JPS6086036A - Production of quartz glass - Google Patents

Production of quartz glass

Info

Publication number
JPS6086036A
JPS6086036A JP19483283A JP19483283A JPS6086036A JP S6086036 A JPS6086036 A JP S6086036A JP 19483283 A JP19483283 A JP 19483283A JP 19483283 A JP19483283 A JP 19483283A JP S6086036 A JPS6086036 A JP S6086036A
Authority
JP
Japan
Prior art keywords
quartz glass
gel
sol
silica
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19483283A
Other languages
Japanese (ja)
Other versions
JPH0512290B2 (en
Inventor
Satoru Miyashita
悟 宮下
Sadao Kanbe
貞男 神戸
Motoyuki Toki
元幸 土岐
Tetsuhiko Takeuchi
哲彦 竹内
Haruo Nagafune
長船 晴夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP19483283A priority Critical patent/JPS6086036A/en
Publication of JPS6086036A publication Critical patent/JPS6086036A/en
Publication of JPH0512290B2 publication Critical patent/JPH0512290B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:To manufacture a quartz glass plate having excellent flatness, in the production of a quartz glass by a sol-gel process, by gelatinizing the raw material sol for a definite time interval in a closed state, and drying and sintering the product. CONSTITUTION:An alkyl silicate (e.g. ethyl silicate) is mixed with an aqueous solution of hydrochloric acid under vigorous agitation, and a specific amount of silica fine powder is dispersed in the resultant homogeneous solution. The pH of the dispersion is adjusted to 3-6 with an aqueous solution of ammonia. The obtained raw material sol is put into a vessel having flat bottom, sealed, and maintained at 0-40 deg.C for >=1 day to effect the gelatinization (formation of the network structure of silica by the dehydrative condensation reaction of tetrahydrosilane). The obtained gel is thermally dried in an opened state, and sintered to obtain a quartz glass plate.

Description

【発明の詳細な説明】 本発明はアルキルシリケート、微粉末シリカを原料とし
、PKを3〜6に調整するゾル−ゲル法による石英ガラ
スの低温合成法において、得られる板状石英ガラスを、
平面性の良い状態で作製する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses alkyl silicate and finely powdered silica as raw materials in a low-temperature synthesis method of silica glass using a sol-gel method in which PK is adjusted to 3 to 6.
This invention relates to a method of manufacturing with good flatness.

石英ガラスは工C製造工程中でるつぼやボード、拡散炉
等に使用されるようになり、その有用性が認められ、更
に水酸基の少ないものや光学的均一性の良いものが開発
されたことによって、各種の光学的用途に使用されるよ
うになり、特に光通信用の石英ガラスファイバーが最近
注目されている。
Quartz glass began to be used in crucibles, boards, diffusion furnaces, etc. during the C manufacturing process, and its usefulness was recognized, and with the development of products with fewer hydroxyl groups and better optical uniformity, Silica glass fibers have come to be used for various optical applications, and in particular, quartz glass fibers for optical communications have recently attracted attention.

このように石英ガラスは種々の分野に使用され、その利
用範囲も広がっている。しかし、石英ガラスの製造コス
トは高く、高価なことが問題になっている。安価で高品
質な石英ガラスを製造する方法として、ゾル−ゲル法が
試みられている。
As described above, quartz glass is used in various fields, and the scope of its use is expanding. However, the manufacturing cost of quartz glass is high, and the high price has become a problem. A sol-gel method has been attempted as a method for manufacturing inexpensive, high-quality quartz glass.

