JPS62288128A - Production of optical fiber preform - Google Patents

Production of optical fiber preform

Info

Publication number
JPS62288128A
JPS62288128A JP13147986A JP13147986A JPS62288128A JP S62288128 A JPS62288128 A JP S62288128A JP 13147986 A JP13147986 A JP 13147986A JP 13147986 A JP13147986 A JP 13147986A JP S62288128 A JPS62288128 A JP S62288128A
Authority
JP
Japan
Prior art keywords
furnace
quartz
preform
optical fiber
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13147986A
Other languages
Japanese (ja)
Inventor
Kunihiro Matsubara
邦弘 松原
Akira Iino
顕 飯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP13147986A priority Critical patent/JPS62288128A/en
Publication of JPS62288128A publication Critical patent/JPS62288128A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To prolong the life of a furnace core tube and obtain the titled preform at a low cost, by transparently vitrifying a porous preform, prepared by flame hydrolytic reaction, etc., and consisting essentially of quartz in a transparent vitrifying furnace with the interior thereof, kept at a given temperature and having an atmosphere containing a fluoride. CONSTITUTION:A porous preform 1, e.g. SiO2-GeO2 based preform, formed by flame hydrolytic reaction of thermal oxidation reaction, e.g. VAD, OVD, plasma process, etc., and consisting essentially of quartz is introduced into a transparent vitrifying furnace 2 having a quartz furnace core tube 3, as necessary together with a fluoride gas, e.g. SiF4, etc., and an inert gas, e.g. He, etc., O2, etc., to give a fluoride-containing atmosphere. The preform is then heated to <=1,200 deg.C with a heating furnace 4 and transparently vitrified.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔技術分野〕 本発明は光ファイバ用多孔質母材を透明ガラス化する方
法に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention [Technical Field] The present invention relates to a method of converting a porous preform for optical fiber into transparent glass.

〔従来技術〕[Prior art]

火炎加水分解反応等で得られた光ファイバ用多孔質母材
は、通常透明ガラス化炉と呼ばれる高温の電気炉により
高温加熱され透明ガラス化される。
A porous preform for an optical fiber obtained by a flame hydrolysis reaction or the like is heated to a high temperature in a high-temperature electric furnace, which is usually called a transparent vitrification furnace, and is turned into transparent vitrification.

前記多孔質母材を透明ガラス化する際の炉の運転条件は
、該多孔質母材がドーパントとして含む、例えばGem
、等の含有量やその種類により異なるが、いずれにせよ
1000℃をかなり越える高い温度のもとで行われてい
る。具体的に一例を挙げると、5i08を主成分とする
ガラスに前述したGe0zが約10重量%含まれている
場合の透明ガラス化炉の温度は1400℃前後になる。
The operating conditions of the furnace when converting the porous base material into transparent vitrification are such that the porous base material contains as a dopant, for example, Gem.
, etc., and the type thereof, but in any case, it is carried out at a high temperature considerably exceeding 1000°C. To give a specific example, when the glass containing 5i08 as a main component contains about 10% by weight of GeOz, the temperature of the transparent vitrification furnace is around 1400°C.

これらドーパントの種類とその濃度による透明ガラス化
温度は、特公昭58−3981号公報に記載されている
The types of these dopants and the transparent vitrification temperature depending on their concentration are described in Japanese Patent Publication No. 58-3981.

2方透明ガラス化に際しては、前述のごとくその雰囲気
がきわめて高温であるために、周囲から母材中に不純物
が入り易い0例えば電気炉、炉壁等からFe、 Cr等
の遷移金属あるいはNa、 K等のアルカリ金属が混入
し易いが、これら金属はいずれも光ファイバの伝送損失
の増加を招く。そこでこれら不純物の混入を極力軽減す
べ(、通常前記多孔質母材は石英製の炉心管(以下石英
炉心管という)内に収納されて、電気炉等の加熱炉によ
り透明ガラス化されている。
During two-way transparent vitrification, as mentioned above, the atmosphere is extremely high temperature, so it is easy for impurities to enter the base material from the surroundings. For example, transition metals such as Fe, Cr, Na, Although alkali metals such as K are likely to be mixed in, all of these metals cause an increase in the transmission loss of the optical fiber. Therefore, it is necessary to reduce the contamination of these impurities as much as possible. Usually, the porous base material is housed in a quartz furnace tube (hereinafter referred to as quartz furnace tube), and is turned into transparent glass using a heating furnace such as an electric furnace.

