JPS6086045A - Manufacture of glass preform for optical fiber - Google Patents

Manufacture of glass preform for optical fiber

Info

Publication number
JPS6086045A
JPS6086045A JP58194102A JP19410283A JPS6086045A JP S6086045 A JPS6086045 A JP S6086045A JP 58194102 A JP58194102 A JP 58194102A JP 19410283 A JP19410283 A JP 19410283A JP S6086045 A JPS6086045 A JP S6086045A
Authority
JP
Japan
Prior art keywords
glass
fluorine
optical fiber
quartz
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58194102A
Other languages
Japanese (ja)
Inventor
Tsunehisa Kyodo
倫久 京藤
Gotaro Tanaka
豪太郎 田中
Naoki Yoshioka
直樹 吉岡
Hiroo Kanamori
弘雄 金森
Minoru Watanabe
稔 渡辺
Motohiro Nakahara
基博 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58194102A priority Critical patent/JPS6086045A/en
Priority to AU34267/84A priority patent/AU569757B2/en
Priority to DK497084A priority patent/DK158939C/en
Priority to EP84307168A priority patent/EP0140651B1/en
Priority to DE8484307168T priority patent/DE3471090D1/en
Priority to AT84307168T priority patent/ATE34164T1/en
Priority to KR1019840006488A priority patent/KR870001738B1/en
Priority to CA000465913A priority patent/CA1245108A/en
Publication of JPS6086045A publication Critical patent/JPS6086045A/en
Priority to US07/132,655 priority patent/US4812155A/en
Priority to HK690/89A priority patent/HK69089A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • C03B37/01453Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering for doping the preform with flourine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/23Double or multiple optical cladding profiles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/26Parabolic or graded index [GRIN] core profile

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To carry out the addition of fluorine to a glass material in high efficiency, and to manufacture a preform giving an optical fiber having stable transmission characteristics, by heat-treating fine glass particles composed mainly of quartz in a gaseous atmosphere containing both fluorine-containing gas and a chlorine-containing gas. CONSTITUTION:In the manufacture of a glass preform for optical fiber, glass fine particles composed mainly of quartz are subjected to the heat-treatment in an inert gas atmosphere containing both fluorine-containing gas an chlorine-containing gas. The heat-treatment temperature is preferably 1,100-1,400 deg.C. The deterioration of the furnace material is suppressed compared with the conventional process, and the optical fiber manufacture from the preform is free from the absorption caused by the impurities such as Cu and Fe, contains fluorine added efficiently to the glass, and has stable transmission characteristics.

Description

【発明の詳細な説明】 本発明は光フアイバー用ガラス母材の製造方法に関する
もので特にフッ素を含有させた石英ガラス系母材の製造
方法に関する。。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a glass base material for optical fibers, and more particularly to a method for manufacturing a quartz glass base material containing fluorine. .

(従来技術) 光フアイバー用ガラス母材はコア部とクラッド部からな
シ、コア部は中心部ニアって光の伝送をし易くするため
、クラッド部よシ屈折率を高くしである。
(Prior Art) A glass base material for an optical fiber consists of a core part and a cladding part, and the core part has a higher refractive index than the cladding part in order to facilitate the transmission of light near the center.

コア部の屈折率を高めるためには、通常石英ガラス中に
TiO2,oQo、、 A4o3などの添加剤(ドーパ
ント)t−添加する。一般的な7アイパにおいてはクラ
ッド部には、純石英ガラスが使用されることが多く、こ
の場合純石英ガラスのn = 1.4584をΔn =
 Oとする。
In order to increase the refractive index of the core portion, additives (dopants) such as TiO2, oQo, A4o3, etc. are usually added to quartz glass. Pure silica glass is often used in the cladding part of the general 7 eyeglass, and in this case, n = 1.4584 of pure silica glass is used as Δn =
Let it be O.

第1図は光ファイバーの屈折率分布を示すグラフであっ
て、Aはコア部、Bはクラッド部である。ここでコア部
とクラッド部の屈折率の差異は一般に相対屈折率差のパ
ーセント値で表示されておシ、コア部およびクラッド部
の屈折率値をそれぞれn!およびn2とするとき相対屈
折率差Δnllチは Δn1!チーー X 100 n2 でらられされる。
FIG. 1 is a graph showing the refractive index distribution of an optical fiber, where A is the core portion and B is the cladding portion. Here, the difference in refractive index between the core part and the cladding part is generally expressed as a percentage value of the relative refractive index difference. and n2, the relative refractive index difference Δnll is Δn1! Qi X 100 n2 is used.

第1図(a)はシングルモードファイバー用として一般
的な構造で、この場合Δn!2け通常0.3〜α5チで
ある。第1図(b)はマルチモードファイバー用として
一般的な構造で、公衆通信用ファイバーとしては△nI
!は普通的1%でおシ、コンピュータリンク用として用
いられる広開口角ファイバーとしては△n11は約2〜
4チが普通である。
Figure 1(a) shows a common structure for single mode fibers, in which case Δn! 2 digits is usually 0.3 to α5chi. Figure 1(b) shows a general structure for multimode fiber, and △nI for public communication fiber.
! is normally 1%, and for wide aperture angle fibers used for computer links, △n11 is approximately 2~2%.
4chi is normal.

ところで屈折率を高めるために用いるGeO2などの酸
化物ドーパントは、ドーパント固有の特性に起因する光
散乱(レイリー散乱)を起す。
Incidentally, an oxide dopant such as GeO2 used to increase the refractive index causes light scattering (Rayleigh scattering) due to the inherent characteristics of the dopant.

またガラス母材の製造工程では、ガラス母材中に該酸化
物に起因する気泡発生や結晶相晶出などが起こシやすく
、さらにガラスの熱膨張係数が大きくなシガラス母材が
割れやすくなる。したがって光伝送特性、ガラス強度特
性の上からも、ガラス母材中に添加されるドーパント量
は少ない方が好ましい。
In addition, in the manufacturing process of the glass base material, bubble generation and crystal phase crystallization due to the oxide are likely to occur in the glass base material, and furthermore, the glass base material having a large coefficient of thermal expansion tends to be easily broken. Therefore, from the viewpoint of optical transmission characteristics and glass strength characteristics, it is preferable that the amount of dopant added to the glass base material is small.

