JPS6060977A - Sintered body for high hardness tool - Google Patents

Sintered body for high hardness tool

Info

Publication number
JPS6060977A
JPS6060977A JP59151942A JP15194284A JPS6060977A JP S6060977 A JPS6060977 A JP S6060977A JP 59151942 A JP59151942 A JP 59151942A JP 15194284 A JP15194284 A JP 15194284A JP S6060977 A JPS6060977 A JP S6060977A
Authority
JP
Japan
Prior art keywords
sintered body
cbn
cutting
al2o3
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59151942A
Other languages
Japanese (ja)
Inventor
哲男 中井
昭夫 原
矢津 修示
鴻野 雄一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP59151942A priority Critical patent/JPS6060977A/en
Publication of JPS6060977A publication Critical patent/JPS6060977A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 立方晶型窒化硼素(Cubic Boron N1tr
icle以下CBNと略す)は高い硬度、優れた熱伝導
度を有するとノ(にρ1PEAにνへ鉄族金属との反応
性が少ないということから、その灯り粘体は切削用]二
具祠料として注目されている。
[Detailed description of the invention] Cubic boron nitride (Cubic Boron N1tr)
icle (hereinafter abbreviated as CBN) has high hardness and excellent thermal conductivity (because it has little reactivity with iron group metals, its light viscous material is used for cutting) as an abrasive material. Attention has been paid.

本発明者らは既にこのCBHの優れた特徴を最大限に発
揮しうる工具焼結体を発明し、特エリ出願した。
The present inventors have already invented a tool sintered body that can maximize the excellent features of this CBH, and have filed a patent application for the invention.

この内の第1のものは、周期律表IVa、 Vt1+ 
Via族遷移金属の炭化物、窒化物、硼化物、硅化物。
The first of these is the periodic table IVa, Vt1+
Carbides, nitrides, borides, silicides of Via group transition metals.

もしくはこれ等の相互固溶体化合物が連続相をなしてC
BN結晶を結合しているというものであり、耐熱性、耐
庁耗性に富むと共に、高温でも高い熱伝導性をf1f持
し、”特にりA ?1+7撃特性に;・11む高硬度工
具用焼結体を提供したものである。
Or these mutual solid solution compounds form a continuous phase and C
It combines BN crystals, and has excellent heat resistance and wear resistance, as well as high thermal conductivity even at high temperatures. This provides a sintered body for use.

更に発明者らはこれらの焼x、一体を用いて各1重の切
削試験を行ったところ、CBNは高速1隻鋼が用いられ
るような低速切削に於ても、その優れた耐溶首性の故に
極めて秀でた物質であることを発見し、コノ発見に基づ
イテA I 2031 A I N+ S r c+ 
S l 3N4゜B2O又はこれらの混合物あるいはこ
れらの相方、化合物を主体としたものが連続相をなして
CBN結晶を結合している+1ア硬度工具用焼結体を特
a’l出願した。
In addition, the inventors conducted a single cutting test using each of these annealed axes, and found that CBN's excellent head melting resistance even in low-speed cutting where high-speed steel is used. Therefore, it was discovered that it was an extremely excellent substance, and based on this discovery, ite A I 2031 A I N+ S r c+
A patent application has been filed for a +1A hardness tool sintered body in which CBN crystals are bonded together in a continuous phase consisting mainly of S13N4°B2O, a mixture thereof, or a partner or compound thereof.

さて発明者等は、この第2の発明に基づ< CBN+A
l2O3焼結体を用いて更に詳細な研究を行った結果、
焼結体中のCBN、 Al2O3含有量のみでなく、焼
結体中のAl2O3(IIG)面のCu k a線のX
線回折における半価幅が工具性能と密接な関係を有して
いることを見出した。
Now, the inventors, based on this second invention, < CBN+A
As a result of more detailed research using l2O3 sintered bodies,
Not only the CBN and Al2O3 content in the sintered body, but also the Cu ka line X of the Al2O3 (IIG) plane in the sintered body.
We found that the half-width in line diffraction has a close relationship with tool performance.

本発明はこの発見に基づき出願するものである。The present invention is filed based on this discovery.