ところがこの石英炉心管は、その使用環境が前述のごと
< 1400℃前後というきわめて厳しい状態にあるた
め、通常その寿命は2a間から長(て2ケ月と非常に短
い。それ故交換作業や(+’を理作業を卯繋に行すなけ
ればならないという問題がある。
However, as mentioned above, this quartz furnace tube is used under extremely harsh operating conditions of around <1400°C, so its lifespan is usually very short at between 2A and 2 months. 'There is a problem in that the physical work has to be carried out in a hurry.

加えてこの石英炉心管は価格が高いため交換費用が高く
、結果的に前記交換作業費等と合わせ光ファイバの低価
格化に妨げとなっている。
In addition, this quartz furnace tube is expensive, so its replacement cost is high, and as a result, together with the replacement work cost, etc., it is an obstacle to lowering the price of optical fibers.

て発明の目的〕 +iii記間凹に濫み本発明にあっては、石英炉心管の
長寿命化を図り、もって光ファイバの低価格化に富与す
ることを目的とする。
OBJECTS OF THE INVENTION +iii SUMMARY OF THE INVENTION It is an object of the present invention to extend the life of a quartz furnace tube, thereby contributing to lower prices of optical fibers.

〔発明の構成] 前記目的を達成すべく本発明は、火炎加水分解反応また
は熱酸化反応より生成した石英を主成分とずろ多孔質母
材を石英炉心管を備えた透明ガラス化炉内で透明ガラス
化する光ファイバ母材の製造方法において、前記透明ガ
ラス化炉内の温度は1200℃以下であって、かつその
雰囲気が少なくともフッ素化物を含むことを特徴とする
ものである。
[Structure of the Invention] In order to achieve the above-mentioned object, the present invention is to process a porous base material mainly composed of quartz produced by a flame hydrolysis reaction or a thermal oxidation reaction in a transparent vitrification furnace equipped with a quartz furnace tube. The method for producing an optical fiber preform to be vitrified is characterized in that the temperature in the transparent vitrification furnace is 1200° C. or less, and the atmosphere contains at least a fluoride.

〔発明の実施例〕[Embodiments of the invention]

従来から透明ガラス化時に前記光ファイバ用の多孔質1
社材をフッ素を含む雰囲気下に曝して、この多孔質母材
にフッ素をドープし母材の屈折率を下げる方法が知られ
ている。(特開昭55−67533号公ル等) しかしながらこの方法にあっても最終的には透明ガラス
化炉の温度を約1400℃以上に高めてガラス化を行っ
ていて、前述した石英炉心管の寿命の問題を常に孕んで
いた。
Conventionally, when making transparent glass, the porous material 1 for the optical fiber has been used.
A method is known in which the porous base material is exposed to an atmosphere containing fluorine and the porous base material is doped with fluorine to lower the refractive index of the base material. (Japanese Unexamined Patent Application Publication No. 55-67533, etc.) However, even with this method, the temperature of the transparent vitrification furnace is ultimately raised to about 1400°C or higher to perform vitrification, and the above-mentioned quartz furnace tube is It was always fraught with the problem of longevity.

本発明者は前記従来方法を低温下で実現できな−1か検
討した結果、フッ屑が多孔質母材にドープされると母材
の融点が下がり、その結果低い温度でも充分透明ガラス
化できることを見出した。
As a result of examining whether the above-mentioned conventional method could be realized at low temperatures, the present inventor found that when fluorine waste is doped into a porous base material, the melting point of the base material is lowered, and as a result, it is possible to obtain sufficiently transparent vitrification even at low temperatures. I found out.

すなわち従来方法では比較的低い温度でフッ素をドープ
した後最後には1400’cという高温に炉をW温して
いたが、この昇温は全く不用であって、得られた光ファ
イバ母材にも何等差がないことを見出したのである。
In other words, in the conventional method, after doping fluorine at a relatively low temperature, the furnace was heated to a high temperature of 1400'C, but this temperature increase was completely unnecessary, and the resulting optical fiber base material They found that there was no difference at all.