このため一般的にクラッド部の屈折率を下げて屈折率差
を大にする方法がとられ、例えばクラッド部にB2O3
、フッ素あるいはこれらを組合せたような屈折率低下ド
ーパントを添加する。
For this reason, a method is generally used to increase the refractive index difference by lowering the refractive index of the cladding.For example, B2O3 is added to the cladding.
, fluorine, or a combination thereof.

B2O3は添加モル濃度に対して熱膨張係数の変化が大
きく又熱履歴によって屈折率が変化する欠点があシ、さ
らに光伝送特性上は長波長領域にB!03固有の吸収損
失を持つ。したがって屈折率低下成分としてはフッ素を
用いる方が好ましい。
B2O3 has the drawback that its coefficient of thermal expansion changes greatly with respect to the molar concentration added, and its refractive index changes depending on its thermal history.Furthermore, in terms of optical transmission characteristics, B! 03 has a unique absorption loss. Therefore, it is preferable to use fluorine as the refractive index lowering component.

フッ素を石英ガラスに添加することによル種々の屈折率
分布構造の光7アイパーを得ることができ、その構造設
計によっては広い波長範囲で低分散の7アイパーが得ら
れることは既に知られている。第2図はその代表的なも
のの屈折率分布構造を示すグラフであり、(a)、 (
C)はステップインデックス型、(t+)、 (cl)
はグレーディッドインデックス型のものであり、(a)
〜(d)はいずれもクラッド部にフッ素が添加されてい
る。Jコア部については(a)は石英ガラスに屈折率を
高める酸化物例えばG e O@ 、 P205 等が
若干量添加されており、(C)は添加物を含まない高純
度石英ガラスである1、また(b)はフッ素添加量がコ
ア周辺部よ勺中心部に向かって連続的に減少させられ、
中心部ではフッ素を含まない純石英ガラスのみよシなる
ものであシ、純石英ガラスの屈折率n=1.4585に
ついて△n =” Qとする。(cl) i、J: :
!ア中心部に向かってフッ素添加量が連続的に減少させ
られると共にコアのある部分からは石英ガラスの屈折率
上昇用ドーパントが中心部に向かって連続的に添加量が
増加するように添加されたものである。。
It is already known that by adding fluorine to silica glass, it is possible to obtain optical 7-eyes with various refractive index distribution structures, and that depending on the structural design, 7-eyes with low dispersion can be obtained over a wide wavelength range. There is. Figure 2 is a graph showing a typical refractive index distribution structure.
C) is a step index type, (t+), (cl)
is of graded index type, (a)
- (d) all have fluorine added to the cladding portion. Regarding the J core part, (a) is quartz glass with a small amount of oxides such as G e O@, P205, etc. added to increase the refractive index, and (C) is high purity silica glass containing no additives1. , and (b), the amount of fluorine added is continuously decreased from the core periphery to the center of the core,
The center part is made only of pure silica glass that does not contain fluorine. Given the refractive index of pure silica glass n = 1.4585, let △n = "Q. (cl) i, J: :
! The amount of fluorine added is continuously decreased toward the center, and a dopant for increasing the refractive index of silica glass is added from a certain part of the core so that the amount of addition increases continuously toward the center. It is something. .

なおりラッド部及びコア部に屈折率調整のためあるいは
ガラスの加工を容易にするために例えばGeO2,P!
051 ”201 At!Os 初添加物とフッ素を共
存させうろことができるのけ当然である。
For example, GeO2, P! is added to the rad part and core part to adjust the refractive index or to facilitate glass processing.
051 ``201 At!Os It is natural that the initial additive and fluorine can coexist.

このようにフッ素を添加した石英ガラスよシなる光ファ
イバーにおいて第1図に示すのと同一の屈折率差を得る
には、コア部に添加する酸化物の量を少なくするか、ま
たは該酸化物を全く添加しなければよいので、ドーパン
トに起因するレイリー散乱は小さくなり光伝送路として
好ましい。
In order to obtain the same refractive index difference as shown in Figure 1 in an optical fiber made of fluorine-doped silica glass, it is necessary to reduce the amount of oxide added to the core, or to remove the oxide. Since it is not necessary to add it at all, Rayleigh scattering caused by the dopant is reduced, making it preferable as an optical transmission line.

石英系ガラスファイバー製造法としては既に公知の内付
けCVD法(特公昭51−23185号公報記載、特公
昭55−22423号公報記載)、外付けCVD法(特
開昭49−10055号公報記載)、VAD法(特開昭
51−71316号公報)およびプラズマCVD法(特
開昭51−54446号公報)等の方法がある。これ等
の方法の中でも、火炎加水分解反応を利用した外付けC
VD法やVAD法は生産性に優れ経済的な方法である。
As methods for producing quartz-based glass fibers, there are already known internal CVD methods (described in Japanese Patent Publications No. 51-23185 and Japanese Patent Publications No. 55-22423) and external CVD methods (described in Japanese Patent Application Laid-Open No. 49-10055). , VAD method (Japanese Patent Laid-Open No. 51-71316) and plasma CVD method (Japanese Patent Laid-Open No. 51-54446). Among these methods, external C using flame hydrolysis reaction
The VD method and VAD method are highly productive and economical methods.

しかしながら、火炎加水分解反応を利用した方法で、石
英ガラスにフッ素を添加することは可能ではあるが、十
分な量のフッ素を石英ガラス中に均一に添加することは
きわめて困難である。
However, although it is possible to add fluorine to quartz glass by a method using a flame hydrolysis reaction, it is extremely difficult to uniformly add a sufficient amount of fluorine into quartz glass.

例えば特開昭s s −T s b −82号公報には
7ッ素をガラス母材中に添加する方法が記載されている
が、この方法によればフッ素の添加による屈折率の変動
は石英ガラスの屈折率に対し△n12け高々−12係程
度にすぎず、添加されるフッ素の量に限界があることが
欠点である。
For example, Japanese Unexamined Patent Application Publication No. 1997-82 describes a method of adding 7 fluorine into a glass base material. According to this method, the change in refractive index due to the addition of fluorine is The drawback is that Δn12 is only a factor of −12 at most with respect to the refractive index of glass, and there is a limit to the amount of fluorine that can be added.

