloy for lead material of semiconductor equipment
JPS5834537B2 (en) High-strength conductive copper alloy with good heat resistance
US4260435A (en) Copper-nickel-silicon-chromium alloy having improved electrical conductivity
US4601879A (en) Copper-nickel-tin-titanium-alloy and a method for its manufacture
JPS6326320A (en) High power conductive copper alloy
JPS6086233A (en) High-strength conductive copper alloy
JPS61272339A (en) Lead material for electronic parts excelled in repeated bendability and its production
JPS6086255A (en) Preparation of high-strength conductive copper alloy
JPS61127842A (en) Copper alloy for terminal and connector and its manufacture
JPS61542A (en) Copper alloy for radiator plate
JPS6086231A (en) High-strength conductive copper alloy
JPS6086253A (en) Preparation of high-strength conductive copper alloy
JPS60116737A (en) Copper alloy
JPS5949293B2 (en) Copper alloy for electrical and electronic parts and its manufacturing method
JPS6142772B2 (en)
JPS5939492B2 (en) High strength copper alloy for conductive use with softening resistance
JPS5821018B2 (en) Copper alloy for high strength conductivity with good heat resistance
JPS63230837A (en) Copper alloy for fuse
JPH01162736A (en) High strength and high toughness cu alloy having less characteristic anisotropy