以下に本発明を図を参照しながら詳細に説明する。第1
図は本発明に使用される透明ガラス化炉の一例である。
The present invention will be explained in detail below with reference to the drawings. 1st
The figure shows an example of a transparent vitrification furnace used in the present invention.

第1図に示すように本発明は、VAD法、OVO法やプ
ラズマ法等の火炎加水分解反応や熱酸化反応より生成し
た、石英を主成分とする多孔質母材lを石英炉心管3を
備えた透明ガラス化が2内で透明ガラス化するに際し、
前記透明ガラス化炉2内の温度を1200℃以下とし、
かつその雰囲気を少なくともフッ素化物を含む雰囲気に
することを特徴とするものである。ここで符号4はカー
ボン炉等の加熱炉、符号5は前記フッ素化物を含むガス
を供給するガス供給管、符号6はこれらガスの排気管を
示している。尚前記フッ素化物としては、例えばSFb
 、S+Fa、CFa 、CC1tFz、CCl2F4
が使用でき、これらガスを例えばlie等の不活性ガス
や酸素や塩素等と一緒に透明ガラス化炉中に流す。
As shown in FIG. 1, in the present invention, a porous base material mainly composed of quartz produced by a flame hydrolysis reaction or a thermal oxidation reaction such as a VAD method, an OVO method, or a plasma method is used to form a quartz furnace core tube 3. When the equipped transparent vitrification becomes transparent vitrification within 2,
The temperature in the transparent vitrification furnace 2 is set to 1200°C or less,
Moreover, the atmosphere is characterized by containing at least a fluoride. Here, reference numeral 4 indicates a heating furnace such as a carbon furnace, reference numeral 5 indicates a gas supply pipe for supplying the gas containing the fluoride, and reference numeral 6 indicates an exhaust pipe for these gases. In addition, as the fluorinated compound, for example, SFb
, S+Fa, CFa, CC1tFz, CCl2F4
can be used, and these gases are flowed into a transparent vitrification furnace together with an inert gas such as lie, oxygen, chlorine, etc.

また前記透明ガラス化炉2内の温度を1200℃以下と
する理由は、石英炉心管3の転移点温度が1100℃〜
1200℃前後にあるため、1200℃以上の温度で前
記石英炉心管3を使用すると寿命劣化が顕著に現れてく
るためである。また当然のことながら二のように多孔質
母材1の透明ガラス化温度を下げることができる理由は
、前述の従来技術と同様に、透明ガラス化炉内雰囲気を
フッ素化物を含む雰囲気に保つことにより、前記多孔M
母材l中にフッ素がドープされ、その結果多孔質母材1
の融点が下がるためである。因に本発明者の実験によれ
ば、多孔質母材1の屈折率が△−で0.1%低下する蛍
に相当するフッ素がドープされると多孔質母材1の融点
は約100℃低くなり、屈折率が0.4%低下する量ド
ープすると約400℃の融点低下が確認された。
The reason why the temperature inside the transparent vitrification furnace 2 is set to 1200°C or less is that the transition point temperature of the quartz furnace tube 3 is 1100°C or less.
This is because the temperature is around 1,200°C, and if the quartz furnace tube 3 is used at a temperature of 1,200°C or higher, the life of the quartz furnace tube 3 will noticeably deteriorate. Naturally, the reason why the transparent vitrification temperature of the porous base material 1 can be lowered as shown in item 2 is that the atmosphere inside the transparent vitrification furnace is maintained to be an atmosphere containing fluoride, as in the prior art described above. Accordingly, the pore M
Fluorine is doped into the base material 1, resulting in a porous base material 1
This is because the melting point of According to the inventor's experiments, when the porous base material 1 is doped with fluorine, which is equivalent to fireflies, whose refractive index decreases by 0.1% at Δ-, the melting point of the porous base material 1 is approximately 100°C. When doped in an amount that lowered the refractive index by 0.4%, it was confirmed that the melting point decreased by about 400°C.

以下に本発明の一実施例及び従来法による比較例を示す
An example of the present invention and a comparative example using a conventional method are shown below.