フッ素が石英微粒子中に添加される反応は次式(1)の
とおシであるが SiF4 (s) +38102 (e) →4SiO
1,5F(13) (1)スート作製に使用される酸水
素炎中には燃焼により生成した水分(H2O)が存在す
るために、SiF、(ロ)は(2)式のようにも反応し
てしまう。
The reaction in which fluorine is added to quartz particles is as shown in the following equation (1), but SiF4 (s) +38102 (e) →4SiO
1,5F (13) (1) Since moisture (H2O) generated by combustion exists in the oxyhydrogen flame used for soot production, SiF (b) also reacts as shown in equation (2). Resulting in.

5iF4(7+ 2H1O(B) →Si(%(s)+
4HF(g) (2)すなわち+1? 1 P4 は石
英ガラスへの添加材量として消費される以外に火炎中に
存在する多情の水分との反応に消費され、添加の効率が
低下することは明らかである。
5iF4(7+ 2H1O(B) →Si(%(s)+
4HF (g) (2) or +1? It is clear that 1 P4 is not only consumed as an additive amount to the quartz glass, but also consumed in reaction with the moisture present in the flame, reducing the efficiency of addition.

さらに(2)式の反応よル生成したHFけガラス特に石
英(1910,)を浸蝕する作用を持ち、火炎中で生成
した石英微粒子と容易に反応する。
Furthermore, HF produced by the reaction of formula (2) has the effect of corroding glass, especially quartz (1910,), and easily reacts with fine quartz particles produced in the flame.

5i01(s)+2HF(g) →810F2Gd +
H20(7(3)Si02(日)+4HF(gう → 
siy4(g)十H,o(g) (4)この結果ガラス
微粒子の粒成長が抑えられ、ガラス微粒子の、1′#、
積置を低下させる。このことは、この方法でフッ素化合
物の添加量を増やしてゆくと共に、ガラス微粒子の堆積
速度は低下し、最終的には全く堆積しなくなる事実によ
っても明らかである。
5i01(s)+2HF(g) →810F2Gd +
H20(7(3)Si02(Sun)+4HF(gu →
siy4(g) 10H,o(g) (4) As a result, the grain growth of the glass fine particles is suppressed, and the 1′#,
Decrease stacking. This is also clear from the fact that as the amount of fluorine compound added is increased in this method, the deposition rate of glass fine particles decreases, and eventually no glass particles are deposited at all.

特開昭55−67535号公報には上記の如き特公昭5
5−15682号公報記載の方法の欠点を克服する方法
として■火炎加水分解法により形成されたガラス微粒子
の積層体をフッ素化合物ガスの雰囲気中で1000℃以
下で加熱し、次で該積層体を不活性ガス雰囲気中で14
00℃以上に加熱して焼結せしめることを特徴とする光
伝送用ガラス素材の製法および■該ガラス微粒子積層体
をフッ素化合物ガスおよび不活性ガス雰囲気中で140
0℃以上に加熱してフッ素を含むガラス体を形成するこ
とを特徴とする光伝送用ガラス素材の製法が開示されて
いる。
Japanese Unexamined Patent Publication No. 55-67535 has the above-mentioned
As a method for overcoming the drawbacks of the method described in Publication No. 5-15682, (1) A laminate of glass particles formed by flame hydrolysis is heated at 1000°C or less in an atmosphere of fluorine compound gas, and then the laminate is 14 in an inert gas atmosphere
A method for producing a glass material for optical transmission, characterized by sintering it by heating it to 00°C or above;
A method for manufacturing a glass material for optical transmission is disclosed, which is characterized by forming a glass body containing fluorine by heating to 0° C. or higher.

この方法によれば確かに特公昭55−15682号公報
記載の方法よりも効率的にフッ素を添加しうるが、まだ
下記に述べる欠点を有していることが、本発明の研究開
発課程において判明した。
Although this method can certainly add fluorine more efficiently than the method described in Japanese Patent Publication No. 55-15682, it was discovered during the research and development process of the present invention that it still has the following drawbacks. did.

すなわち上記■の方法においては、フッ素のガラスへの
添加速度が遅く、さらに時には得られたファイバー中に
Ou+Fe 等の不純物が存在し、これ等不純物に由来
する伝送損失増は1.30μmの波長帯においては3〜
5 dB/kmもあった。(通常この波長帯における損
失値けして−0,20%であった。
In other words, in the method (2) above, the rate of addition of fluorine to the glass is slow, and impurities such as Ou+Fe are sometimes present in the resulting fiber, and the increase in transmission loss due to these impurities occurs in the 1.30 μm wavelength band. 3~
It was also 5 dB/km. (Normally, the loss value in this wavelength band was -0.20%.

一方上記■の方法でけ■の方法に比ベフッ素の添加速度
も早く、添加量も多く効率的であり、処理時間6時間で
△n1!c力は−0,25係であった。ところが得られ
たガラス母体は表面が著しく浸蝕され凸凹を呈してしま
う。又ガス雰囲気を保つために使用される炉心管例えば
石英炉心管は激しく浸蝕され炉壁に穴があく場合すらあ
つた。この方法で得られた光ファイ−(−の枦失特性は
1.30μmの波長帯で10 aB/kmにもなった。
On the other hand, the method (■) above is more efficient than the method (■) in that it adds fluorine at a faster rate and in a larger amount, and is more efficient with △n1 in 6 hours of treatment time! The c force was -0.25. However, the surface of the obtained glass matrix is severely corroded and becomes uneven. In addition, the furnace core tube used to maintain the gas atmosphere, such as a quartz furnace core tube, was severely eroded, and there were even cases where holes were formed in the furnace wall. The loss characteristic of the optical fiber (-) obtained by this method was as high as 10 aB/km in the 1.30 μm wavelength band.

ファイバー中のOH基はαQ 5 ppm以下でIJO
H基に由来する1、30μmでの吸収損失増は考えられ
ないため、得られたファイノ(−中に存在するOu ’
p Fe等不純物に由来する吸収損失増が9.5 dB
/kmにもなると考えられる例が多々あった。
The OH group in the fiber is less than αQ 5 ppm and IJO
Since an increase in absorption loss at 1 and 30 μm originating from the H group is not considered, the Ou′ present in the obtained phino(−
Absorption loss increase due to impurities such as p Fe is 9.5 dB
There were many cases where it was thought that the distance could be as high as /km.