一般にX線回折において物質の半価幅は、その物質の結
晶粒度、歪あるいは他の物質との結合状態等に依存する
ものである。
Generally, in X-ray diffraction, the half-width of a substance depends on the crystal grain size, strain, bonding state with other substances, etc. of the substance.

さて第1図は、50〜GOkbの圧力下で焼結したCB
N−A]203焼結体中のAl2O3(+’1lli)
面の半価幅と3ft!を一温度の関係を示した図である
が、半価幅は焼結温度の上昇に伴ってB点までは一定で
あるが、以後減少して行く。即ちA−B間ではCBN−
Al2O3あるいはAl2O3同志の反応がほとんと生
しないため半価幅の減少が見られないが、B−0間では
CBN−Al2O3あるいはAl2O3同志の反応が生
し焼結が進行して行くため、半価幅は減少して行くもの
と考えられる。しかし、C点より高温になるとCBN−
AhO3あルイハA I 203 同志ノ反応カ牛しる
ものN1はとんど半価幅の減少はみられなくなる。
Now, Figure 1 shows CB sintered under a pressure of 50 to GOkb.
N-A] Al2O3 in 203 sintered body (+'1lli)
The half width of the surface is 3ft! The half width is constant up to point B, but decreases thereafter as the sintering temperature increases. That is, between A and B, CBN-
Since almost no Al2O3 or Al2O3 reaction takes place, no decrease in the half value width is observed, but between B-0, the CBN-Al2O3 or Al2O3 reaction takes place and sintering progresses, so the half value width decreases. It is thought that the width will continue to decrease. However, when the temperature rises above point C, CBN-
AhO3 Aruiha AI 203 Comrade's Reaction Kaushi Shirumono N1 hardly shows any decrease in half value width.

一方、この第1図と同し焼結体を研削加」ニし、切削工
具として成形したものについて各種の被削材を切削した
ところ、第1図A−Bの伶囲のもの即ち、?1′1°が
o、65°程度のものは焼x111体R’(子がボロボ
ロと脱落して行くような摩耗状態を?し、1つ一定時間
切削後の摩耗量もがなり人であった。
On the other hand, when the same sintered body shown in Fig. 1 was ground and formed into a cutting tool, various work materials were cut. 1' 1° is o, and the one about 65° is a baked x111 body R' (is the wear condition such that the child falls off in pieces? The amount of wear after cutting for a certain period of time also increases. Ta.

またB−Cのものは(即ち半価幅o、6°以下のもの)
これに比して、摩耗量も少なくI¥i[而も比較的l;
1らかて粒子が脱落したような形跡は認められなかった
。しかしながらB−Cの1liij I川内のものをも
う少し詳しく調べてみると、半価幅が0.3°→0.2
°と減少するにつれて11iI′t[は増大し、特にゝ
1′11°が0.14°以下のものは0.2°のものに
比し、がなり摩耗量は大であった。また、次に第1図中
の焼結体(a)とそれと同し半価幅を有するが、第1図
のものとは異なるAl2O3原t1扮末を用いて、やは
り50kbの圧力下で焼結した焼結体(1〕)の切削性
能を比較したところ両者はほと同一性能であった。
Also, those of B-C (that is, half width o, 6 degrees or less)
Compared to this, the amount of wear is small.
No evidence of particles falling off after a while was observed. However, when we examine the B-C 1liij I Kawauchi in a little more detail, we find that the half-value width is 0.3° → 0.2
As the angle decreases, 11iI't[ increases, and in particular, when 1'11° is 0.14° or less, the amount of wear and tear is greater than when 1'11° is 0.2°. Next, using an Al2O3 raw material t1 powder which has the same half width as the sintered body (a) in Fig. 1 but is different from that in Fig. 1, it was also sintered under a pressure of 50 kb. When the cutting performance of the sintered body (1) was compared, both had almost the same performance.

さて、この半価幅と工具性能との関係が細何なる原因に
よるものかは必ずしも明確ではないが、次のように推定
できる。
Although it is not necessarily clear what causes the relationship between the half width and the tool performance, it can be estimated as follows.