(実施例) 第1図において、SiO,−Ge02 (Gem、を約
3wt%含む)系の多孔質母材1を火炎加水分解法の1
つであるVA[l法により作製し、120 φx500
1の母材lを得た。透明ガラス化炉20石英炉心管3内
にはガス供給管5より5iFaを30cc /分、Il
eを1511,7分、0、を1.5f/分、Chを0.
15n/分の割合で供給し、炉温を約1100℃に保持
した。この雰囲気下で前記多孔質母材1を回転しつつ、
180wm 7時の速度で炉内に引き下げていった。こ
のようにして透明ガラス化したところ特性面でなんら問
題のない透明な光ファイバ母材を得ることができた。
(Example) In FIG. 1, a porous base material 1 of SiO, -Ge02 (containing about 3 wt% of Gem) is prepared by flame hydrolysis.
VA [120φx500
A base material 1 of No. 1 was obtained. In the transparent vitrification furnace 20, 5iFa was supplied from the gas supply pipe 5 at 30cc/min into the quartz furnace tube 3.
e is 1511.7 minutes, 0 is 1.5 f/min, Ch is 0.
It was fed at a rate of 15 n/min and the furnace temperature was maintained at about 1100°C. While rotating the porous base material 1 in this atmosphere,
It was lowered into the furnace at a speed of 180 wm at 7 o'clock. When transparent glass was formed in this way, a transparent optical fiber preform with no problems in terms of properties could be obtained.

透明ガラス化炉をこのような条件下ですでに6力月以上
運転しているが、石英炉心管3の損傷はまったく見られ
ない。尚本実施例において脱水効果を高めるべく CI
、を使用しているが、このC1□は不可欠のものではな
く、これがなくとも脱水は可能である。またこの実施例
で炉温を1180℃に上げて同様に行ったところ、前記
1100℃の場合はぼ同様の結果が得られている。
Although the transparent vitrification furnace has been operated for more than 6 months under these conditions, no damage to the quartz furnace tube 3 has been observed at all. In this example, in order to enhance the dehydration effect, CI
, but this C1□ is not essential, and dehydration is possible even without it. In this example, when the furnace temperature was raised to 1180°C and the same procedure was carried out, almost the same results were obtained when the furnace temperature was 1100°C.

(比較例) 寸法が45φX5001の5iOz−GeOz(GeO
zを約10wt%含む)系多孔質母材1をVAD法によ
り作製した。
(Comparative example) 5iOz-GeOz (GeO
A porous base material 1 containing about 10 wt% of z was produced by the VAD method.

これを第1図の装置において、Heを151/分、02
を1.517分、C1,を0.15f/分の割合で流し
、炉温を1385℃に保持した状態で透明ガラス化した
In the apparatus shown in Fig. 1, this is carried out at 151/min, 02
was flowed for 1.517 minutes, C1 was flowed at a rate of 0.15 f/min, and the furnace temperature was maintained at 1385° C. to form transparent vitrification.

母材引き下げ速度は前記実施例と同じである。この結果
透明ガラス化はなんら問題なく行うことができたが、こ
のような温度条件で運転を続けたところ、杓40日目に
石英炉心管3に111傷が発見され7w 。
The base material lowering speed is the same as in the previous embodiment. As a result, transparent vitrification could be carried out without any problems, but when operation continued under such temperature conditions, 111 scratches were discovered in the quartz furnace tube 3 on the 40th day of ladle operation.

以上のように、光ファイバ用多孔7丁母材を透明ガラス
化するに際して、該ガラス化をフ、素化物を含む雰囲気
で、かつ温度を1200℃以下で処理することにより、
石英炉心管の寿命を格段に延ばすことができる。それ故
石英炉心管の交換や修理にかかる時間が大幅に節約でき
、かつ交換頻度が少なくなることにより交換コストの大
幅な低σ梨が可能となった。その結果光ファイバ母材を
低価格で製造できるというきわめて優れた効果がもたら
された。
As mentioned above, when converting the 7-hole preform for optical fiber into transparent vitrification, the vitrification is performed in an atmosphere containing chemical compounds and at a temperature of 1200° C. or lower.
The life of the quartz furnace tube can be significantly extended. Therefore, the time required for replacing and repairing the quartz furnace tube can be greatly saved, and the replacement frequency can be reduced, making it possible to significantly reduce the replacement cost. As a result, the extremely excellent effect that optical fiber preforms can be manufactured at low cost has been brought about.