Ou+Fθ等が得られたファイ−く−中に存在する理由
の1つとしては、炉心管浸蝕により炉心管壁内に存在す
るFe2O3やOuOが表面に現れてスート中に混入す
ることで下記9式(5)、 (6)のように反応する。
One of the reasons why Ou + Fθ etc. exist in the obtained fiber is that Fe2O3 and OuO existing in the core tube wall appear on the surface due to core tube erosion and mix into the soot. It reacts as shown in (5) and (6).

Fe20B + 2F2 →2FeF2 + 57’2
02 (5)OuO−4−172Fl −40uF +
112(h (6)FeF2およびOu? は1100
℃までは固体であるが1100℃以上では昇華するため
、スート中に混入してスート母材を汚染する。
Fe20B + 2F2 →2FeF2 + 57'2
02 (5) OuO-4-172Fl -40uF +
112 (h (6) FeF2 and Ou? are 1100
Although it is solid up to 1100°C, it sublimes, so it gets mixed into the soot and contaminates the soot base material.

さらにスート母材中にFezO3やOuOがちる場合は
(5)や(6)の反応が起きても1100℃以下ではF
eFlやOuFけ固体であるためスートがら除去されず
不純物として残ってしまう。したがって■、■いずれの
方法でもファイバー中に不純物が存在してしまう。
Furthermore, if FezO3 or OuO is present in the soot base material, even if the reactions (5) and (6) occur, F at below 1100℃
Since eFl and OuF are solids, they are not removed from the soot and remain as impurities. Therefore, impurities are present in the fiber in both methods (1) and (2).

(発明の目的) 本発明の目的は上記したような従来法における欠点を克
服し、光フアイバー用ガラス母材にフッ素を効率よく添
加せしめる方法を提供するものである。
(Object of the Invention) An object of the present invention is to overcome the drawbacks of the conventional methods as described above and to provide a method for efficiently adding fluorine to a glass base material for optical fiber.

(発明の構成) 本発明の要旨は、光フアイバー用ガラス母材の製造工程
において、火炎加水分解反応もしくけゾルゲル法によ勺
形成された石英を主成分としたガラス微粒子体(スート
母材)を透明ガラス化するにあたシ、少なくともフッ素
系ガスと塩素系ガスとを共存させ念不活性ガス算囲気で
加熱処理するところにある。
(Structure of the Invention) The gist of the present invention is that glass fine particles (soot base material) mainly composed of quartz are formed by a flame hydrolysis reaction or a sol-gel method in the manufacturing process of a glass base material for optical fibers. In order to make transparent glass, at least fluorine-based gas and chlorine-based gas are allowed to coexist, and heat treatment is performed in an atmosphere containing an inert gas.

本発明のさらに好ましい構成としては、上記の加熱処理
する温度領域を1100〜1400℃とすることである
A more preferable configuration of the present invention is that the temperature range for the heat treatment is 1100 to 1400°C.

本発明の方法によれば従来法の如く炉材を劣化させるこ
となくΔnI!(3)が−1係となシがっ低損失なファ
イバーが得られる。
According to the method of the present invention, ΔnI! without deteriorating the furnace material unlike the conventional method! If (3) is -1, a fiber with low loss can be obtained.

本発明者らは鋭意研究の結果スート母材を少なくともフ
ッ素系ガスと塩素系ガス全共存させた不活性ガス雰囲気
で加熱処理すると下記のような利点があることを見出し
、本発明の完成に到達した。例としてc4ガスとsP6
ガスを共存させた不活性ガス雰囲気でスート母材を加熱
処理したところ 1)炉心管の浸蝕は著しく抑えられ、条件によっては1
ケ月以上の使用に耐えた。
As a result of extensive research, the present inventors have discovered that heat treatment of the soot base material in an inert gas atmosphere in which at least fluorine-based gas and chlorine-based gas coexist has the following advantages, and has completed the present invention. did. For example, c4 gas and sP6
When the soot base material was heat-treated in an inert gas atmosphere in which gas coexisted, 1) corrosion of the furnace core tube was significantly suppressed;
It lasted more than a month of use.

2)得られたファイバー中には、OuやFe 等不純物
に由来する吸収は、その損失特性を調べても確認できな
かった。
2) Absorption originating from impurities such as O and Fe could not be confirmed in the obtained fiber even when its loss characteristics were investigated.

3)フッ素添加による屈折率差Δntx(F)は最高−
I2O3チにも達した。
3) The refractive index difference Δntx (F) due to fluorine addition is the highest -
It also reached I2O3.

参考としてOkk用いず8F、ガスのみの不活性ガス雰
囲気で加熱処理した場合は 1)炉心管の浸蝕が激しく条件によれば1日で炉心管が
破損された。
As a reference, when heat treatment was performed at 8F without using Okk and in an inert gas atmosphere with only gas, 1) the core tube was severely eroded, and the core tube was damaged within one day under the conditions.

2)得られたファイバーにはOu ’p Fe に由来
する不純物による吸収が著しかった。
2) The obtained fiber had significant absorption due to impurities derived from Ou 'p Fe.

5)フッ素の添加による屈折率Δn1!(乃は高々α2
0チであった。
5) Refractive index Δn1 due to addition of fluorine! (No is at most α2
It was 0chi.

以上のような基床ガス添加の効果は次の理由に基くもの
と考えられる。
The effects of adding base gas as described above are considered to be based on the following reasons.

i)外気よ゛シ混入したシ炉心管自体又社スート母体に
由来して、ガス雰囲気中に存在する水分(H,O)は次
の(7)式のように反応して塩酸となシ、水分がOF、
と(8)式のように反応し7ツ酸HFを生成するのを抑
える。したがって炉心管の7ツ酸による浸蝕も抑えられ
る。
i) Moisture (H, O) present in the gas atmosphere from the reactor core tube itself or the soot matrix mixed with outside air reacts as shown in the following equation (7) and converts into hydrochloric acid. , moisture is OF,
This suppresses the reaction as shown in equation (8) and the production of heptatonic acid HF. Therefore, corrosion of the reactor core tube by the 7-acid can also be suppressed.

HtO(p:J+04(ロ)→ 2HO1(ロ)十捧0
雪@(7)ago(g)+WEIFstm→2HF(i
 +’A B Os(g) (8ンここで塩酸は炉心管
(石英)に対するエツチング作用のないことが知られて
いる。(8)の反応が抑えられることによシ、次式(9
)のようにフッ素が石英ガラスに添加する反応が効率的
となる。
HtO (p: J + 04 (b) → 2HO1 (b) ten 0
Snow @ (7) ago (g) + WEIFstm → 2HF (i
+'A B Os (g) (8 N Here, hydrochloric acid is known to have no etching effect on the furnace tube (quartz). By suppressing the reaction (8), the following equation (9
), the reaction in which fluorine is added to quartz glass becomes efficient.

