JPS6085940A - High hardness composite sintered body for tool - Google Patents

High hardness composite sintered body for tool

Info

Publication number
JPS6085940A
JPS6085940A JP19501383A JP19501383A JPS6085940A JP S6085940 A JPS6085940 A JP S6085940A JP 19501383 A JP19501383 A JP 19501383A JP 19501383 A JP19501383 A JP 19501383A JP S6085940 A JPS6085940 A JP S6085940A
Authority
JP
Japan
Prior art keywords
sintered body
layer
hard material
composite sintered
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19501383A
Other languages
Japanese (ja)
Other versions
JPS6260991B2 (en
Inventor
高ノ 由重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dijet Industrial Co Ltd
Original Assignee
Dijet Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dijet Industrial Co Ltd filed Critical Dijet Industrial Co Ltd
Priority to JP19501383A priority Critical patent/JPS6085940A/en
Publication of JPS6085940A publication Critical patent/JPS6085940A/en
Publication of JPS6260991B2 publication Critical patent/JPS6260991B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はダイヤモンドまたは立方晶系窒化硼素を含む焼
結体と母4Aとなる硬物質体を強固に複合化した二[−
具用焼結体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a 2[--
The present invention relates to a sintered body for implements.

従来、ダイヤモンドまたは立JJ品系窒化fillll
素を含む焼結体と母相である硬物質体を中間物を介さず
に直接結合したもの、あるいは中間物にZrまたはTi
を介在物として結合させたものなどが知られている。
Conventional, diamond or standing JJ product type nitride fillll
The sintered body containing the element and the hard material body as the matrix are directly bonded without an intermediate, or the intermediate is Zr or Ti.
It is known that these are combined as inclusions.

しかし、前者の場合、焼結進行に伴う焼結体の熱収縮や
ダイヤモンドまたは立方晶系窒化硼素を含む焼結体と硬
物質体の熱膨張係数の差なとによって該焼結体と硬物質
体の境界部分に生した残留応力を吸収緩和することがで
きず歪や反り、またはクラックが発生するなとの問題を
有する。また後者の場合は、ダイヤモンド゛または立方
晶系窒化硼素を含む焼結体を焼結する際の焼結温度が1
200〜1600 Cであり、その温度領域においてZ
rまたはT1は、それぞれ1す、祠である硬物質体中の
炭素と反応してZrCx 、T1Cx (X<1)なる
炭化物を形成し、この炭化物の形成によって硬物質体−
1−の層ずなわちZrまたは1゛1の近傍において炭素
が不足し脆いη相(WICo:+C)か形成される。し
がも前記η相は10〜50μの厚さのものもあり切削時
においてこの部分に応力が集中して母44である硬物質
体」−から該焼結体が剥離するなどの不具合を有してい
る。
However, in the former case, due to the thermal contraction of the sintered body as sintering progresses and the difference in thermal expansion coefficient between the sintered body containing diamond or cubic boron nitride and the hard substance, the sintered body and the hard substance may The problem is that residual stress generated at the boundary of the body cannot be absorbed and relaxed, resulting in distortion, warping, or cracking. In the latter case, the sintering temperature when sintering the sintered body containing diamond or cubic boron nitride is 1.
200 to 1600 C, and in that temperature range Z
r or T1, respectively, reacts with carbon in the hard material body, which is a shrine, to form carbides of ZrCx and T1Cx (X<1), and by the formation of this carbide, the hard material body -
In the vicinity of the 1- layer, that is, Zr or 1-1, a brittle η phase (WICo: +C) lacking carbon is formed. However, the η phase may have a thickness of 10 to 50 μm, and stress may be concentrated in this portion during cutting, resulting in problems such as the sintered body peeling off from the hard material body 44. are doing.

本発明は、」二記に関してなしたもので、歪や反り・ま
たはクラックなどを生じさせず、かつ母材の硬物質体J
二からダイヤモンドまたは立方晶系窒化硼素を含む焼結
体が剥離するなどの不具合のない長寿命な工具用高硬度
焼結体を提供することを目的とするものである。
The present invention has been made in relation to item 2, and is a hard material J of the base material that does not cause distortion, warping, or cracks.
Another object of the present invention is to provide a high-hardness sintered body for tools that has a long life and is free from defects such as peeling of the sintered body containing diamond or cubic boron nitride.

