JPS6086013A - Porous flat plate having electrical conductivity - Google Patents

Porous flat plate having electrical conductivity

Info

Publication number
JPS6086013A
JPS6086013A JP58192405A JP19240583A JPS6086013A JP S6086013 A JPS6086013 A JP S6086013A JP 58192405 A JP58192405 A JP 58192405A JP 19240583 A JP19240583 A JP 19240583A JP S6086013 A JPS6086013 A JP S6086013A
Authority
JP
Japan
Prior art keywords
flat plate
electrode
porous
calcined
injection molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58192405A
Other languages
Japanese (ja)
Other versions
JPH0413287B2 (en
Inventor
Masao Goto
後藤 昌生
Shozo Nakamura
省三 中村
Kenichi Waratani
藁谷 研一
Shoichi Sato
昭一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58192405A priority Critical patent/JPS6086013A/en
Publication of JPS6086013A publication Critical patent/JPS6086013A/en
Publication of JPH0413287B2 publication Critical patent/JPH0413287B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Abstract

PURPOSE:To prepare an electrode for fuel cell having improved characteristics, by setting porous carbon having a three-dimensional network structure in a cavity, subjecting chemically active two kinds os solutions to reaction injection molding, calcining it. CONSTITUTION:Melt of naphtha tar pitch is sprayed upon porous Al, the temperature of a furnace is then gradually raised, and the melt is calcined at 800 deg.C at the maximum, to prepare porous carbon having >=85% voids. It is set in a cavity of mold with a rib. The solution A consisting of a polyol composition containing a blow agent is blended with the solution B of isocyanate, injected to the mold, expanded, and set to give an electrode base plate with a rib. It is then calcined in an air atmosphere at 220 deg.C, kept then at 800 deg.C under nitrogen gas purge, and calcined by raising the temperature gradually to 1,800 deg.C. An electrode plate for fuel cell having high energy conversion efficiency, improved corrosion resistance, electrical conductivity and combustibility of fuel, is obtained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、三次元的網目状構造および60〜80%の空
隙率を有していて、電解質液などによる耐食性と導電性
並びに燃料の燃焼性にすぐれた燃料電池電極として好適
な導電性多孔質平板およびその製造方法に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention has a three-dimensional network structure and a porosity of 60 to 80%, and has excellent corrosion resistance and conductivity due to electrolytes, as well as combustibility of fuel. The present invention relates to a conductive porous flat plate suitable as a fuel cell electrode with excellent properties, and a method for manufacturing the same.

〔発明の背景〕[Background of the invention]

従来、導電性多孔質平板は大容量の燃料電池用電極とし
て未開発であって、特に高いエネルギ変換効率を有し安
価に生産できるものは提供されていなかった。すなわち
、電力事業用燃料電池の開発研究が1972年頃から米
国Un i t edTechnology社などにお
いて開始され、現在パイロットプラントが稼動できるま
でに至ったが、出力は4,500KW程度の小容量のも
のである。事業用高出力発電プラントにおいては、高い
エネルギ変換効率と経済的生産技術の開発が必要である
。本発明の対象とする大面積の電極の製造方法に関して
は、試行的に検討されているが、いずれも多大の工数を
要して電力事業用に供し得る程度に達していない欠点が
ある。
Conventionally, electrically conductive porous flat plates have not been developed as electrodes for large-capacity fuel cells, and no one that has particularly high energy conversion efficiency and can be produced at low cost has been provided. In other words, research and development of fuel cells for the electric power industry began around 1972 at United Technology and other companies in the United States, and a pilot plant is currently in operation, but the output is small, around 4,500 kW. . Commercial high-output power plants require the development of high energy conversion efficiency and economical production technology. Although methods for manufacturing large-area electrodes, which are the object of the present invention, have been studied on a trial basis, all of them have the disadvantage that they require a large number of man-hours and are not suitable for use in the electric power industry.

