JPH0413287B2 - - Google Patents

Info

Publication number
JPH0413287B2
JPH0413287B2 JP58192405A JP19240583A JPH0413287B2 JP H0413287 B2 JPH0413287 B2 JP H0413287B2 JP 58192405 A JP58192405 A JP 58192405A JP 19240583 A JP19240583 A JP 19240583A JP H0413287 B2 JPH0413287 B2 JP H0413287B2
Authority
JP
Japan
Prior art keywords
porous
flat plate
ribbed
injection molding
reaction injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58192405A
Other languages
Japanese (ja)
Other versions
JPS6086013A (en
Inventor
Masao Goto
Shozo Nakamura
Kenichi Waratani
Shoichi Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58192405A priority Critical patent/JPS6086013A/en
Publication of JPS6086013A publication Critical patent/JPS6086013A/en
Publication of JPH0413287B2 publication Critical patent/JPH0413287B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明は、三次元的網目状構造および60〜80%
の空隙率を有していて、電解質液などによる耐食
性と導電性並びに燃料の燃焼性にすぐれた燃料電
池電極として好適な導電性多孔質平板の製造方法
に関する。 〔発明の背景〕 従来、導電性多孔質平板は大容量の燃料電池用
電極として未開発であつて、特に高いエネルギ変
換効率を有し安価に生産できるものは提供されて
いなかつた。すなわち、電力事業用燃料電池の開
発研究が1972年頃から米国United Technology
社などにおいて開始され、現在パイロツトプラン
トが稼動できるまでに至つたが、出力は4500KW
程度の小容量のものである。事業用高出力発電プ
ラントにおいては、高いエネルギ変換効率と経済
的生産技術の開発が必要である。本発明の対象と
する大面積の電極の製造方法に関しては、試行的
に検討されているが、いずれも多大の工数を要し
て電力事業用に供し得る程度に達していない欠点
がある。 〔発明の目的〕 本発明は、上記の欠点を解決するもので、その
目的はエネルギ変換効率が高く経済的に生産でき
る導電性多孔質平板の製造方法を提供することに
ある。 〔発明の概要〕 本発明の導電性多孔質平板の製造方法は、樹脂
あるいは金属からなる三次元的網目状構造を有す
る多孔質体を溶融ピツチで処理後焼成される多孔
質カーボンを、反応射出成形用リブ付きキヤビテ
イ内に設置し、次いで化学的に活性な二種類の原
液を反応射出することによりリブ付き電極原板を
成形し、更にこのリブ付き電極原板を焼成してな
ることを特徴としている。 〔発明の実施例〕 以下、本発明の一実施例を図に基づいて説明す
る。まず、本実施例の概要を説明する。 本発明によるリブ付き導電性多孔質平板を製造
する方法は、次の主たる二工程からなる。すなわ
ち、第1の工程は、第1図A又はBに示すよう
に、多孔質樹脂1又は多孔質金属2を融体ピツチ
の溶射又は浸漬の作業3を実施し、次に焼成作業
4を経て空隙率85%以上の多孔質カーボン5を製
造する工程であり、第2の工程は、第2図に示す
ように、前記多孔質カーボン5を成形用リブ付き
キヤビテイ6内にセツトし、化学的に活性な2種
類の原液の反応射出成形(これをインサートモー
ルドRIMという)7によりリブ付き電極原板8
を成形し、次いでこのリブ付き電極原板8を焼成
する作業9を経て導電性多孔質電極10を製造す
る工程である。 以下、具体的な実施例をもつて本発明を更に詳
細に説明する。 実施例 1 多孔質アルミニウムに、400℃以上で1時間以
上保持したナフサタールピツチ融液を噴射用ノズ
ルを有するガンで溶射処理し、次に焼成炉中にお
いて室温から徐々に昇温して最高800℃まで至ら
しめ通算約10時間焼成することにより、空隙率90
%の多孔質カーボンを得た。次にこの多孔質カー
ボンをリブ付き型キヤビテイ内にセツトする。反
応射出成形機は、化学的に活性な2種類の原液タ
ンクすなわちA液タンクには、発泡剤フレオンR
−11を10重量%含むポリオール組成物を収納し、
B液タンクにはイソシアネート(4,4′−ジフエ
ニルメタンジイソシアネート)を収納した成形機
であつて、この場合商品名シンシナテイミラクロ
ン製LRM−R25を改造したものを用い、A液と
B液とを衝突混合させたあと上記型内に射出して
発泡硬化させ、リブ付き電極原板を得た。このリ
ブ付き電極原板を220℃の空気雰囲気下で4時間
焼成し、次に窒素ガスパージ下で800℃を4時間
保つて焼成を行い、更に徐々に昇温して1800℃で
4時間の焼成を行なつたあと降温させて、気孔を
有する三次元網目状の電極板すなわち導電性多孔
質平板を得た。 この電極の諸物性は、常法により測定した結
果、下表の番号1に示す値を得た。すなわち、成
形品密度が810Kg/m3、空隙率63%、曲げ強さ145
Kg/cm2という比較的剛性の高い平板が得られた
が、耐電解質液、ガス透過性共に優れた性質を示
した。また、本実施例で得られた導電性多孔質平
板を、その組織を模式的に拡大して示したのが第
3図である。図中、21をもつて三次元網目状の
骨格構造を有する多孔質カーボンを示す。
[Field of Application of the Invention] The present invention relates to a three-dimensional network structure and a 60 to 80%
The present invention relates to a method for producing a conductive porous flat plate having a porosity of 100% and having excellent corrosion resistance and conductivity due to electrolytes, etc., and excellent combustibility of fuel, and suitable as a fuel cell electrode. [Background of the Invention] Conventionally, electrically conductive porous flat plates have not been developed as electrodes for large-capacity fuel cells, and none that have particularly high energy conversion efficiency and can be produced at low cost have been available. In other words, the research and development of fuel cells for the electric power industry began in 1972 at United Technology
The pilot plant has now been put into operation, with an output of 4500KW.