ゾル−ゲル法を用いて歩留り良く、大型の石英ガラスを
得る方法として、アルキルシリケートを加水分解したゾ
ル中に超微粉末シリカを加えは更にPHを3〜6に?A
整した後、50〜90℃で乾燥し、焼結する方法がある
。ドライゲル作製中の割れの問題と、焼結中の割れやク
ラックの問題を同時に解決したものであり、かなり大き
な石英シラス(41nchφ 以上)が低コストで製造
できるようになった。
As a method to obtain large-sized quartz glass with good yield using the sol-gel method, ultrafine powdered silica is added to a sol prepared by hydrolyzing alkyl silicate, and the pH is further adjusted to 3 to 6. A
After conditioning, there is a method of drying at 50 to 90°C and sintering. This solution simultaneously solved the problem of cracks during dry gel production and the problems of cracks and cracks during sintering, and it became possible to manufacture fairly large quartz glass (41 nchφ or more) at low cost.

ところが大きな石英ガラスを製造する場合、ゲルの乾燥
収縮の過程でそりが生じ、そのそりは最後まで解消でき
ない。また乾燥条件を精密に制御し、長時間かけて平板
状のドライゲルを作製しても、焼結時にそりが生じる傾
向が強い。
However, when manufacturing large quartz glass, warping occurs during the drying and shrinking process of the gel, and the warping cannot be completely eliminated. Furthermore, even if the drying conditions are precisely controlled and a flat dry gel is produced over a long period of time, there is a strong tendency for warping to occur during sintering.

たとえ大きな石英ガラスが製造できても、それがめる形
状(例えば平板状〕で得られなければ、応用は極めてせ
まい範囲に限られてしまう。利用する際には多大のロス
を生じたり、より多くの行程が必要となる。工0用石英
基盤やボードに用いることを考えると、平面性の良い状
態で石英ガラースーを得ることは極めて重大な意味を持
つ。
Even if large quartz glass can be produced, unless it can be made into a shape that can be held in place (for example, a flat plate), its application will be limited to a very small area. Considering that it is used for quartz substrates and boards for industrial use, it is extremely important to obtain quartz glass with good flatness.

本発明は従来のゾル−ゲル法がかかえているそりの問題
を解決し、平面性の良い石英ガラスを製造する、さらに
詳しくはゲル化時の形状を維持した石英ガラスを製造す
ることを目的とした。
The purpose of the present invention is to solve the problem of warpage caused by the conventional sol-gel method, and to produce quartz glass with good flatness, and more specifically, to produce quartz glass that maintains its shape during gelation. did.

次に本発明の概略を述べる。Next, an outline of the present invention will be described.

本発明の基本操作は、PH4〜5に調整することにより
短時間にゲル化したゲルを、室温付近で密閉したまま2
〜4日保持し、然る後に乾燥、焼結を行なうことである
The basic operation of the present invention is to gel the gel in a short time by adjusting the pH to 4 to 5, and then keep it sealed at room temperature for 2 hours.
It is held for ~4 days, and then dried and sintered.

そりの原因としては、乾燥の不均一さが挙げられる。平
板状のゲルでは上面と、容器に接触している下面とで溶
媒の蒸発速度が異なり、収縮速度が部分的に異なる。ま
た濃度勾配が生じる為、溶媒の他にテトラヒドロキシシ
ランも物質移動を起こし、シリカ密反も部分的に差を生
じる。このようにしてできたドライゲルを焼結しても平
板状の石英ガラスは得られないし、そるだけでなく、乾
燥、焼結過程で割れが生じる場合もある。
The cause of warping is uneven drying. In a plate-shaped gel, the rate of solvent evaporation differs between the top surface and the bottom surface that is in contact with the container, resulting in partially different shrinkage rates. Furthermore, since a concentration gradient occurs, mass transfer of tetrahydroxysilane as well as the solvent occurs, resulting in partial differences in silica tightness. Sintering the dry gel prepared in this manner does not yield flat quartz glass, and not only warps but also cracks may occur during the drying and sintering process.