〔発明の目的〕[Purpose of the invention]

本発明は、上記の欠点を解決するもので、その目的はエ
ネルギ変換効率が高く経済的に生産できる導電性多孔質
平板およびその製造方法を提供することにある。
The present invention solves the above-mentioned drawbacks, and its purpose is to provide a conductive porous flat plate that has high energy conversion efficiency and can be produced economically, and a method for manufacturing the same.

〔発明の概要〕[Summary of the invention]

本発明の導電性多孔質平板は、燃・料電池用電極として
必要な、燃料ガスの連続的な通過性。
The conductive porous flat plate of the present invention has continuous permeability of fuel gas, which is necessary as an electrode for fuel cells.

電解質液を介しての燃焼性および生成電子のキャリアと
しての導電性を有するために、三次元的網目状構造を有
し60〜80%の空隙率を有することを特徴としている
。更に、本発明の導′亀性多孔質平板の製造方法は、樹
脂あるいは金属からなる三次元的網目状構造を有する多
孔質体を溶融ピッチで処理後焼成される多孔質カーボン
を、反応射出成形用リブ付きキャビティ内に設置し、次
いで化学的に活性な二種類の原液を反応射出することに
よりリプ付き電極原板を成形し、更にこのリプ付き電極
原板を焼成してなることを特徴としている。
It is characterized by having a three-dimensional network structure and a porosity of 60 to 80% in order to have flammability through the electrolyte solution and conductivity as a carrier of generated electrons. Furthermore, the method for producing a conductive porous flat plate of the present invention involves reaction injection molding of porous carbon, which is prepared by treating a porous body having a three-dimensional network structure made of resin or metal with molten pitch and then firing it. It is characterized in that it is placed in a cavity with ribs, then reaction-injected with two types of chemically active stock solutions to form a lip-equipped electrode base plate, and then this lip-equipped electrode base plate is fired.

〔発明の実施例〕 以下、本発明の一実施例を図に基づいて説明する。まず
、本実施例の概要を説明する。
[Embodiment of the Invention] Hereinafter, an embodiment of the present invention will be described based on the drawings. First, an outline of this embodiment will be explained.

本発明にょろりプ付き導電性多孔質平板を製造する方法
は、次の主たる二工程からなる。すなわち、第1の工程
は、第1図A又はBに示すように、多孔質樹脂1又は多
孔質金pA2を融体ピッチの溶射又は浸漬の作業3を実
施し、次に焼成作業4を経て空隙率85%以上の多孔質
カーボン5を製造する工程であり、第2の工程は、第2
図に示すように、前記多孔質カーボン5を成形用リブ付
きキャビティ6内にセットし、化学的に活性な2種類の
原液の反応射出成形(これをインサートモールドRIM
という)7によりリプ付き電極原板8を成形し、次いで
このリプ付き電極原板8を焼成する作業9を経て導電性
多孔質電極10を製造する工程である。
The method of manufacturing a conductive porous flat plate with a coating according to the present invention consists of the following two main steps. That is, in the first step, as shown in FIG. 1A or B, the porous resin 1 or the porous gold pA2 is thermally sprayed or immersed in molten pitch (3), and then subjected to the firing operation (4). This is a process of manufacturing porous carbon 5 with a porosity of 85% or more, and the second process is a second process.
As shown in the figure, the porous carbon 5 is set in a molding ribbed cavity 6, and reaction injection molding of two types of chemically active stock solutions (this is performed using an insert mold RIM).
In this step, a conductive porous electrode 10 is manufactured through step 7 of forming an electrode original plate 8 with lips, followed by operation 9 of firing the electrode original plate 8 with lips.

以下、具体的な実施例をもって本発明を更に詳細に説明
する。
Hereinafter, the present invention will be explained in more detail with reference to specific examples.