本発明は、ダイヤモンドまたは立方晶系窒化硼素を含む
焼結体を周期律表4”+5a+6a挨の炭化物、窒化物
または炭窒化物の1種または2種以上とFe、Co、N
i 、W、Mo、Crの1種または2種頃上からなる硬
物質体と接合させた複合焼結体の接合部にTi 、Zr
の炭化物、窒化物あるいは炭窒化物の弔または複層を1
〜20μ形成させると共に、さらにZrまたはT1の1
ゾさ0 、5 rrnn未満の層を形成させた1、具用
高硬度複合焼結体である。
The present invention combines a sintered body containing diamond or cubic boron nitride with one or more carbides, nitrides, or carbonitrides of 4"+5a+6a of the periodic table and Fe, Co, and N.
i, Ti, Zr at the joint part of the composite sintered body joined with a hard material body made of one or two of W, Mo, and Cr.
1 carbide, nitride or carbonitride layer or multi-layer
~20 μm is formed, and further 1 of Zr or T1 is formed.
1. A high-hardness composite sintered body for implements in which a layer with a hardness of less than 0.5 rrnn was formed.

以下、本発明の実施例を具体的に述べる。Examples of the present invention will be specifically described below.

第1図は本発明の工具用高硬度焼結体を示したもので、
1は周期律表43 + 52 、6 a族の炭化物、窒
化物または炭窒化物の1種または2種以」二とFe +
 Co 、N1 +W + Mo + Crなどの1種
または2種以上からなる硬物質体で、2は該硬物質体の
表面に1〜20μの厚さて形成したT1またはZrの炭
化物、窒化物あるいは炭窒化物からなる層で、該層はC
V I)またはPVD法によって前記硬物質体の所要面
(少なくとも接合面)に形成しである。3は厚さ帆5闘
未満のZrまたはT1の層で、これは板状または蒸着に
よるものでもよく、0.OJ pry以、−1−のもの
が好ましい。4はダイヤモンドまたは立方晶系窒化硼素
を含む焼結体である。
Figure 1 shows the high hardness sintered body for tools of the present invention.
1 is one or more carbides, nitrides, or carbonitrides of group 43 + 52, 6a of the periodic table, and Fe +
A hard material body made of one or more of Co, N1 + W + Mo + Cr, etc., and 2 is a carbide, nitride, or carbon of T1 or Zr formed on the surface of the hard material with a thickness of 1 to 20μ. A layer made of nitride, the layer is made of C
VI) or on the desired surface (at least the bonding surface) of the hard material body by PVD method. 3 is a layer of Zr or T1 with a thickness of less than 5 mm, which may be plate-like or vapor-deposited; From OJ pry, -1- is preferred. 4 is a sintered body containing diamond or cubic boron nitride.

−1−記した焼結体4のうちタイヤモン1−の場合は、
60〜90体積%のダイヤモンド粉末にFe 、Co 
、Niなどの鉄族金属のうち1種板−1−の粉末を加え
たものをボールミルによって充分攪拌混合して焼結し、
立方晶系窒化硼素の場合は、30〜70体積%の立方晶
系窒化硼素粉末にTi 、Zr 、If 、Ta 、S
i 、W(D窒化物、炭化物または炭窒化物とA#20
3の1種の粉末または2種以」二の混合粉末を69〜1
6体積%とAn + Fe + Co + I’J+ 
+ S 1 のうちの1種の粉末または2種以」−の混
合粉末を1〜15体積%を混ぜたものを充分攪拌混合し
て、その後焼結によって得たものである。
-1- Among the sintered bodies 4 described above, in the case of Tiremon 1-,
60-90% by volume of diamond powder with Fe and Co
, powder of type 1 plate-1- among iron group metals such as Ni is added, thoroughly stirred and mixed in a ball mill, and sintered.
In the case of cubic boron nitride, Ti, Zr, If, Ta, and S are added to 30 to 70 volume % of cubic boron nitride powder.
i, W (D nitride, carbide or carbonitride and A#20
69 to 1 powder of one type or a mixed powder of two or more of 3.
6 volume% and An + Fe + Co + I'J+
It is obtained by sufficiently stirring and mixing a mixture of 1 to 15% by volume of one type of powder or a mixed powder of two or more types of + S 1 and then sintering.