PHを3〜乙に調整したゾルは短時間でゲル化し、その
後溶媒を押し出しながら急速に収縮する。その為、ゲル
は溶媒に浸った状態におかれゲルの部分的な乾燥速度の
差は大きい。
The sol whose pH is adjusted to 3 to 3 gels in a short period of time, and then rapidly shrinks while extruding the solvent. Therefore, the gel is kept immersed in the solvent, and there are large differences in the drying speed of the gel.

ゲル化後、収縮してドライゲルになる過程は、分子的に
見るとテトラヒドロキシシランの脱水縮重合反応が起っ
ている。シリカの網目構造が形成され、緻密化していく
。縮重合反応がある程度進行し、分子配列が決まってし
まえば、物質移動は起こらず、乾燥・焼結による収縮は
均等に進行すると考えられる。
From a molecular perspective, the process of shrinking and becoming a dry gel after gelation involves a dehydration condensation reaction of tetrahydroxysilane. A silica network structure is formed and becomes denser. Once the polycondensation reaction has progressed to a certain extent and the molecular arrangement has been determined, no mass transfer will occur and shrinkage due to drying and sintering will proceed evenly.

テトラヒドロキシシランの脱水縮重合反応の反応速度は
、テトラヒドロキシシラン濃度、水の濃度、水素イオン
濃度、温度によって決定する。これらの要因を均一に制
御できれば反応は均一に進む。ゾル状態において、化学
的均一性は制御できる。
The reaction rate of the dehydration condensation reaction of tetrahydroxysilane is determined by the tetrahydroxysilane concentration, water concentration, hydrogen ion concentration, and temperature. If these factors can be uniformly controlled, the reaction will proceed uniformly. In the sol state, chemical uniformity can be controlled.

そこで我々は網目構造が形成されるまでの時間ゾルを密
閉条件に置き、過飽和の蒸気で満たして溶媒の蒸発を防
ぎ、均一に縮重合反応を進めた後乾燥・焼結を行なうこ
とを提案する。
Therefore, we propose to keep the sol in closed conditions for a period of time until the network structure is formed, and then fill it with supersaturated steam to prevent the evaporation of the solvent, allowing the polycondensation reaction to proceed uniformly, and then drying and sintering. .

この方法に基づいて作製したドライゲルは極めて平面性
が高く一辣結彷もその平面を保った。、士た、かなり急
激に乾燥させるとドライゲルはそるものの、焼結すると
平面になった。
The dry gel prepared based on this method had extremely high flatness and maintained its flatness even after passing the gel. Although the dry gel warped when dried very rapidly, it became flat when sintered.

以下、実施例に基づき本発明の詳細な説明する実施例1
゜ エチルシリケー) 440 mAと0.1規定塩酸水浴
M 560 mlを激しく攪拌し、無色透明の均一溶液
を得た。そこにシリカ微粉末(jero811o x−
50)150S’を徐々に添加し、充分に攪拌した後、
超音波による分散を行なった。さらに01規定アンモニ
ア水溶液を滴下して、P H4,5に調整したゾル40
0yを内径20crIIで底が平らの容器に移し、密閉
した。
Example 1 The present invention will be explained in detail based on Examples below.
560 ml of a 0.1 N hydrochloric acid water bath and 440 mA of ethyl silica were vigorously stirred to obtain a colorless and transparent homogeneous solution. Add silica fine powder (jero811ox-
50) After gradually adding 150S' and stirring thoroughly,
Dispersion was performed using ultrasound. Furthermore, a 01N ammonia aqueous solution was added dropwise to adjust the pH to 4.5.
0y was transferred to a flat-bottomed container with an inner diameter of 20 crII and sealed.

温度を20℃に保つと約1時間後にゲル化し、その後平
面性を保ったまま徐々に収縮した。2日後ゲルは約1割
収縮しており、直径5mmの穴20個を開けたふたに変
え、徐々に60℃まで昇温し保持した。その後の収縮も
順調に進み、非常に平面性の良い直径14anのドライ
ゲルが得られた。
When the temperature was maintained at 20° C., it gelled after about 1 hour, and then gradually shrunk while maintaining its flatness. After 2 days, the gel had shrunk by about 10%, and the lid was replaced with a lid with 20 holes of 5 mm in diameter, and the temperature was gradually raised to 60°C and maintained. The subsequent shrinkage proceeded smoothly, and a dry gel with a diameter of 14 ann and very good flatness was obtained.