実施例1゜ 多孔質アルミニウムに、400 C以上で1時間以上保
持したナフサクールピッチ融液を噴射用ノズルを有する
ガンで溶射処理し、次に焼成炉中において室温から徐々
に昇温して最高81JOUまで至らしめ通算約10時間
焼成することにより、空隙率90%の多孔質カーボンを
得た。次にこの多孔質カーボンなリプ付き型キヤビテイ
内にセットする。反応射出成形機は、化学的に活性な2
種類の原液タンクすなわちAvfflタンクには、発泡
剤フレオン1(−11710重量%含むポリオール組成
物を収納し、B液タンクにはインシアネ−)(4,4’
−ジフェニルメタンジイソシアネート)を収納した成形
機であって、この場合商品名シンシナティミラクロ/製
LRM−R25を改造したものを用い、A液とB液とを
衝突混合させたあと上記型内に射出して発泡硬化させ、
リプ付き電極原板を得た。このリプ付き電極原板を22
0Cのを気雰囲気下で4時間焼成し、次に窒素ガスパー
ン下で800Cを4時間保って焼成を行(・、更に徐々
に昇温して1800Cで4時間の焼成を行なったあと降
温させて、気孔を有する三次元網目状の電極板すなわち
導′亀性多孔質平板を得た。
Example 1 Porous aluminum was thermally sprayed with a naphtha cool pitch melt kept at 400 C or more for more than 1 hour using a gun equipped with a spray nozzle, and then heated gradually from room temperature in a firing furnace until it reached a maximum temperature. Porous carbon with a porosity of 90% was obtained by firing the carbon to 81 JOU for a total of about 10 hours. Next, set it inside this porous carbon lipped cavity. The reaction injection molding machine uses chemically active two
The Avffl tank contains a polyol composition containing a blowing agent Freon 1 (-11710% by weight), and the B liquid tank contains Incyanate (4,4'
- Diphenylmethane diisocyanate), in this case, a modified LRM-R25 manufactured by Cincinnati Miraculo (trade name) is used to collide and mix liquids A and B, and then inject them into the mold. and harden the foam.
An electrode original plate with lips was obtained. This electrode original plate with lip is 22
0C in an air atmosphere for 4 hours, then fired at 800C for 4 hours under a nitrogen gas burn (-, then gradually raised the temperature and fired at 1800C for 4 hours, then lowered the temperature. A three-dimensional mesh electrode plate having pores, that is, a conductive porous flat plate was obtained.

この電極の諸物件は、常法により測定した結末、下表の
番号1に示す値を得た。すなわち、成形品密度が810
Kf//PL’+空隙率63%2曲げ強さ145(−と
いう比較的剛性の畠い平板が得られたか、耐電解質液、
ガス透過性共に優れた性質を示した。また、本実施例で
得られた導電性多孔質平板を、その組織を模式的に拡大
して示したのが第3図である。図中、21をもって三次
元網目状の骨格構造を有する多孔質カーボンを示す。
The various properties of this electrode were measured using conventional methods, and the values shown in number 1 in the table below were obtained. That is, the molded product density is 810
Kf // PL' + porosity 63% 2 bending strength 145 (-) A relatively rigid flat plate was obtained, electrolyte resistant,
It showed excellent properties in terms of gas permeability. Further, FIG. 3 is a schematic enlarged view of the structure of the conductive porous plate obtained in this example. In the figure, numeral 21 indicates porous carbon having a three-dimensional network skeleton structure.

表 実施例2〜5 この場合の第1工程を第1図Cに示す。すなわち、多孔
質樹脂11、例えば商品名プリジストンタイヤ■製スコ
ツトフェルトを型にセットし、スラリ状石こう12を注
形して硬化させ、焼成13により樹脂を熱分解除去した
ポーラス鋳型14になし、次に400 cで1時間以上
保持したナフサタールピッチ融液15を注形し、焼成1
6の後ジェット水またはショツトブラストなどの機械的
振動による石こう除去作業17を経て、空隙率92%の
多孔質カーボン5を得た。
Table Examples 2 to 5 The first step in this case is shown in FIG. 1C. That is, a porous resin 11, such as Scotto Felt manufactured by Prigiston Tire (trade name), is set in a mold, slurry-like gypsum 12 is cast and hardened, and the resin is thermally decomposed and removed by firing 13. Next, the naphtha tar pitch melt 15 held at 400 °C for more than 1 hour was poured into a mold, followed by firing 1.
After 6, a gypsum removal operation 17 using jet water or mechanical vibration such as shot blasting was performed to obtain porous carbon 5 with a porosity of 92%.