半価幅が0.65°程度で焼結温度によって変化しない
A−B間のものは先にも述べたようにAl203−Al
2O3,Al203−CBH間の焼結が殆んど進んでい
ないため、切削工具として用いても粒子が脱落して行く
ような厚1[を呈し、1ρtL■も多くなる。一方B−
C間では焼結が進行して行くため、半価幅は減少し、0
.GOO°以下になると実用上良好な工具性能を得るこ
とができる。一方、焼結現象とともにAl2O3の粒成
長も同時に進行するため、半価幅0.200°以下では
却って工具性能が低下するものと考えられる。また、こ
のCBN−A 120311結体ではCBN−Al2O
3界面に反応生成物(例えばAlB2゜AIBOxなど
)が生じ、焼結温度が」1昇するにつれてこの反応物が
増加し、これが脆いため切削中にCBN粒子が脱落しや
すくなるといったことも考えられる。
As mentioned earlier, the half width between A and B, which has a half width of about 0.65° and does not change depending on the sintering temperature, is Al203-Al.
Since the sintering between 2O3, Al203 and CBH has hardly progressed, even if it is used as a cutting tool, it exhibits a thickness of 1 which causes particles to fall off, and the thickness increases by 1ρtL. On the other hand B-
As sintering progresses between C, the half width decreases and becomes 0.
.. When the temperature is below GOO°, good tool performance can be obtained in practice. On the other hand, since grain growth of Al2O3 progresses at the same time as the sintering phenomenon, it is thought that tool performance deteriorates when the half width is less than 0.200°. In addition, in this CBN-A 120311 structure, CBN-Al2O
It is also possible that reaction products (for example, AlB2゜AIBOx, etc.) are generated at the 3-interface, and as the sintering temperature increases by 1, the amount of these reactants increases, and because this is brittle, CBN particles are likely to fall off during cutting. .

従って、本発明のiJt結体粘体能を十分発揮させるた
めには、焼結体中のAl2O3(IIG)面ノCuKc
r線のX線回折による半価幅がo、Boo°〜0.20
0°の荀囲になければならない。また、焼結体の性能を
向上させるにはできる限り@粒な焼結体とすれば良いの
は公知の事実であるが、このためには原料粉末の粒度を
細かくする必要がある。特にCBHの種々の粒度につい
て焼結体を作成し、試験した結果CBNの粒度が5μ以
下のものはu14常に良い工具性能を示すことがわかっ
た。更に、各種の被削材についての切削性能試験の内、
鋳鉄材11に対しては焼結体中のCBNの含有♀が体積
%で2θ〜55%のものが特に優れていた。
Therefore, in order to fully exhibit the viscous ability of the iJt compact of the present invention, it is necessary to
The half width by X-ray diffraction of r-ray is o, Boo° ~ 0.20
Must be within the 0° range. Furthermore, it is a well-known fact that in order to improve the performance of a sintered body, it is necessary to make the sintered body as grainy as possible, but for this purpose it is necessary to make the grain size of the raw material powder fine. In particular, sintered bodies of various grain sizes of CBH were prepared and tested, and it was found that CBN grain sizes of 5 μm or less always exhibited good tool performance for U14. Furthermore, among the cutting performance tests for various work materials,
For cast iron material 11, the sintered body having a CBN content of 2θ to 55% by volume was particularly excellent.

本発明の焼結体を切削工具として使用する場合耐1v耗
性に富んだCBN含仔硬質層が上置刃先を形成しておれ
ば良い。
When the sintered body of the present invention is used as a cutting tool, it is sufficient that the upper cutting edge is formed of a CBN-containing hard layer that is highly resistant to wear.

従ってこの硬質層を超映合金を12ノ祠としてその上に
接合した複合焼モ一体とする方が、経済性及び工具の強
度等の而からみてずf利である。複合焼結体における硬
質層の厚みは、切削工具としての仲用条件とそれに応じ
た工具形状によって変える必要があるが、一般的には0
.5■以上の厚みがあれば本発明の焼結体の場合は充分
である。
Therefore, it is more advantageous in terms of economy and strength of the tool to form this hard layer into an integrated composite molded metal layer made of super-alloy and bonded thereon. The thickness of the hard layer in the composite sintered body needs to be changed depending on the usage conditions as a cutting tool and the corresponding tool shape, but it is generally 0.
.. A thickness of 5 cm or more is sufficient for the sintered body of the present invention.