It has a relatively small capacity. Commercial high-output power plants require the development of high energy conversion efficiency and economical production technology. Although methods for manufacturing large-area electrodes, which are the object of the present invention, have been studied on a trial basis, all of them have the disadvantage that they require a large number of man-hours and are not suitable for use in the electric power industry. [Object of the Invention] The present invention solves the above-mentioned drawbacks, and its object is to provide a method for producing a conductive porous flat plate that has high energy conversion efficiency and can be produced economically. [Summary of the Invention] The method for producing a conductive porous flat plate of the present invention involves reaction injection of porous carbon, which is fired after treating a porous body made of resin or metal with a three-dimensional network structure in a molten pitch. It is characterized by being placed in a molding ribbed cavity, then molding a ribbed electrode base plate by reaction-injecting two types of chemically active stock solutions, and then firing this ribbed electrode base plate. . [Embodiment of the Invention] Hereinafter, an embodiment of the present invention will be described based on the drawings. First, an overview of this embodiment will be explained. The method of manufacturing a ribbed conductive porous plate according to the present invention consists of the following two main steps. That is, in the first step, as shown in FIG. 1A or B, the porous resin 1 or the porous metal 2 is thermally sprayed or immersed in a molten pitch (3), and then fired (4). This is a step of manufacturing porous carbon 5 with a porosity of 85% or more, and the second step is to set the porous carbon 5 in a molding ribbed cavity 6 and chemically Ribbed electrode base plate 8 is formed by reaction injection molding (this is called insert mold RIM) 7 of two types of stock solutions active in
This is a step of manufacturing a conductive porous electrode 10 through operation 9 of molding and then firing the ribbed electrode original plate 8. Hereinafter, the present invention will be explained in more detail using specific examples. Example 1 Porous aluminum was thermally sprayed with a naphthal pitch melt kept at 400°C or higher for 1 hour or more using a gun with a spray nozzle, and then heated gradually from room temperature in a firing furnace to a maximum temperature of 800°C. By heating the temperature to ℃ and firing for a total of about 10 hours, the porosity becomes 90.
% porous carbon was obtained. This porous carbon is then placed into a ribbed cavity. The reaction injection molding machine has two types of chemically active stock solution tanks, namely the A solution tank, which contains the blowing agent Freon R.
A polyol composition containing 10% by weight of -11 is stored,
The B liquid tank is a molding machine that stores isocyanate (4,4'-diphenylmethane diisocyanate). After collision-mixing, the mixture was injected into the mold and foamed and hardened to obtain a ribbed electrode original plate. This ribbed electrode original plate was fired in an air atmosphere at 220°C for 4 hours, then fired at 800°C for 4 hours under a nitrogen gas purge, and then gradually raised to 1800°C for 4 hours. After this, the temperature was lowered to obtain a three-dimensional mesh electrode plate having pores, that is, a conductive porous flat plate. The physical properties of this electrode were measured by conventional methods, and the values shown in number 1 in the table below were obtained. In other words, the density of the molded product is 810Kg/m 3 , the porosity is 63%, and the bending strength is 145.
A flat plate with relatively high rigidity of Kg/cm 2 was obtained, and exhibited excellent properties in terms of resistance to electrolyte and gas permeability. Further, FIG. 3 is a schematic enlarged view of the structure of the conductive porous plate obtained in this example. In the figure, 21 indicates porous carbon having a three-dimensional network skeleton structure.