このドライゲルを180℃/hr の昇温速度で125
0°Cまで加熱すると、直径1ocrnの無色透明の石
英ガラスが製造できた。平面性は極めて良好だった。
This dry gel was heated to 125°C at a heating rate of 180°C/hr.
When heated to 0°C, colorless and transparent quartz glass with a diameter of 1 ocrn could be produced. The flatness was extremely good.

実施例2゜ 実施例1と同様に調製したゾルを密閉容器に移し、20
℃で4日保持した。ゲルは約1割収縮していた。以後実
施例1と同じ条件で乾燥・焼結を行なうと、非常に平面
性の良いドライゲル、及び石英ガラスが得られた。
Example 2゜The sol prepared in the same manner as in Example 1 was transferred to a sealed container, and
It was kept at ℃ for 4 days. The gel had shrunk by about 10%. Thereafter, drying and sintering were carried out under the same conditions as in Example 1, and a dry gel and quartz glass with very good flatness were obtained.

実施例五 実施例1と同様に調整したゾルを密閉容器に移し、2D
’Cで2日保持した後、直径5mmの穴20個を開けた
ふたに変えた。徐々に80℃まで昇温して保持したとこ
ろ、収縮は均一には進まず、得られたドライゲルはそっ
ていた。
Example 5 The sol prepared in the same manner as in Example 1 was transferred to a sealed container, and 2D
After holding in 'C for 2 days, the lid was replaced with a lid with 20 holes of 5 mm in diameter. When the temperature was gradually raised to 80° C. and maintained, shrinkage did not proceed uniformly and the obtained dry gel was warped.

ところが、このドライゲルを180 ℃/ hr の昇
温速度で1250 ℃まで加熱してガラス化すると、そ
りが解消され、非常に平面性の良い石英ガラスが得られ
た。
However, when this dry gel was vitrified by heating to 1250° C. at a heating rate of 180° C./hr, the warpage was eliminated and silica glass with very good flatness was obtained.

実施例4゜ 実施例1と同様に調整したゾルを、内径5 tyn 。Example 4゜ A sol prepared in the same manner as in Example 1 was prepared with an inner diameter of 5 tyn.

高さ3[]c!nの円筒容器に移し、密閉で2日放置し
た。ふたにピンホールを開け、60℃で乾燥すると極め
て血粉的な棒状のドライゲルが得られた。
Height 3[]c! The mixture was transferred to a cylindrical container of size N, and left in a sealed container for 2 days. A pinhole was made in the lid and the gel was dried at 60°C to obtain a rod-shaped dry gel that resembled blood powder.

1250℃まで加熱して、直径2.5 tyn 、長さ
10mの棒状石英ガラスが製造できた。容器の内側の形
状の相似形をしており、軸方向におけるそりがなかった
By heating to 1250° C., a rod-shaped quartz glass with a diameter of 2.5 tyn and a length of 10 m was manufactured. It had a similar shape to the inside of the container, and there was no warpage in the axial direction.

以上のように本発明法によれば、盤状石英ガラスを平面
性の良い状態で容易に製造できるため、石英基盤やボー
ドとしての利用が可能になる。また、ゲル化時の容器の
形状を保持する為、ロッドやチーープの製造にも非常に
有効である。
As described above, according to the method of the present invention, plate-shaped quartz glass can be easily manufactured in a state with good flatness, so that it can be used as a quartz substrate or board. In addition, since it maintains the shape of the container during gelation, it is very effective in manufacturing rods and cheeps.