母材となる超硬合金は剛性が高く、且つ熱伝導性が良く
、靭性も優れているWCC超超硬合金好ましい。このよ
うな複合焼結体を得る方法は、予め超硬合金で所定の形
状の母材合金を作成しておき、これに接して工具刃先と
なる硬質層を形成するCBNとAl2O3の混合粉末を
、粉状でまたは型押成型して置き、この全体を超高圧装
置内でホントプレスして硬質層を焼結せしめると同時に
、これと母材超硬合金とを接合する。
The cemented carbide used as the base material is preferably WCC cemented carbide, which has high rigidity, good thermal conductivity, and excellent toughness. The method for obtaining such a composite sintered body is to prepare a base alloy in a predetermined shape using cemented carbide in advance, and then add a mixed powder of CBN and Al2O3 to form a hard layer that will become the cutting edge of the tool. The hard layer is sintered and the hard layer is simultaneously bonded to the base cemented carbide.

このとき超硬合金I月利はGo等の金属を結合相として
含をしており、ホットプレス時にこの結合金属の液相出
現温度を越えると結合金属は溶融する。硬質層形成粉末
のCBHの含を量が本発明の焼結体の場合より多く、例
えばCBNのみからなるような場合はCBN粒子が極め
て剛性が高く変形し難い為、超高圧−ド、においても粒
子間に隙間を有しており、この隙間に前述した母材超硬
合金の液相が浸入してしまう。ところが本発明の焼結体
ではCBHの結合材としてA I 203を用いており
、これが焼結体中で連続した結合相を形成するものであ
るが、Al2O3はCBNに比較して剛性が低く、超高
圧下では加圧時に変形して母材超硬合金に液相が生ずる
以前に殆んど隙間を何しない圧粉体となっている。この
為本発明の焼結体では超高圧下でのホットプレス中に母
材超硬合金に生しだ液相が硬質層中に浸入して、硬質層
の組成が変動したり、耐1v耗性が低下することはない
At this time, the cemented carbide metal contains a metal such as Go as a binder phase, and when the temperature at which the binder metal appears in a liquid phase is exceeded during hot pressing, the binder metal melts. If the hard layer-forming powder contains more CBH than the sintered body of the present invention, for example, if it is made only of CBN, the CBN particles have extremely high rigidity and are difficult to deform. There are gaps between the particles, and the liquid phase of the base cemented carbide mentioned above enters into these gaps. However, in the sintered body of the present invention, A I 203 is used as a binder for CBH, and this forms a continuous binder phase in the sintered body, but Al2O3 has lower rigidity than CBN. Under ultra-high pressure, the compact becomes a compact with almost no gaps before it is deformed during pressurization and a liquid phase is generated in the base cemented carbide. For this reason, in the sintered body of the present invention, the liquid phase generated in the base cemented carbide during hot pressing under ultra-high pressure infiltrates into the hard layer, causing changes in the composition of the hard layer and 1V wear resistance. There is no decline in sexuality.

さて、このAl2O3とCBNの複合焼結体を製造する
方法は、先ずCBN粉末と、このAl2O3粉末をボー
ルミル等の手段を用いて混合し、これを粉状でもしくは
常温下で所定の形状に型押成型し、超高圧装置を用いて
高圧、高温下で焼結する。用いる超高圧装置はダイヤモ
ンド合成に使用されるガードル型、ベルト型等の装置で
ある。発熱体には黒鉛円筒を用い、その中にタルク、 
Nacl等の絶縁物をつめてCBHの混合粉末型押体を
包む。黒鉛発熱体の周囲にはパイロフェライ]・等の圧
力媒体を置く。焼結する圧力、温度条件は第2図に示し
た立方晶型窒化硼素の安定領域内で行うことが望ましい
が、この平衡線は必ずしも正確には分っておらず、一つ
の目安にすぎない。なお、第2図中(A)は立方晶型窒
化硼素安定域、(B)は六方晶型窒化硼素安定域をそれ
ぞれ示している。
Now, the method for manufacturing this composite sintered body of Al2O3 and CBN is to first mix CBN powder and this Al2O3 powder using a means such as a ball mill, and then mold this into a predetermined shape in powder form or at room temperature. It is pressed and molded and sintered under high pressure and high temperature using ultra-high pressure equipment. The ultra-high pressure equipment used is a girdle type, belt type, etc. equipment used for diamond synthesis. A graphite cylinder is used as the heating element, and talc,
The CBH mixed powder molded body is wrapped with an insulating material such as NaCl. A pressure medium such as pyroferrite is placed around the graphite heating element. It is desirable that the sintering pressure and temperature conditions be within the stability region of cubic boron nitride shown in Figure 2, but this equilibrium line is not always known accurately and is only a guideline. . In FIG. 2, (A) shows the stability region of cubic boron nitride, and (B) shows the stability region of hexagonal boron nitride.