〔発明の効果〕〔Effect of the invention〕

前述の如く本発明によれば、石英炉心管の大幅なる寿命
延長が可能となり、それ故炉心管の交換に伴う費用の著
しい低減が図れ、光ファイバ母材の低コスト化に大いに
寄与できる。
As described above, according to the present invention, it is possible to significantly extend the life of the quartz furnace tube, thereby significantly reducing the cost associated with replacing the furnace tube, and greatly contributing to the cost reduction of optical fiber preforms.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は透明ガラス化炉の概略図である。 1〜多孔質母材 2〜透明ガラス化炉 3〜石英炉心管
 4〜加熱炉 特許出願人  古河電気工業株式会社 第1図
FIG. 1 is a schematic diagram of a transparent vitrification furnace. 1 - Porous base material 2 - Transparent vitrification furnace 3 - Quartz furnace tube 4 - Heating furnace patent applicant Furukawa Electric Co., Ltd. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 火炎加水分解反応または熱酸化反応より生成した石英を
主成分とする多孔質母材を石英炉心管を備えた透明ガラ
ス化炉内で透明ガラス化する光ファイバ母材の製造方法
において、前記透明ガラス化炉内の温度は1200℃以
下であって、かつその雰囲気は少なくともフッ素化物を
含むことを特徴とする光ファイバ母材の製造方法。
A method for producing an optical fiber preform in which a porous preform mainly composed of quartz produced by a flame hydrolysis reaction or a thermal oxidation reaction is turned into transparent vitrification in a transparent vitrification furnace equipped with a quartz furnace tube, wherein the transparent glass 1. A method for manufacturing an optical fiber preform, characterized in that the temperature in the curing furnace is 1200° C. or less, and the atmosphere contains at least a fluoride.
JP13147986A 1986-06-06 1986-06-06 Production of optical fiber preform Pending JPS62288128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13147986A JPS62288128A (en) 1986-06-06 1986-06-06 Production of optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13147986A JPS62288128A (en) 1986-06-06 1986-06-06 Production of optical fiber preform

Publications (1)

Publication Number Publication Date
JPS62288128A true JPS62288128A (en) 1987-12-15

Family

ID=15058937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13147986A Pending JPS62288128A (en) 1986-06-06 1986-06-06 Production of optical fiber preform

Country Status (1)

Country Link
JP (1) JPS62288128A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102153275A (en) * 2010-12-27 2011-08-17 富通集团有限公司 Method for manufacturing bent insensitive optical fiber preformed rod
CN110927862A (en) * 2019-12-10 2020-03-27 普天线缆集团有限公司 Novel bending insensitive G657 single mode fiber and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102153275A (en) * 2010-12-27 2011-08-17 富通集团有限公司 Method for manufacturing bent insensitive optical fiber preformed rod
CN110927862A (en) * 2019-12-10 2020-03-27 普天线缆集团有限公司 Novel bending insensitive G657 single mode fiber and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US7524780B2 (en) Low loss optical fiber and method for making same
JP3845906B2 (en) Method for producing synthetic silica glass
JPH0372583B2 (en)
JPS61247633A (en) Production of glass base material for optical fiber
JPH05351B2 (en)
EP0164103B1 (en) Method for producing glass preform for optical fiber containing fluorine in cladding
JPS6081033A (en) Manufacture of optical fiber
EP0164127B1 (en) Method for producing glass preform for optical fibers
JP4079204B2 (en) Quartz glass tube for optical fiber preform and manufacturing method thereof
JPS62288128A (en) Production of optical fiber preform
WO2002026645A1 (en) Process for drying porous glass preforms
JP3579919B2 (en) Manufacturing method of preform for optical fiber
JPS59184736A (en) Transparent vitrification of optical porous glass
JPS6289B2 (en)
KR870001738B1 (en) The method and making of optical fiber preform
JP4565221B2 (en) Optical fiber preform
JPH02217329A (en) Production of glass preform for optical glass fiber
JPH0524093B2 (en)
JPS63315531A (en) Production of optical fiber preform
JPH0419173B2 (en)
JPH03115136A (en) Optical fiber preform and its production
JPS62297239A (en) Production of deposited glass soot
JPH0558662A (en) Production of parent material for optical fiber
JPH0660029B2 (en) Method for manufacturing base material for optical fiber
JPS6140831A (en) Manufacture of optical fiber base material