〔発明の効果〕〔Effect of the invention〕

本発明による導電性多孔質平板の製造方法は大
容量用に適しすぐれた経済性を有する効果が上げ
られる。 なお当然のことではあるが、本発明は上記説明
した実施例にのみ限定されるものではない。
The method of manufacturing a conductive porous flat plate according to the present invention is suitable for large-capacity applications and has excellent economic efficiency. It goes without saying that the present invention is not limited to the embodiments described above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1の工程たる多孔質カーボンの製造
工程を示すフローチヤート、第2図は導電性多孔
質平板の製造工程を示すフローチヤート、第3図
は本発明の一実施例において得られた骨格構造を
有する多孔質カーボンを示す拡大模式図である。 21……三次元的網目構造を有する多孔質平
板。
FIG. 1 is a flowchart showing the first step of manufacturing porous carbon, FIG. 2 is a flowchart showing the manufacturing process of a conductive porous flat plate, and FIG. 3 is a flowchart showing the manufacturing process of porous carbon, which is the first step. FIG. 2 is an enlarged schematic diagram showing porous carbon having a skeletal structure. 21... Porous flat plate having a three-dimensional network structure.

Claims (1)

【特許請求の範囲】 1 樹脂あるいは金属からなる三次元的網目状構
造を有する多孔質体を溶融ピツチで処理後焼成さ
れる多孔質カーボンを、反応射出成形用リブ付き
キヤビテイ内に設置し、次いで化学的に活性な二
種類の原液を反応射出成形することにより賦形さ
れるリブ付き電極原板を焼成してなることを特徴
とする導電性多孔質平板の製造方法。 2 反応射出成形用の原液に予め発泡剤を混合さ
せておくことを特徴とする特許請求の範囲第1項
記載の導電性多孔質平板の製造方法。
[Scope of Claims] 1. Porous carbon, which is prepared by treating a porous body made of resin or metal and having a three-dimensional network structure with a molten pitch and then firing it, is placed in a ribbed cavity for reaction injection molding, and then 1. A method for producing a conductive porous flat plate, comprising firing a ribbed electrode base plate formed by reaction injection molding of two types of chemically active stock solutions. 2. The method for producing a conductive porous flat plate according to claim 1, characterized in that a blowing agent is mixed in advance into the stock solution for reaction injection molding.
JP58192405A 1983-10-17 1983-10-17 Porous flat plate having electrical conductivity Granted JPS6086013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58192405A JPS6086013A (en) 1983-10-17 1983-10-17 Porous flat plate having electrical conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58192405A JPS6086013A (en) 1983-10-17 1983-10-17 Porous flat plate having electrical conductivity

Publications (2)

Publication Number Publication Date
JPS6086013A JPS6086013A (en) 1985-05-15
JPH0413287B2 true JPH0413287B2 (en) 1992-03-09

Family

ID=16290768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58192405A Granted JPS6086013A (en) 1983-10-17 1983-10-17 Porous flat plate having electrical conductivity

Country Status (1)

Country Link
JP (1) JPS6086013A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669907B2 (en) * 1989-04-28 1994-09-07 日本碍子株式会社 Method for manufacturing electron conductive porous ceramic tube
JP5277950B2 (en) * 2008-12-24 2013-08-28 トヨタ自動車株式会社 Fuel cell
CN106829923A (en) * 2017-03-16 2017-06-13 石河子大学 A kind of biomass carbon material and preparation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5751110A (en) * 1980-09-10 1982-03-25 Kanebo Ltd Preparation of porous carbon

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5751110A (en) * 1980-09-10 1982-03-25 Kanebo Ltd Preparation of porous carbon

Also Published As

Publication number Publication date
JPS6086013A (en) 1985-05-15

Similar Documents

Publication Publication Date Title
CN106785148B (en) A kind of chemical synthesizing method and lithium ion secondary battery
JPS6219481B2 (en)
CN109216681B (en) Based on TiO2Lithium metal cathode material of nanotube array/titanium foam and preparation method thereof
CN110690397A (en) Fused salt composite electrolyte diaphragm, preparation method and application
CN100449828C (en) Titanium base foam lead positive and negative electrode plate grating material for lead acid accumulator and its producing method
US3625765A (en) Production of battery electrode
JPH0413287B2 (en)
CN110752373A (en) High-performance liquid metal battery negative current collector and preparation method thereof
CN112786860B (en) Composite positive electrode material and preparation method thereof, positive electrode slurry, positive electrode plate and all-solid-state battery
CN108520959A (en) Waterborne polymeric-isocyanate group electrode composite material and preparation method thereof
US3553032A (en) Method of making a fuel cell electrode by thermal decomposition of silver carbonate
JPH02297915A (en) Electric double layer capacitor
CN114204042B (en) Preparation method of water electrolysis CCM
CN115148946A (en) Preparation method of positive pole piece of lithium-sulfur battery and lithium-sulfur battery
CN109698341B (en) Electrode preparation method, electrode and battery
JPS64354B2 (en)
US3356537A (en) Foamed silver electrode and a method for preparing it
CN113061933A (en) Ultrathin hierarchical structure Co @ N-C nanosheet and preparation method and application thereof
CN112133958A (en) Method for inhibiting moisture generation in lithium ion battery
CN101546833B (en) Deformation prevention method in direct alcohol fuel cell profiled porous cathode support body forming
CN100353598C (en) Method for modifying proton exchange membrane fuel cell metal dual-polarity board
CN111354574A (en) Preparation method for preparing supercapacitor by taking waste phenolic insulation board as raw material
JPH0799141A (en) Polarized electrode, manufacture thereof and electric double layer capacitor using the same
JPH0311503B2 (en)
CN113258075B (en) Light bipolar lead-acid battery grid and preparation method thereof