本発明による焼結体の非常に注目すべき、また本発明を
作用ならしめる特徴として前記Al2O3の耐熱性化合
物が焼結体組織上で連続した相をなすことが挙げられる
。即ち、本発明の焼結体では強靭な耐熱性化合物が、あ
たかもWC−Co超硬合金中の結合相である全屈Co相
の如く、高硬度のCBN粒子間の隙間に侵入して連続し
た結合相の状態を呈し、このことにより焼結体に強靭性
が付与せしめられたものである。
A very noteworthy feature of the sintered body according to the present invention, which also makes the present invention effective, is that the heat-resistant compound of Al2O3 forms a continuous phase on the structure of the sintered body. That is, in the sintered body of the present invention, the tough heat-resistant compound penetrates into the gaps between the high-hardness CBN particles and forms a continuous structure, just like the fully bent Co phase that is the binder phase in WC-Co cemented carbide. It exhibits the state of a binder phase, which gives the sintered body toughness.

本発明による焼結体中のCBN相量の下限は体積で20
%までとある。これ以下ではCBHの特徴を生かした工
具としての性能が発揮されない。特に、鋳鉄切削におい
てはCBNの含仔量が体積で55〜20%のものが非常
に優れた性能を示す。
The lower limit of the amount of CBN phase in the sintered body according to the present invention is 20 by volume.
It says up to %. If it is less than this, the performance as a tool that takes advantage of the characteristics of CBH will not be exhibited. Particularly, in cutting cast iron, a CBN containing amount of 55 to 20% by volume shows very excellent performance.

工具材用として考えた時、特に切削工具用途では、焼結
体の結晶粒の大きさは、前述した如く数ミクロン以下が
望ましい。数ミクロンまたはミクロン以下の微粉は、か
なり多量の酸素を含イfしている。一般に、この酸素は
粉末表面に、はト水酸化物の形に近い化合物の形で存在
するのが大部分である。この水酸化物の形に近い化合物
は加熱時分触1してガスとなって出てくる。jf& #
i’iされる物質が密封されていない時には、このガス
を系外に出すのは困離ではない。
When considered as a tool material, particularly in a cutting tool, the crystal grain size of the sintered body is desirably several microns or less, as described above. Fine powder of several microns or less than a micron contains a considerably large amount of oxygen. Generally, most of this oxygen exists on the powder surface in the form of a compound similar to hydroxide. This hydroxide-like compound comes into contact with the gas during heating and comes out as a gas. jf&#
When the substance to be treated is not sealed, it is not difficult to vent this gas to the outside of the system.

しかし本発明の如く、超高圧下で焼結する場合には、発
生したガスは、加rEJj系外に脱出するこきは殆んど
不可能である。一般にか\る場合には、予め脱ガス処理
をする事が粉末冶金業界−Cは常識であるが脱ガス処理
lKk +Uが十分高く出来ない場合には間1芭である
。本件は、まさにそれに当る。即ち、CBNの低圧相へ
の変態を考えると加fJζ温度に」1限がある。
However, when sintering is carried out under ultra-high pressure as in the present invention, it is almost impossible for the generated gas to escape out of the rEJj system. Generally, in such cases, it is common knowledge in the powder metallurgy industry to perform degassing treatment in advance, but if the degassing treatment lKk +U cannot be made sufficiently high, it is only necessary. This case corresponds to exactly that. That is, when considering the transformation of CBN into a low pressure phase, there is a limit to the applied fJζ temperature.