以」二の如くのものを第1図のようにして反応容器に配
し、該容器を超高圧高温下にさらして焼結し、夕1イヤ
モンドまたは)γ方晶系窒化硼素を含む焼結体と硬物質
体とを結合せしめて工具用複合焼結体を得た。この複合
焼結体は歪や反り、またはクラックなども見られず、か
つ実機イヤモンドの場合が55〜65キロバールの圧力
と1400〜1600℃の温度を加え、立方晶系窒化硼
素の場合は40〜50キロバールの圧力と1200〜1
400 ’Cの温度条件下でおこなったものである。
The following materials are placed in a reaction vessel as shown in Figure 1, and the vessel is exposed to ultra-high pressure and high temperature to sinter. A composite sintered body for a tool was obtained by combining the body and the hard material body. This composite sintered body shows no distortion, warping, or cracks, and in the case of actual diamonds, a pressure of 55 to 65 kbar and a temperature of 1,400 to 1,600°C is applied, and in the case of cubic boron nitride, it is 50 kbar pressure and 1200-1
The test was carried out at a temperature of 400'C.

次に、上記の如くなした理由について説明する。Next, the reason for doing so will be explained.

TiまたはZ[の炭化物、窒化物あるいは炭窒化物から
なる層2を硬物質体1の表面にコーティングさせること
によって該硬物質体と該層間にη相の発生を防止して強
固に接着できるのと同時にZrまたはTiの層3とも焼
結時に反応して強固に接着する。
By coating the surface of the hard material body 1 with a layer 2 made of carbide, nitride, or carbonitride of Ti or Z[, it is possible to prevent the generation of η phase between the hard material body and the layer and to achieve strong adhesion. At the same time, it also reacts with the Zr or Ti layer 3 during sintering to firmly adhere.

なお、層2の厚みについては、1μ未満ではη相形成の
防止に効果がないし、これが20 ttを越えると、こ
の部分に応力が集中して剥離の原因となるので好ましく
ない。
As for the thickness of layer 2, if it is less than 1 μm, it will not be effective in preventing the formation of the η phase, and if it exceeds 20 tt, stress will be concentrated in this part, causing peeling, which is not preferable.

また、ZrまたはTiの層3を介在させることによって
、すぐれたガス吸収性、すなわち、焼結体原料粉末の吸
着ガスや焼結111に発生ずる生成ガスを吸収固溶し、
焼結性を促進させ、かつ、すぐれた機械的特性、すなわ
ち、焼結後の残留応力を吸収緩和し、歪や反り、または
クラックの発生を防止する。
In addition, by interposing the Zr or Ti layer 3, it has excellent gas absorption properties, that is, it absorbs and solidly dissolves the adsorbed gas of the sintered body raw material powder and the generated gas generated during sintering 111,
It promotes sinterability and has excellent mechanical properties, that is, absorbs and relieves residual stress after sintering, and prevents distortion, warping, or cracking.

なお、層3の厚みは、0.01ffff未満であると境
界部分の残留応力の吸収緩和の効果が不充分になり、歪
や反り、またはクラックが発生し易くなるし、これがQ
、5mmを越えると残留応力の吸収緩和は充分なものに
なるが、この複合焼結体の剛性の点で問題が生じ、切削
時にビビリや切刃が欠損するなどの不J、L合の原因と
なりやすい。
If the thickness of the layer 3 is less than 0.01ffff, the effect of absorbing and relaxing the residual stress at the boundary will be insufficient, and distortion, warping, or cracks will easily occur, and this will cause the Q
If the thickness exceeds 5 mm, absorption and relaxation of residual stress will be sufficient, but problems will arise in terms of the rigidity of this composite sintered body, which will cause chatter and chipping of the cutting edge during cutting. It's easy to become.

以下、実施例を述べる。Examples will be described below.

実施例1 平均一次粒径3μのダイヤモン)・粉末90体M%、3
25メツシユ以FのCo粉末10体積%の混合粉末をボ
ールミルで約35時間混合しこれを原料とした。
Example 1 Diamond with an average primary particle size of 3 μm) powder 90 pieces M%, 3
A mixed powder containing 10% by volume of Co powder of 25 mesh F or more was mixed in a ball mill for about 35 hours and used as a raw material.