以 上 田願大 株式会社諏訪精工舎that's all Tagan University Suwa Seikosha Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1) 少くともアルキルシリケートおよび超微粉末シ
リカを原料とするゾル−ゲル法による石英ガラスの低温
合成法において、ドライゲル作製時に、PHを3〜6に
調整したゾルを容器に密閉し、0℃〜40℃で1日以上
保持した後、半開放にして加熱乾燥することを特徴とす
る石英ガラスの製造方法。
(1) In the low-temperature synthesis method of quartz glass by the sol-gel method using at least alkyl silicate and ultrafine powdered silica as raw materials, when producing dry gel, the sol whose pH is adjusted to 3 to 6 is sealed in a container and heated to 0°C. A method for producing quartz glass, which comprises maintaining the temperature at ~40°C for at least one day, and then heating and drying it in a semi-open state.
(2) 密閉状態での好ましい温度範囲は10〜25℃
である特許請求の範囲第1項記載の石英ガラスの製造方
法。
(2) The preferred temperature range in a sealed state is 10-25℃
A method for producing quartz glass according to claim 1.
(3) 密閉状態で保持する時間の好ましい範囲は2〜
4日である特許請求の範囲第1項または第2項記載の石
英ガラスの製造方法。
(3) The preferred range of time for keeping in a sealed state is 2~
The method for manufacturing quartz glass according to claim 1 or 2, wherein the manufacturing method is 4 days.
JP19483283A 1983-10-18 1983-10-18 Production of quartz glass Granted JPS6086036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19483283A JPS6086036A (en) 1983-10-18 1983-10-18 Production of quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19483283A JPS6086036A (en) 1983-10-18 1983-10-18 Production of quartz glass

Publications (2)

Publication Number Publication Date
JPS6086036A true JPS6086036A (en) 1985-05-15
JPH0512290B2 JPH0512290B2 (en) 1993-02-17

Family

ID=16330998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19483283A Granted JPS6086036A (en) 1983-10-18 1983-10-18 Production of quartz glass

Country Status (1)

Country Link
JP (1) JPS6086036A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4965434A (en) * 1988-04-08 1990-10-23 Matsushita Electric Industrial Co., Ltd. Far-infrared heater
US6292500B1 (en) 1998-04-23 2001-09-18 Matsushita Electric Industrial Co., Ltd. Semiconductor laser device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4965434A (en) * 1988-04-08 1990-10-23 Matsushita Electric Industrial Co., Ltd. Far-infrared heater
US6292500B1 (en) 1998-04-23 2001-09-18 Matsushita Electric Industrial Co., Ltd. Semiconductor laser device

Also Published As

Publication number Publication date
JPH0512290B2 (en) 1993-02-17

Similar Documents

Publication Publication Date Title
US4681615A (en) Silica glass formation process
JPS6086036A (en) Production of quartz glass
JPS64331B2 (en)
JPS62265130A (en) Production of silica glass
JPH0582331B2 (en)
JPH0114177B2 (en)
JPS62265129A (en) Production of silica glass
JPS6086035A (en) Production of quartz glass
JPS5992924A (en) Preparation of quartz glass
JPS6065735A (en) Production of quartz glass
JPS6054929A (en) Production of quartz glass
JPH01119526A (en) Production of silica glass
JPS6086034A (en) Production of quartz glass
JPS61168542A (en) Production of quartz glass
JPS6126522A (en) Production of quartz glass
JPS6046933A (en) Manufacture of quartz glass plate
JPH04292425A (en) Production of silica glass
JPH0328380B2 (en)
JPS63107821A (en) Production of glass
JPS6046934A (en) Manufacture of quartz glass
JPS63182222A (en) Production of silica glass
JPS6054932A (en) Mass-production of quartz glass plate
EP1258457A1 (en) Silica glass formation process
JPS62265128A (en) Production of silica glass
JPS6090834A (en) Manufacture of quartz glass