4sto2(s)+ 87s(m → 4 S i Ot+s F(s) + s 0x(
id +Fa(i (9)11)上記のようにフッ酸(
HF)の発生が抑えられると、炉心管の浸蝕による不純
物のFeやOu の炉内増加が抑えられる。さらにたと
えFe+Ouが存在しても下記QO,(11のように反
応し、0uO6(ロ)やF e OL3は揮発性に富む
ため系外へ除去される。
4sto2(s)+87s(m → 4 S i Ot+s F(s) + s 0x(
id +Fa(i (9)11) As mentioned above, hydrofluoric acid (
If the generation of HF) is suppressed, the increase in impurities Fe and O2 in the furnace due to corrosion of the furnace tube can be suppressed. Furthermore, even if Fe+Ou is present, the reaction will occur as shown in QO, (11) below, and OuO6(b) and FeOL3 are highly volatile and will be removed from the system.

FezO5(s)+ 3014(g) →2FeO6i
Gd+い0−@ α0cuo(s) +、WO4(7−
b OuO6(g) + ’A OA) (11)なお
FeF2. OuF は1100℃以上で昇華するため
、たとえat、を添加したガス雰囲気でも、スート母材
の加熱処理は1100℃以上で行うことが好ましい。
FezO5 (s) + 3014 (g) →2FeO6i
Gd+i0-@α0cuo(s) +, WO4(7-
b OuO6(g) + 'A OA) (11) Note that FeF2. Since OuF sublimates at a temperature of 1100° C. or higher, it is preferable to heat the soot base material at a temperature of 1100° C. or higher even in a gas atmosphere containing at.

なお、フッ素系ガスとしてはSF6に限定されるもので
はな(OF4. 72. E11F4. 0oF2゜a
C4F= など高温で分解しガラスにフッ素を添加する
効果のあるものならいずれでもよい。
Note that the fluorine-based gas is not limited to SF6 (OF4.72.E11F4.0oF2゜a)
Any material that decomposes at high temperatures and has the effect of adding fluorine to glass, such as C4F=, may be used.

さらに塩素系ガスとしては5oar、、coa14゜a
ct4 など脱水作用を有するものなら何でも良い。ま
たカーボンなどガラス母相の散乱損失の原因となる原子
を有する化合物ガスには酸素ガスを添加するのが好まし
い。
Furthermore, as a chlorine gas, 5oar, coa14゜a
Anything that has a dehydrating effect, such as ct4, may be used. Further, it is preferable to add oxygen gas to the compound gas containing atoms such as carbon that cause scattering loss in the glass matrix phase.

以下実施例によシ具体的に説明する。This will be specifically explained below using examples.

火炎加水分解反応によって石英ガラス微粒子体を生成さ
せることにょシスート母材を作製するには、第3図(a
)に示すように、石英製同心多重管バーナー1を用いて
、酸素2、水素3、と原料ガスとしてetc4などを用
いArガス又けHe ガスをキャリヤーガスに用い酸水
素炎の中心5に送り込み反応させればよい。図中4は原
料カスがバーナーの先端よシ数咽けなれた空間で反応す
るように、遮へい用としてAr ガスを流す。ガラス倣
粒子体のロンド?得る場合には回転する出発部材6の先
端から軸方向にガラス微粒子を積層させる。またパイプ
状ガラス微粒子体を得る場合VC#i第3図(+、)に
示すように回転する石英棒または炭素棒7の外周部にバ
ーナー8をトラバースさせながら、ガラス微粒子を積層
させた後中心部材を除去する。
In order to produce a cystomate base material by generating quartz glass fine particles by a flame hydrolysis reaction, the procedure shown in Fig. 3 (a) is as follows.
), using a concentric multi-tube burner 1 made of quartz, oxygen 2, hydrogen 3, etc. 4 are used as raw material gases, and Ar gas and He gas are used as carrier gases to feed into the center 5 of an oxyhydrogen flame. All you have to do is react. At 4 in the figure, Ar gas is flowed as a shield so that the raw material waste reacts in a space a few feet away from the tip of the burner. Rondo of glass imitation particles? When obtaining the glass particles, glass particles are laminated in the axial direction from the tip of the rotating starting member 6. In addition, when obtaining a pipe-shaped glass particle body, as shown in VC#i Fig. 3 (+,), while traversing the outer circumference of a rotating quartz rod or carbon rod 7 with a burner 8, glass particles are laminated at the center. Remove parts.

なお、5i044にGe(!4. ALO63,BBr
B、 BF2などを混合した原料ガスを使用することも
ある。。
In addition, Ge (!4. ALO63, BBr
A raw material gas mixed with B, BF2, etc. may also be used. .

又バーナは複数本でもよい。Also, a plurality of burners may be used.

また第3図の方法で作製されたのと同種のスート母材は
金属アルコラードの加水分解法でも得られた。この方法
はゾル−ゲル法と呼ばれて−いる。。
A soot matrix of the same type as that produced by the method shown in FIG. 3 was also obtained by the hydrolysis method of metal alcoholade. This method is called the sol-gel method. .

これ等の方法で得られたスート母材け、例えば第1図(
a) (b)に示すような屈折率分布を有するもので、
屈折率が高められているのはG e 02 +Tie、
、などのドーパントの添加による。
The soot base material obtained by these methods, for example, Fig. 1 (
a) It has a refractive index distribution as shown in (b),
G e 02 +Tie has an increased refractive index,
, by addition of dopants such as.