ジルコニウム製の反応容器内にTiCを10μ被覆した
硬物質体の円盤(厚み2.0厘、直径15.54Iff
)を置き、この上に約0.6gの上記原料粉末を充填し
て反応容器をセットした。
A hard material disk coated with 10 μm of TiC in a zirconium reaction vessel (thickness: 2.0 mm, diameter: 15.54
), about 0.6 g of the above raw material powder was placed thereon, and a reaction vessel was set.

その後超高圧高温発生装置(ヘルド型)を川t、)60
キロバール、1500℃で約30分保持して焼結した後
冷却して圧力の除去をおこなった。
After that, the ultra-high pressure and high temperature generator (held type) was installed at 60
After sintering by holding at kilobar and 1500° C. for about 30 minutes, the pressure was removed by cooling.

これによって得られた複合焼結体は、ダイヤモンドを含
む焼結体と硬物質体は、i’ i板と1゛IC層を介し
て強固に接着され、歪、反り、クラックまたはη相など
のない複合焼結体であった。
In the composite sintered body thus obtained, the diamond-containing sintered body and the hard material are firmly bonded through the i'i plate and the 1゛IC layer, and there is no distortion, warpage, cracks, or η phase. It was a composite sintered body.

」1記複合焼結体を544E−W2Eの超硬スローアウ
ェイチップのコーナーにロウf:1けし、このチップを
用いて20%5i−A6合金(り300X500、II
 20 X深さ50の溝イリ)素拐の外周長手方向に断
続切削した。このときの切削条件はV = 500 、
、、/、月u、r=0.]1旧++/+’ e IJ、
d = i、Q騎乾式切削である。
1. Place the composite sintered body in the corner of a 544E-W2E carbide indexable tip with wax f: 1, and use this tip to prepare a 20% 5i-A6 alloy (300X500, II
A groove of 20×50 depth was cut intermittently in the longitudinal direction of the outer periphery of the grain. The cutting conditions at this time were V = 500,
, , /, month u, r=0. ]1 old ++/+' e IJ,
d = i, Q dry cutting.

以」二の試験結果は、60 ・・II++切削後のフラ
ンク摩耗0.06騎、120=、、、・l切削後のフラ
ンク摩耗は0.011ffであった。また、この試験中
において複合焼結体の切刃部分にチッピングまたはカケ
なとの不具合は生しなかった。しかも層2と層3は焼結
体4と硬物質体1を強固に接着しており剥離およびクラ
ンクは見られなかった。
The second test results were that the flank wear after cutting 60 = ..II++ was 0.06 mm, and the flank wear after cutting 120 = ..l was 0.011 ff. Further, during this test, no defects such as chipping or chipping occurred on the cutting edge of the composite sintered body. Furthermore, layers 2 and 3 firmly adhered the sintered body 4 and the hard material body 1, and no peeling or cranking was observed.

実施例2 平均一次粒径5μの立方晶系窒化硼素粉末75体積%、
平均一次粒径1μのAlhO3粉末15粉末第5体積5
メツシユ以下のA44粉末8積%とS1粉末2体「1%
からなる混合粉末をボールミルで約50時間混合し、こ
れを原料とした。
Example 2 75% by volume of cubic boron nitride powder with an average primary particle size of 5μ,
AlhO3 powder with an average primary particle size of 1μ 15 Powder 5th volume 5
8% by volume of A44 powder below mesh and 2% of S1 powder
A mixed powder consisting of the above was mixed in a ball mill for about 50 hours, and this was used as a raw material.

チタン製反応容器内にi” i Nを15μ被覆した硬
物質体(厚み2.5mm、直径17.2闘)を載1斤し
、この上に厚みQ、2trtm直径が17.2y+mの
Z1°板を置き、さらに、この上に約0.81の」二記
原料粉末を充填して反応容器をセットした。
A hard material body (thickness 2.5 mm, diameter 17.2 mm) coated with 15μ of i'' i N was placed in a titanium reaction vessel, and on top of this was placed a Z1 degree with a thickness of Q, 2trtm and a diameter of 17.2y+m. A plate was placed, and about 0.81% of the raw material powder was filled thereon, and a reaction vessel was set.