微粉末の脱ガス過程としては、温度と共にυこの各段階
がある。まず低温では物理吸着しているものと吸温水分
が除去される。次いで化学吸着しているもの及び水酸化
物の分Mが起る。最後に酸化物が残る。CBHの場合夏
000℃位までは安定であるので、最低でもこの温度位
には予め加熱できる。
The degassing process of fine powder involves various stages of υ as well as temperature. First, at low temperatures, physically adsorbed substances and endothermic moisture are removed. Then the chemisorbed and hydroxide fraction M occurs. At the end, oxide remains. In the case of CBH, it is stable up to about 000°C in summer, so it can be heated to at least this temperature in advance.

従って、予め脱ガス加熱すれば残留ガス成分は酸化物の
形で残っていると考えてよい。逆に言えばガス成分はな
るべく焼結体中に残した(ないのだから、水および水素
を全て除去することは予備処理として行うのが好ましい
Therefore, it can be considered that if the gas is degassed and heated in advance, the residual gas components remain in the form of oxides. Conversely, it is preferable to leave as much of the gas component as possible in the sintered body (since there is none), it is preferable to remove all water and hydrogen as a preliminary treatment.

本発明では、この考えの下に全て1000℃以」二の脱
ガス処理を真空中てしている。また、本発明によるクプ
を粘体ではCBNの合成に使用され、高温、高圧下で六
方晶型窒化硼素及びCBNに対して溶解性を佇すると信
しられる元素、例えばLi等のアルカリ金属9Mg等の
アルカリ土類金属、 P、 Sn、 Sl)。
In the present invention, based on this idea, all degassing treatments are carried out in vacuum at temperatures above 1000°C. In addition, the cup according to the present invention is used in the synthesis of CBN in the form of a viscous substance, and it is also possible to use elements believed to be soluble in hexagonal boron nitride and CBN at high temperatures and high pressures, such as alkali metals such as Li, 9Mg, etc. alkaline earth metals, P, Sn, Sl).

AI+ Cd、 SiあるいはMgO,AINなどの化
合物を添加物として含むものであっても良い。
It may also contain compounds such as AI+Cd, Si, MgO, and AIN as additives.

本発明の焼結体の原料として使用するCBNは六方晶型
窒化硼素−を原料として超高圧下で合成されたものであ
る。従ってCBN粉末中には不純物として六方晶型窒化
硼素が残イ1している可能性がある。
CBN used as a raw material for the sintered body of the present invention is synthesized under ultra-high pressure using hexagonal boron nitride as a raw material. Therefore, there is a possibility that hexagonal boron nitride remains as an impurity in the CBN powder.

また、超高圧下で焼結する場合においても、&+−合月
がCBHの個々の粒子間に侵入するまではCBN粒子は
外圧を静水圧的に受けておらす、この間の加p6によっ
て六方晶型窒化硼素へ逆変態を起す可能性もある。この
ような場合に1111記したへ方品型窒化硼素に対して
触媒作用を有する元素が混合扮宋中に添加されている表
、この逆変態を防市する効果があると考えられる。
Furthermore, even when sintering under ultra-high pressure, the CBN particles are subjected to external pressure hydrostatically until the &+-joints penetrate between the individual particles of CBH. There is also a possibility that reverse transformation to type boron nitride occurs. In such cases, it is believed that the addition of an element that has a catalytic effect on the hexagonal boron nitride as described in 1111 to the mixed material has the effect of preventing this reverse transformation.

本発明による焼結体は高硬度で強¥ノ目11をイ】シ、
耐熱、耐)¥耗性に優れており、切削工具以外に線引き
ダイスや皮9すぎダイス、ドリルピット等のIV↓用途
にも適したものである。
The sintered body according to the present invention has high hardness and strength.
It has excellent heat resistance and abrasion resistance, and is suitable for IV↓ applications such as wire drawing dies, leather 9-diameter dies, drill pits, etc. in addition to cutting tools.