実施例1 第3図の方法で作製したシングルモードファイバー用石
英系スート母材を石英炉心管内に挿入して下記条件で熱
処理を施しく均等加熱炉による加熱)、透明ガラス化し
た。炉内にはHeと共にフッ素系ガスおよび塩素系ガス
を第1表に示すような組合せで流した。炉温は1100
℃から1400℃まで3〜b 度で昇温させ、その後はスート表面における温度が14
00℃以上になるような条件で、Heのみの雰囲気で加
熱した。条件及び得られた結果を第1表にまとめて示す
Example 1 A quartz-based soot base material for a single mode fiber produced by the method shown in FIG. 3 was inserted into a quartz furnace tube and heat-treated under the following conditions (heating in a uniform heating furnace) to produce transparent vitrification. Fluorine-based gas and chlorine-based gas were flowed into the furnace together with He in combinations shown in Table 1. Furnace temperature is 1100
℃ to 1400℃ at a rate of 3 to 1400℃, and then the temperature at the soot surface was 14℃.
Heating was carried out in an atmosphere containing only He under conditions such that the temperature reached 00°C or higher. The conditions and the results obtained are summarized in Table 1.

なお比較例1,2として塩素系ガスを用いない場合につ
いても第1表に示しである。
Table 1 also shows Comparative Examples 1 and 2 in which no chlorine gas was used.

なおΔn (Me) 、Δn (F)は第4図の様に定
義した得られたファイバーの屈折率差であって第4図に
おいて、 Δn (Me) = −x 1o2 6 △n(F)= yloz n。
Note that Δn (Me) and Δn (F) are the refractive index differences of the obtained fibers defined as shown in Fig. 4, and in Fig. 4, Δn (Me) = -x 1o2 6 △n (F) = yloz n.

ここでnQ=1.4585 は石英ガラスの屈折子であ
る。
Here, nQ=1.4585 is a quartz glass refractor.

実施例2 第3図の方法で作製したグレーディッド型ファイバー用
石英ガラス系スート母材?石英炉心管を用いて第2表に
示す各化合物雰囲気で熱処理を行った。該熱処理の温度
条件は実輸例1と同一とした。得られた結果は等2表に
示すとおりであった。。
Example 2 Silica glass based soot base material for graded fiber produced by the method shown in Fig. 3? Heat treatment was performed using a quartz furnace tube in an atmosphere of each compound shown in Table 2. The temperature conditions for the heat treatment were the same as in Example 1. The results obtained were as shown in Table 2. .

なお△n (Me) 、△n (F)は第5図の様に定
義した屈折率差であって、第5図において、n (Me
) −n。
Note that △n (Me) and △n (F) are the refractive index differences defined as shown in FIG.
) -n.

△n (Me) = −X 10g Q n (F) −n6 △n (F) = −X 10” n(1 n6 については第1表に同じ 実施例3 第3図の方法で作製したシングルモードファイバー用石
英系スート母材を予め1400℃に加温しておいた炉内
に、2〜4■/分の挿入速度で入れて加熱処理した(ゾ
ーン加熱による加熱)。この時の炉温分布は800〜1
400℃の間で20℃/(WIであシ1400℃の均熱
部は10αであった。炉内にはHe ガスを流すと共l
C7ツ素系ガスと塩素系ガスを943表に示す組合せと
して流した。、該スート母材け1400℃の均熱部に達
したところでかなシ収縮していたが、さらVc1500
℃以上の温度で透明ガラス化した。この場合前記加熱処
理した炉を使用しても全く別の炉を使用しても同様の結
果が得られた。
△n (Me) = -X 10g Q n (F) -n6 △n (F) = -X 10'' n (1 For n6, same as in Table 1 Example 3 Single mode fabricated by the method shown in Figure 3 A quartz-based soot base material for fiber was placed in a furnace preheated to 1400°C at an insertion rate of 2 to 4 minutes/minute and heat-treated (heating by zone heating). Furnace temperature distribution at this time is 800-1
Between 400℃ and 20℃/(WI), the temperature in the soaking section at 1400℃ was 10α.
C7 trous gas and chlorine gas were flowed in combinations shown in Table 943. When the soot base material reached the soaking section at 1400°C, it contracted slightly, but the
It became transparent vitrified at temperatures above ℃. In this case, the same results were obtained whether the heat-treated furnace or a completely different furnace was used.

実施例4 第3図の方法で作製したグレーディッド型ファイバ用石
英スート母材を石英炉心管内で熱処理した。炉内雰囲気
はHe ガスと共にSF6を5occ/分および(BO
C4+02 ) k (50CC/分子5oocc/分
)の流量で流し、炉温は800℃からスタートして3〜
b し、第6図に示すようなそれぞれの処理温度900.1
000.+100.1200゜+300,140(]℃
において上記流量で8F′6および5oaz、/ o、
 1t5時間流したのち、Hθガラスみとして透明ガラ
ス化温度にまで昇温し透明ガラス体を得た。それぞれの
処理温度よシ得られたファイバーの△n (F)は第6
図に示すとおりであった1、 実施例5 第6図の方法で作製したシングルモードファイバー用石
英系スート母旬をアルミナ炉心管内にて熱処理した1、
炉内雰囲気けHe ガスと共に5F61i 500cc
/分、C4を5oar、7分の流量で流した。炉温は1
100℃から1400℃まで第7図に示すような昇温速
度で昇温し、その後はHe などの不活性ガスのみの雰
囲気で該スト母材の透明ガラス化を行った。各昇温速度
により得られたファイバーの屈折率差(資)Δn (F
)は第7図に示すとおシであった。
Example 4 A quartz soot base material for a graded fiber produced by the method shown in FIG. 3 was heat-treated in a quartz furnace tube. The atmosphere in the furnace was He gas as well as SF6 at 5 occ/min and (BO
C4+02)k (50CC/molecule 5oocc/min), and the furnace temperature started at 800℃ and increased from 3 to 30℃.
b and each treatment temperature 900.1 as shown in Figure 6.
000. +100.1200°+300,140(]℃
at the above flow rate 8F'6 and 5oaz,/o,
After flowing 1t for 5 hours, the temperature was raised to the transparent vitrification temperature as Hθ glass to obtain a transparent glass body. △n (F) of the fiber obtained at each treatment temperature is 6th
Example 5 The quartz-based soot matrix for single mode fiber produced by the method shown in Fig. 6 was heat-treated in an alumina furnace tube.
Furnace atmosphere with He gas 5F61i 500cc
/min, C4 was flowed at a flow rate of 5 oar, 7 minutes. Furnace temperature is 1
The temperature was raised from 100° C. to 1400° C. at a temperature increasing rate as shown in FIG. 7, and then the steel base material was made into transparent vitrification in an atmosphere containing only an inert gas such as He. Difference in refractive index of the fiber (capital) Δn (F
) is shown in Figure 7.