その後、超高圧高温発生装置を用い、45キロバール、
1300℃て約’1Qntin間保持して焼結した後温
度と圧力を除去した。
After that, using an ultra-high pressure and high temperature generator, 45 kilobar,
After sintering at 1300° C. for about 1 Qntin, the temperature and pressure were removed.

」−記によって得た複合焼結体は、立方晶系窒化硼素を
含む焼結体をZr板と−[” i N 11′7iを介
して硬物質体と強固に接着していた。またjIN層と硬
物質体の境界をこはη相もなく、歪または反り、クラッ
クなどのない複合焼結体が得られた。
In the composite sintered body obtained by the process described above, the sintered body containing cubic boron nitride was firmly adhered to the hard material body via the Zr plate and the -['' i N 11'7i. There was no η phase at the boundary between the layer and the hard material body, and a composite sintered body without distortion, warpage, or cracks was obtained.

上記複合焼結体を5NG433の超硬スローアウェイチ
ップのコーナーにロウf・1けし、このデツプを用いて
焼入鋼(SKD61、II +< C55)のIJ I
 OQ my x長さ250mmx高さ5Q#mをフラ
イス断続切削した。その切削条(’Iは、\l= l 
Q Q n+ / +++ i II、f : Q、Q
 5 11111+7/1’ C11、+l =0.3
騎乾式切削である。
The above composite sintered body was soldered to the corner of a 5NG433 carbide indexable tip, and this depth was used to make an IJ I of hardened steel (SKD61, II + < C55).
Intermittent milling of OQ my x length 250mm x height 5Q#m was performed. The cutting line ('I is \l = l
Q Q n+ / +++ i II, f: Q, Q
5 11111+7/1' C11, +l =0.3
It is a dry cutting method.

以−、Lの結果、l Q Q +IIi I+切削後の
フランクH耗0. l yzm、200 mi、、切削
後のフランク摩耗Q、2mmで、この間チッピングまた
はカケなともなく、各層の接着は強固なもので不具合(
Jなかった。
Therefore, the result of L is l Q Q + IIi I + flank H wear after cutting 0. l yzm, 200 mi, flank wear Q after cutting was 2mm, there was no chipping or chipping during this period, and the adhesion between each layer was strong and there were no problems (
There was no J.

実施例3 ダイヤモンドまたは立方晶系窒化硼素を含む焼結体4を
硬物質体1に接着するにあたり、その層2,3を表1に
示したような各種のものを+iir記実施例1および実
施例2とは5同様の製法により製作し、かつ該実施例で
おこなった試験をした。
Example 3 When adhering the sintered body 4 containing diamond or cubic boron nitride to the hard material body 1, the layers 2 and 3 were coated with various materials as shown in Table 1 according to Example 1 and Example 3. Example 2 and Example 5 were manufactured using the same method and tested as in Example 5.

表1 試験結果において111f記または1iif々記の実施
例同様正常なフランク摩耗てあったし、硬物質体は各層
2,3を介して強固に接着しており、しかも硬物質体1
と層2の界面にη相もなかった。
Table 1 The test results showed normal flank wear similar to the examples described in 111f and 1iif, and the hard material bodies were firmly adhered through each layer 2 and 3, and the hard material body 1
There was also no η phase at the interface between layer 2 and layer 2.

またこれら複合焼結体には歪、反り、タラツクなとも見
られなかった。
Moreover, no distortion, warpage, or roughness was observed in these composite sintered bodies.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の複合焼結14(を1υrili7した
jj:面図。 1−m−硬物質体 2−−一層 3−一−一層 4−m
−焼結体 特許出願人 ダイジヱット−L業株式会社
Fig. 1 is a cross-sectional view of the composite sintered 14 of the present invention (1υrili7). 1-m-hard material body 2--one layer 3--one layer 4-m
- Sintered body patent applicant Daijit - Lgyo Co., Ltd.