次に、第2工程は実施例1と同じ反応射出成形機と型を
用い、射出量を変えること罠より成形品密度700〜2
50 K/、/まで変化させた光泡構造体成形品を得、
この成形品を実施例1と同様の方法により焼成して電極
板としての導電性多孔質平板を得た。
Next, the second step uses the same reaction injection molding machine and mold as in Example 1, and changes the injection amount to achieve a molded product density of 700 to 2.
A light foam structure molded product with a temperature change of up to 50 K/,/ was obtained,
This molded product was fired in the same manner as in Example 1 to obtain a conductive porous flat plate as an electrode plate.

これらの電極板の緒特性は前記表の信号2〜5に示すと
おりである。すなわち、空隙率が66〜78%を示し、
これに応じて成形品密度は690Kf/iから260 
b/−へ小さくなり、曲げ強さも155 Kg/cdか
ら95(個へ減じてゆくが、実用上何ら差支えな(勿論
耐電解質液、ガス透過性も甑めて良好である。
The characteristics of these electrode plates are as shown in signals 2 to 5 in the table above. That is, the porosity shows 66 to 78%,
Accordingly, the molded product density ranges from 690 Kf/i to 260 Kf/i.
b/-, and the bending strength also decreases from 155 Kg/cd to 95 Kg/cd, but there is no problem in practical use (of course, the electrolyte resistance and gas permeability are also excellent.

これらの実施例において、骨格材としての機能を有する
多孔質カーボンの成形樹脂として、ポリウレタン、ナイ
ロン、ポリスチレン、エポキシ、ポリエステルおよびシ
リコーンを生成するための主材と硬化材の化学的活性な
2棟類の液状組成物を用いることができる。
In these examples, a chemically active double-base material and a hardening material are used to produce polyurethane, nylon, polystyrene, epoxy, polyester, and silicone as porous carbon molding resins that function as framework materials. A liquid composition of can be used.

また、化学的活性の市い原液主材中に発泡剤を予め混合
させ、反応射出成形時に成形品が発泡構造体となるよう
にして、焼成時の炭化と多孔質化の速度を上げることも
できる。
It is also possible to pre-mix a foaming agent into the chemically active raw material so that the molded product becomes a foamed structure during reaction injection molding, increasing the speed of carbonization and porosity during firing. can.

更に、1個の原料供給設備ユニットに対して多数個の成
形用型を配置し、同時に多数の発泡成形品を得ることに
よって、導電性多孔質平板を経済的に生産することがで
きる。
Further, by arranging a large number of molds for one raw material supply equipment unit and simultaneously obtaining a large number of foam molded products, it is possible to economically produce a conductive porous flat plate.

以上の説明により、燃料電池用電極として性能上すぐれ
ていて、電力事業用の大容量のものとして有効な導電性
リプ付き多孔質電極板の新規な製造方法が確立すること
ができた。すなわち、極板の骨格構造としての空隙率の
大きい多孔質カーボンの製造方法と、燃料ガスの燃焼効
率の点から緻密な気孔(60〜80%免隙率)を付与す
るための新規な反応射出成形法による発泡構造体の成形
方法を用いることにより、低圧力下でそりなどの変形が
発生することなしに、ガス透過性は勿論、耐電解質液、
曲げ強さにおいてもすぐれた特性を示した。
Through the above explanation, a new method for manufacturing a porous electrode plate with conductive lips that has excellent performance as an electrode for fuel cells and is effective as a large-capacity electrode for electric power business has been established. In other words, a method for producing porous carbon with a high porosity as the framework structure of the electrode plate, and a new reaction injection method for providing dense pores (60 to 80% porosity) from the viewpoint of fuel gas combustion efficiency. By using a molding method to form a foam structure, it does not cause deformation such as warping under low pressure, and has excellent gas permeability, electrolyte resistance,
It also showed excellent properties in terms of bending strength.