(発明の効果) 上記実施例及び比較例から明らかな本発明の効果は以下
のとおりである。
(Effects of the Invention) The effects of the present invention that are clear from the above Examples and Comparative Examples are as follows.

0)本発明のフッ素系ガス及び塩素系ガス共存ガス雰囲
気中での加熱処理によれば、塩素系ガスが共存しない場
合(比較例1,2)に比べ、伝送損失の著しい低減が得
られる。これは(4ガスを添加したことにより、不純物
に由来する吸収がなくなったためと考えられる(実施例
1及び比較例1,2)。
0) According to the heat treatment of the present invention in a gas atmosphere coexisting with a fluorine-based gas and a chlorine-based gas, transmission loss can be significantly reduced compared to the case where a chlorine-based gas does not coexist (Comparative Examples 1 and 2). This is considered to be because the addition of the 4 gases eliminated absorption originating from impurities (Example 1 and Comparative Examples 1 and 2).

(ロ) フッ素系ガスについては81F4でもSF@ 
でも、得られたガラスのフッ素添加量に差はなく(実施
例2−2と2−3のΔn(F)参照)又、伝送損失も差
異がなく同等の効果を有する。
(b) Regarding fluorine gases, even 81F4 is SF@
However, there is no difference in the amount of fluorine added to the obtained glasses (see Δn(F) in Examples 2-2 and 2-3), and there is no difference in transmission loss either, and the glass has the same effect.

(う 本発明の方法は、加熱が均等加熱炉使用の場合(
実施例1)でも、ゾーン加熱炉(実施例3)使用の場合
でも、フッ素の添加に関しては同等の効果を示す。
(U) The method of the present invention is applicable when heating uses a uniform heating furnace (
Both in Example 1) and in the case of using a zone heating furnace (Example 3), the same effect is shown with respect to the addition of fluorine.

に)本発明の方法によシフッ素が効果的に添加される加
熱処理温度範囲は1100〜1400℃であることがわ
かる(実施例4)。
(b) It can be seen that the heat treatment temperature range in which fluorine is effectively added by the method of the present invention is 1100 to 1400°C (Example 4).

(ホ)加熱処理の昇温速度は遅い方がフッ素添加には効
果的である。実施例5において昇温速度2°/分の場合
は同100/分の場合の約4倍のフッ素添加量が得られ
る。
(e) The slower the temperature increase rate in the heat treatment, the more effective it is for fluorine addition. In Example 5, when the heating rate is 2°/min, the amount of fluorine added is approximately four times that when the heating rate is 100/min.

すなわち本発明の方法によれば、従来法に比べ炉材の劣
化が抑制され、得られたファイバーはOuやFθ に由
来する不純物吸収もなぐなシ、フッ素が効率良く添加さ
れ、得られた母材から作製したファイバーは安定した伝
送特性を持つ。
In other words, according to the method of the present invention, the deterioration of the furnace material is suppressed compared to the conventional method, the obtained fiber does not absorb impurities derived from Ou and Fθ, fluorine is efficiently added, and the obtained fiber is Fibers made from this material have stable transmission properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1 図(a)はシングルモードファイバー、(b)は
マルチモードファイ・Z−の一般的屈折率分布を示す図
、第2図(a)〜(d)はクラッド部にフッ素を添加さ
れた低分散型ファイバーの屈折率分布を示す図、第3図
(a)、 (kl)は火炎加水分解法によシスート母材
を作製する方法の説明図、第4図は実施例1及び比較例
1,2で得られたファイバーの屈折率分布を示す図、第
5図は実施例2及び3で得られたファイバーの屈折率分
布を示す図、第6図は実施例4の加熱処理温度と得られ
たファイバーの屈折率差Δn (F)の関係を示すグラ
フ、および第7図は実施例5の昇温速度と得られたファ
イバーの屈折率差Δn (F’)の関係を示すグラフで
ある。 代理人 内 1) 明 代理人 萩 原 亮 − 第1図 第3図 (a) 第4図 第5図 手続補正書 特許庁長官 志賀 学 殿 1、事件の表示 昭和58 年9,1゛許願第194102号2、発明の
名称 光フアイバー用ガラス母材の製造方法 3、補正をする者 小f′lとの関係 !t、’j許出願人(1(’li 
大阪市東凶兆浜5丁目15番地代兼(213) 住友電
気工業株式会社(ン)イ4、J 代表者用上哲部 (1(が1嶋) 4、代理人 11 +’li 東京都港区虎ノ門−丁1」16番2号
l補正の対象 (1) 明細書の「発明の詳細な説明」の欄(2) 図
面 a補正の内容 (1) 明細書第18頁の第1表、同第20頁の第2表
及び同第25頁の第3表を別紙のごとく訂正する。 (2) 図面の第6面及び第7図を別紙のごとく訂正す
る。
Figure 1 (a) shows the general refractive index distribution of single-mode fiber, (b) shows the general refractive index distribution of multimode fiber Z-, and Figures 2 (a) to (d) show the fluorine-doped fiber in the cladding. A diagram showing the refractive index distribution of a low-dispersion fiber, Figures 3 (a) and (kl) are explanatory diagrams of the method for producing a cysuto base material by flame hydrolysis, and Figure 4 shows Example 1 and Comparative Example. Figure 5 shows the refractive index distribution of the fibers obtained in Examples 2 and 3. Figure 6 shows the heat treatment temperature and temperature of Example 4. FIG. 7 is a graph showing the relationship between the refractive index difference Δn (F) of the obtained fiber, and FIG. 7 is a graph showing the relationship between the heating rate of Example 5 and the refractive index difference Δn (F') of the obtained fiber. be. Agents 1) Akira's agent Ryo Hagiwara - Figure 1 Figure 3 (a) Figure 4 Figure 5 Procedural amendments Manabu Shiga, Commissioner of the Patent Office 1, Indication of the case September 1, 1988, Application No. No. 194102 No. 2, Name of the invention, Method for manufacturing a glass base material for optical fiber 3, Person making the correction Relationship with f'l! t, 'j patent applicant (1 ('li
5-15 Higashikyochohama, Osaka-shi Yorokane (213) Sumitomo Electric Industries, Ltd. (N) I4, J Representative's Kamitetsubu (1 (Gaichishima) 4, Agent 11 +'li Minato-ku, Tokyo) Toranomon-Cho 1” 16 No. 2 l Subject of amendment (1) “Detailed description of the invention” column of the specification (2) Contents of amendment to drawing a (1) Table 1 on page 18 of the specification, Table 2 on page 20 and Table 3 on page 25 are corrected as shown in the attached sheet. (2) Page 6 and Figure 7 of the drawings are corrected as shown in the attached sheet.