Claims (1)

【特許請求の範囲】 (]、1 ダイヤモンドまたは立方晶系窒化硼素を含む
焼結体を周期律表4a、5a、5a族の炭化物、窒化物
、または炭窒化物の1種または2種以上のFe 、Co
 、Ni 、W、Mo。 Crの1種または2種以」二からなる硬物質体と接合さ
せた複合焼結体の接合部にTi、Zrの炭化物、窒化物
あるいは炭窒化物の単または複層を1〜20μ形成させ
ると共に、さらにZrまたはT1の厚さ0.5mm未満
の層を形成させたことを特徴とする工具用高硬度複合焼
結体。
[Scope of Claims] (], 1 A sintered body containing diamond or cubic boron nitride is combined with one or more carbides, nitrides, or carbonitrides of groups 4a, 5a, and 5a of the periodic table. Fe, Co
, Ni, W, Mo. A single or multiple layer of Ti, Zr carbide, nitride, or carbonitride is formed in a thickness of 1 to 20 μm at the joint of a composite sintered body joined to a hard material body made of one or more Cr. A high-hardness composite sintered body for a tool, further comprising a layer of Zr or T1 with a thickness of less than 0.5 mm.
JP19501383A 1983-10-17 1983-10-17 High hardness composite sintered body for tool Granted JPS6085940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19501383A JPS6085940A (en) 1983-10-17 1983-10-17 High hardness composite sintered body for tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19501383A JPS6085940A (en) 1983-10-17 1983-10-17 High hardness composite sintered body for tool

Publications (2)

Publication Number Publication Date
JPS6085940A true JPS6085940A (en) 1985-05-15
JPS6260991B2 JPS6260991B2 (en) 1987-12-18

Family

ID=16334078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19501383A Granted JPS6085940A (en) 1983-10-17 1983-10-17 High hardness composite sintered body for tool

Country Status (1)

Country Link
JP (1) JPS6085940A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4837089A (en) * 1986-12-19 1989-06-06 Nippon Oil And Fats Company, Limited High hardness composite sintered compact
US6155755A (en) * 1998-03-02 2000-12-05 Sumitomo Electric Industries, Ltd. Hard sintered body tool
CN109735758A (en) * 2019-03-14 2019-05-10 上海海事大学 A kind of method of cubic boron nitride enhancing molybdenum evanohm powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4837089A (en) * 1986-12-19 1989-06-06 Nippon Oil And Fats Company, Limited High hardness composite sintered compact
US6155755A (en) * 1998-03-02 2000-12-05 Sumitomo Electric Industries, Ltd. Hard sintered body tool
CN109735758A (en) * 2019-03-14 2019-05-10 上海海事大学 A kind of method of cubic boron nitride enhancing molybdenum evanohm powder

Also Published As

Publication number Publication date
JPS6260991B2 (en) 1987-12-18

Similar Documents

Publication Publication Date Title
KR100823760B1 (en) Method of producing an abrasive product containing cubic boron nitride
US5468268A (en) Method of making an abrasive compact
US4666466A (en) Abrasive compacts
US4959929A (en) Tool insert
US8597387B2 (en) Abrasive compact with improved machinability
EP1309732B1 (en) Method of producing an abrasive product containing diamond
JPH11505483A (en) Corrosion and oxidation resistant grades of PCD / PCBN for wood processing applications
JPH06182631A (en) Polished article and production thereof
JPS6184303A (en) Manufacture of composite sintered body
EP0816304B1 (en) Ceramic bonded cubic boron nitride compact
JPS6085940A (en) High hardness composite sintered body for tool
JP2003095743A (en) Diamond sintered compact and method of manufacturing the same
JPS58120406A (en) High hardness sintered tool
JPS60121251A (en) Diamond sintered body for tool and its production
JP2505789B2 (en) High hardness sintered body tool
EP0706850B1 (en) Brazable cobalt-containing CBN compacts
JPS6022680B2 (en) Composite sintered body for tools and its manufacturing method
JPS6311414B2 (en)
JP2020059079A (en) Sintered material split body, cutting tool element using sinter material split body, and method of manufacturing the same
JPS59161268A (en) Abrasive body and manufacture thereof
JPS6094204A (en) Composite diamond sintered body and manufacture thereof
JPS60263602A (en) Composite sintered tool
JPS58130166A (en) Cubic boron nitride sintered body and manufacture
JPS58107468A (en) Sintered material for high hardness tool and preparation thereof
JPS6060977A (en) Sintered body for high hardness tool