以下、実施例を述へる。Examples will be described below.

実施例は全て立方晶型窒化硼素(CBN)を原1゛1と
しているが、CBNの一部をウルツ鉱型窒化硼素(WB
N)又はダイヤモンドにi&き換えても、はと同様の結
果が得られる。
In all of the examples, cubic boron nitride (CBN) is used as the base material, but a part of the CBN is made of wurtzite boron nitride (WB
N) or by replacing i& with diamond, the same result as wa can be obtained.

実施例1 平均粒度2μのCBN粉末き平均粒度1 /lのAl2
O3粉末とを体積でそれぞれ45%、55%の割合に配
合し、乳鉢で充分混合した。この粉末をステンレス製の
内径10.0w、外径14.0mmの底付きの容器に充
填し、外径9.91で厚さ3WIIIのWC−15%C
O合金の円板をその上に置いた。更にその上に一100
メッシュ+200メノンユの鉄粉を型押した外径10.
0mmで厚さ2關の通気性を有する型押体を置き、ステ
ンレス製円筒に栓をし、この」二に純銅板をのせ、全体
を真空炉に入れて10−’torrの真空下で1000
°Cに加熱し、1時間保持して脱ガスした後、温度を1
100°Cに昇温し10分間保持し、銅をa、圧粉体中
に含浸させ原料粉末を気密な状態に保った。
Example 1 CBN powder with an average particle size of 2μ and Al2 with an average particle size of 1/l
O3 powder was blended at a volume ratio of 45% and 55%, respectively, and thoroughly mixed in a mortar. This powder was filled into a stainless steel container with an inner diameter of 10.0 W and an outer diameter of 14.0 mm, and a WC-15%C with an outer diameter of 9.91 mm and a thickness of 3W.
A disk of O alloy was placed on top of it. Furthermore, 1100 on top of that
Mesh + 200 menonyu iron powder embossed outer diameter 10.
Place a molded body with air permeability with a thickness of 0 mm and 2 mm, plug a stainless steel cylinder, place a pure copper plate on the cylinder, and place the whole body in a vacuum furnace under a vacuum of 10-'torr for 1000 m
°C and held for 1 hour to degas, then reduce the temperature to 1
The temperature was raised to 100°C and held for 10 minutes to impregnate the green compact with copper and keep the raw powder in an airtight state.

これをガーl″ル型超高圧装置に装入した。圧力媒体と
してはパイロフェライトを、ヒーターとしては黒鉛の円
筒を用いた。なお、黒鉛ヒーターと試料の間はNaCl
を充IQ シた。先ず圧力を55kbに」−げ、のちに
41λ度を1100°Cに」二げ、20分間保持したち
温度を下−げ、圧力を除々におろした。得られた焼結体
は外径約I O+im−、厚さは約1ml1でWC−1
5%CO超硬合金に強固に付着したものであった。
This was charged into a Girl type ultra-high pressure device. Pyroferrite was used as the pressure medium and a graphite cylinder was used as the heater. Note that NaCl was used between the graphite heater and the sample.
The IQ level was increased. First, the pressure was increased to 55 kb, and then the temperature was increased to 41 λ degrees to 1100 degrees Celsius, held for 20 minutes, and then the temperature was lowered and the pressure was gradually lowered. The obtained sintered body had an outer diameter of about IO+im-, a thickness of about 1 ml, and was WC-1.
It was firmly attached to the 5% CO cemented carbide.

これをダイヤセン1!砥石で甲面に研削し、史にダイヤ
モンドのペーストを用いて研磨した。研磨前を光学顕微
鏡を用いて観察したところAl2O3がCBH間に侵入
し、完全に緻密な組織のりプを粘体てあった。焼結体の
Al2O3(JIG)面のCu Ka線の回折による半
価幅を測定すると0.525’であった。また、焼結体
の硬度をマイクロビ・ノカース硬度計を用いて1ltl
+定した。硬度の平均値は3400てあった。
This is Diasen 1! The back surface was ground with a whetstone and polished using diamond paste. When the sample before polishing was observed using an optical microscope, it was found that Al2O3 had penetrated between the CBHs, forming a completely dense structure. The half-value width of the Al2O3 (JIG) surface of the sintered body was measured by diffraction of Cu Ka rays and was found to be 0.525'. In addition, the hardness of the sintered body was measured at 1ltl using a microbi-Nocas hardness tester.
+ Established. The average value of hardness was 3400.