また、これらの実施例をとおして、従来大面積を必要と
する多孔質′電極板の密度分布が001ないし01のば
らつきを有して、出力電流の濃淡を招来して事業用とし
て欠点があったものを、密度分布が001ないしo、0
2という均一性を得て安定した出力電流を得ることがで
きた。
In addition, through these embodiments, the density distribution of the porous electrode plate, which conventionally requires a large area, has a variation of 001 to 01, resulting in a density of output current, which is disadvantageous for commercial use. The density distribution is 001 to o, 0
It was possible to obtain a uniformity of 2 and a stable output current.

〔発明の効果〕〔Effect of the invention〕

本発明による導電性多孔質平板は、以上の説明によって
明らかなように、エネルギ変換効率が旨く、かつその製
造方法は大容量用に適しすぐれた経済性を有する効果が
上げられる。
As is clear from the above description, the conductive porous flat plate according to the present invention has good energy conversion efficiency, and the manufacturing method thereof is suitable for large-capacity applications and has excellent economic efficiency.

なお当然のことではあるが、本発明は上記説明した実施
例にのみ限定されるものではない。
It goes without saying that the present invention is not limited to the embodiments described above.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1の工程たる多孔質カーボンの製造工程を示
すフローチャート、第2図は導電性多孔質平板の製造工
程を示すフローチャート、第6図は本発明の一実施例に
おいて得られた骨格構造を有する多孔質カーボンを示す
拡大模式21・・・三次元的網目構造を有する多孔質平
板。 代理人弁理士 高 欄 明 夫−4゜ 51 図 6 笥 2 図 ¥ 3 図
Figure 1 is a flowchart showing the first step of manufacturing porous carbon, Figure 2 is a flowchart showing the manufacturing process of a conductive porous flat plate, and Figure 6 is a skeleton obtained in an example of the present invention. Enlarged schematic 21 showing porous carbon having a structure: a porous flat plate having a three-dimensional network structure. Representative Patent Attorney High Column Akio-4゜51 Figure 6 笥 2 Figure¥3 Figure

Claims (1)

【特許請求の範囲】 1、 三次元的網目状構造を有しかつ60〜80%の空
隙率を有することを特徴とする導電性多孔質平板。 2、 樹脂あるいは金属からなる三次元的網目状構造を
有する多孔質体を溶融ピッチで処理後焼成される多孔質
カーボンを、反応射出成形用リブ付きキャビティ内に設
置し、次いで化学的に活性な二種類の原液を反応射出成
形することにより賦形されるリプ付き電極原板を焼成し
てなることを特徴とする導電性多孔質平板の製造方法。 6 反応射出成形用の原液に予め発泡剤を混合させてお
くことを特徴とする特許請求の範囲第2項に記載の導電
性多孔質平板の製造方法。
[Claims] 1. An electrically conductive porous flat plate having a three-dimensional network structure and a porosity of 60 to 80%. 2. Porous carbon, which is produced by treating a porous body made of resin or metal with a three-dimensional network structure with molten pitch and firing it, is placed in a ribbed cavity for reaction injection molding, and then heated with a chemically active material. 1. A method for producing a conductive porous flat plate, comprising firing a lip-equipped electrode base plate formed by reaction injection molding of two types of stock solutions. 6. The method for producing a conductive porous flat plate according to claim 2, characterized in that a blowing agent is mixed in advance into the stock solution for reaction injection molding.
JP58192405A 1983-10-17 1983-10-17 Porous flat plate having electrical conductivity Granted JPS6086013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58192405A JPS6086013A (en) 1983-10-17 1983-10-17 Porous flat plate having electrical conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58192405A JPS6086013A (en) 1983-10-17 1983-10-17 Porous flat plate having electrical conductivity