Claims (3)

【特許請求の範囲】[Claims] (1)石英を主成分とするガラス微粒子体の透明ガラス
化工程で、該微粒子体を少なくともフッ素系ガスおよび
塩素系ガスを共存させたガス雰囲気中で加熱処理するこ
とを特徴とするフッ素を含んだ光フアイバー用ガラス母
材の製造方法。
(1) In the transparent vitrification process of glass fine particles whose main component is quartz, the fine particles are heat-treated in a gas atmosphere in which at least a fluorine-based gas and a chlorine-based gas coexist. A method for manufacturing a glass base material for optical fiber.
(2) 加熱処理する温度を1100〜1400℃とす
ることを特徴とする特許請求の範囲第1項に記載の光フ
アイバー用ガラス母材の製造方法。
(2) The method for producing a glass preform for optical fiber according to claim 1, wherein the heat treatment temperature is 1100 to 1400°C.
(3) 加熱処理を1100〜1400℃まで第7図に
示される昇温速度で昇温させて行うことを特徴とする特
許請求の範囲第1項に記載の光フアイバー用ガラス母材
の製造方法、。
(3) The method for producing a glass base material for optical fiber according to claim 1, characterized in that the heat treatment is performed by raising the temperature to 1100 to 1400° C. at a temperature increase rate shown in FIG. ,.
JP58194102A 1983-10-19 1983-10-19 Manufacture of glass preform for optical fiber Pending JPS6086045A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP58194102A JPS6086045A (en) 1983-10-19 1983-10-19 Manufacture of glass preform for optical fiber
AU34267/84A AU569757B2 (en) 1983-10-19 1984-10-16 Optical fibre preform manufacture
DK497084A DK158939C (en) 1983-10-19 1984-10-17 PROCEDURE FOR MANUFACTURING FRAME FOR OPTICAL FIBERS
AT84307168T ATE34164T1 (en) 1983-10-19 1984-10-18 PROCESS FOR MAKING A GLASS PREFORM FOR OPTICAL FIBER.
DE8484307168T DE3471090D1 (en) 1983-10-19 1984-10-18 Method for production of glass preform for optical fibers
EP84307168A EP0140651B1 (en) 1983-10-19 1984-10-18 Method for production of glass preform for optical fibers
KR1019840006488A KR870001738B1 (en) 1983-10-19 1984-10-18 The method and making of optical fiber preform
CA000465913A CA1245108A (en) 1983-10-19 1984-10-19 Method for the production of glass preform for optical fibers
US07/132,655 US4812155A (en) 1983-10-19 1987-12-10 Method for production of glass preform for optical fibers
HK690/89A HK69089A (en) 1983-10-19 1989-08-24 Method for production of glass preform for optical fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58194102A JPS6086045A (en) 1983-10-19 1983-10-19 Manufacture of glass preform for optical fiber

Publications (1)

Publication Number Publication Date
JPS6086045A true JPS6086045A (en) 1985-05-15

Family

ID=16318973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58194102A Pending JPS6086045A (en) 1983-10-19 1983-10-19 Manufacture of glass preform for optical fiber

Country Status (2)

Country Link
JP (1) JPS6086045A (en)
KR (1) KR870001738B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62275035A (en) * 1985-05-07 1987-11-30 Sumitomo Electric Ind Ltd Production of base material for optical fiber
JPH01141825A (en) * 1987-11-30 1989-06-02 Fujikura Ltd Production of glass preform containing fluorine
JPH01141830A (en) * 1987-11-30 1989-06-02 Fujikura Ltd Production of fluorine-containing clad optical fiber preform

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5992936A (en) * 1982-11-19 1984-05-29 Furukawa Electric Co Ltd:The Preparation of anhydrous preform rod

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5992936A (en) * 1982-11-19 1984-05-29 Furukawa Electric Co Ltd:The Preparation of anhydrous preform rod

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62275035A (en) * 1985-05-07 1987-11-30 Sumitomo Electric Ind Ltd Production of base material for optical fiber
JPH0526731B2 (en) * 1985-05-07 1993-04-19 Sumitomo Electric Industries
JPH01141825A (en) * 1987-11-30 1989-06-02 Fujikura Ltd Production of glass preform containing fluorine
JPH01141830A (en) * 1987-11-30 1989-06-02 Fujikura Ltd Production of fluorine-containing clad optical fiber preform

Also Published As

Publication number Publication date
KR850003367A (en) 1985-06-17
KR870001738B1 (en) 1987-09-26

Similar Documents

Publication Publication Date Title
US4812155A (en) Method for production of glass preform for optical fibers
US4979971A (en) Method for producing glass preform for optical fiber
US5221309A (en) Method for producing glass preform for optical fiber
JP3845906B2 (en) Method for producing synthetic silica glass
US20050223747A1 (en) Method for making low loss optical fiber
US4610709A (en) Method for producing glass preform for optical fiber
WO2013021759A1 (en) Optical fiber base material and method for manufacturing optical fiber
CN102910813A (en) Method for making an optical fiber preform
JPS61247633A (en) Production of glass base material for optical fiber
EP0160244B1 (en) Quartz glass optical fiber
WO2020155707A1 (en) Optical fiber preform rod of large size and low loss and preparation method therefor
JPS6086045A (en) Manufacture of glass preform for optical fiber
JP4079204B2 (en) Quartz glass tube for optical fiber preform and manufacturing method thereof
JPS6289B2 (en)
JPS6238292B2 (en)
JP2635563B2 (en) Manufacturing method of glass material for optical transmission body
JPS6086046A (en) Manufacture of glass preform for optical fiber
JP4565221B2 (en) Optical fiber preform
JPS62288128A (en) Production of optical fiber preform
JPH0218333A (en) Heat treatment of porous base material
JPS61251539A (en) Optical fiber
JPS61122133A (en) Production of glass preform for optical fiber
JPS6086044A (en) Manufacture of preform for light-transmission glass
JPH03183632A (en) Production of glass preform for optical fiber
JPH0436101B2 (en)