Publications (2)

Publication Number Publication Date
JPS6086013A true JPS6086013A (en) 1985-05-15
JPH0413287B2 JPH0413287B2 (en) 1992-03-09

Family

ID=16290768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58192405A Granted JPS6086013A (en) 1983-10-17 1983-10-17 Porous flat plate having electrical conductivity

Country Status (1)

Country Link
JP (1) JPS6086013A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02293384A (en) * 1989-04-28 1990-12-04 Ngk Insulators Ltd Production of electrically conductive porous ceramic tube
JP2010149208A (en) * 2008-12-24 2010-07-08 Toyota Motor Corp Method of treating surface of porous flat plate body, porous flat plate, and fuel cell
CN106829923A (en) * 2017-03-16 2017-06-13 石河子大学 A kind of biomass carbon material and preparation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5751110A (en) * 1980-09-10 1982-03-25 Kanebo Ltd Preparation of porous carbon

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5751110A (en) * 1980-09-10 1982-03-25 Kanebo Ltd Preparation of porous carbon

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02293384A (en) * 1989-04-28 1990-12-04 Ngk Insulators Ltd Production of electrically conductive porous ceramic tube
JP2010149208A (en) * 2008-12-24 2010-07-08 Toyota Motor Corp Method of treating surface of porous flat plate body, porous flat plate, and fuel cell
CN106829923A (en) * 2017-03-16 2017-06-13 石河子大学 A kind of biomass carbon material and preparation method

Also Published As

Publication number Publication date
JPH0413287B2 (en) 1992-03-09

Similar Documents

Publication Publication Date Title
US5868974A (en) Process for preparing pitch foams
CN108878965A (en) A kind of gel polymer electrolyte preparation method based on 3D printing technique
CN110845232B (en) Solid electrolyte supported oxide fuel cell with three-dimensional topological structure and preparation method thereof
EP1218313B1 (en) A method of casting pitch based foam
ATE286806T1 (en) FUEL CELL COLLECTOR PLATE WITH IMPROVED CONDUCTIVITY AND METHOD FOR PRODUCING THE SAME
CN101209837A (en) Modification method of graphite and modified graphite
CN114824344B (en) Graphite-resin composite bipolar plate and preparation method and application thereof
CN110976758B (en) Lost foam full mold casting process
JPS6086013A (en) Porous flat plate having electrical conductivity
CN109020596A (en) A kind of carbon-carbon composite and preparation method thereof and the application in electrolytic manganese dioxide production
CN1440865A (en) Method for producing vacuum heat insulation material core
CN114806079A (en) Preparation method of graphite/epoxy resin composite material
US3553032A (en) Method of making a fuel cell electrode by thermal decomposition of silver carbonate
JPS6086012A (en) Preparation of porous flat plate
CN115740364A (en) Method for preparing evaporative pattern shell and casting by using stratified combustion method and shell
US4851285A (en) Cellular carbon structure and method for producing same
CN110890527B (en) Positive electrode active material of lead-carbon battery and preparation method of positive electrode
CN114559579A (en) High-density flexible graphite bipolar plate and preparation method and application thereof
JPH04349178A (en) Low density porous carbon body and production thereof
CN109980214B (en) Preparation method of carbon nanotube-graphite composite electrode material and lithium ion battery
JP2003059501A (en) Manufacturing method of fuel cell separator, manufacturing method of intermediate molding and intermediate molding
CN112299841A (en) Electrode support body of energy conversion device and preparation method thereof
JPS6012672A (en) Separating plate for fuel cell
CN111073131A (en) Composite flame-retardant conductive polypropylene foamed bead and molded body and preparation method thereof
CN116154314B (en) Formation method of lithium ion battery