焼結体をダイヤモンド切断刃を用いて切断し、切削チッ
プを作成し、これを銅の支持体にロウ付けした。
The sintered body was cut using a diamond cutting blade to create a cutting tip, which was brazed to a copper support.

比較のためにJIS分類I(10の超硬合金で同一形状
の切削]−只を作成した。被削HにはFe12(iTj
のタノ1υ、を用いた。被削材の硬度はH+u+220
である。
For comparison, a JIS classification I (cutting of the same shape with 10 cemented carbide) was created.The workpiece H was Fe12 (iTj
I used Tano 1υ. The hardness of the work material is H+u+220
It is.

切削条イ11はリノ削速度100m/ mm 、切込み
0.2mm+送り0 、 I n+Il/ I’ e 
Vとした。この条(’lで切削試験しtコところKIO
による被削面粗さはI 5 thn Rmaxであった
のに対し、本発明による合金は4 um Rmaxであ
り、120分切削後も6μm R+口aXとや\悪化し
た程度であった。又、切削後の工具刃先を観察したとこ
ろ、KIOでは工具すくい面上に強固な刃先滞留物があ
ったが、本発明焼結体では全く認められなかった。
The cutting strip 11 has a lino cutting speed of 100 m/mm, depth of cut of 0.2 mm + feed of 0, I n + Il / I' e
It was set to V. In this article, the cutting test was carried out using KIO.
The roughness of the machined surface was I 5 thn Rmax, whereas the roughness of the alloy according to the present invention was 4 um Rmax, and even after 120 minutes of cutting, the roughness of the machined surface was 6 μm R + aX, which was slightly worse. Further, when the cutting edge of the tool after cutting was observed, there was a strong residue on the cutting edge of the tool on the rake face of the tool with KIO, but this was not observed at all with the sintered body of the present invention.

実施例2 第1表の組成にCBN粉末とAl2O3粉末を混合した
。使用したAl2O3粉末の平均粒度は1μであった。
Example 2 CBN powder and Al2O3 powder were mixed in the composition shown in Table 1. The average particle size of the Al2O3 powder used was 1μ.

これらの混合粉末を実施例1と同様に前処理を行った後
、超高圧装置を用いて第1表の条件で焼結した。加熱保
持時間はいずれも20分である。
These mixed powders were pretreated in the same manner as in Example 1, and then sintered under the conditions shown in Table 1 using an ultra-high pressure device. The heating holding time was 20 minutes in both cases.

第 1 表 これらの焼結体のAl203(目6)面のCu Ka線
の回折による半価幅を測定した結果と、切削試験の結果
を第2表に示す。なお、切削試験としては被削材FC2
5種の鋳鉄材で硬さHR[1250,外径+50■、内
径70+1111のパイプ状のものを用い、切削速度4
00m7 mm 、切込み0.111111.送り0.
15111111 / r eVて15分比較のため市
販のAl2O3を主成分としたセラミソク工具(自セラ
ミック)及びTiCを含むAl2O3セラミノク工具(
黒セラミック)の試験結果も第2表に付は加えた。A(
203(IIG)面の半価幅がo 、 e o o’〜
0.200°にある本発明焼結体は優れた切削性能を仔
することがわかった。
Table 1 Table 2 shows the results of measuring the half-width by diffraction of Cu Ka rays on the Al203 (grain 6) surface of these sintered bodies and the results of the cutting test. In addition, for the cutting test, the work material FC2
Five types of cast iron materials with hardness HR [1250, outer diameter +50cm, inner diameter 70+1111] were used, and the cutting speed was 4.
00m7 mm, depth of cut 0.111111. Feed 0.
15111111 / r eV for 15 minutes For comparison, a commercially available ceramic tool mainly composed of Al2O3 (autoceramic) and an Al2O3 ceramic tool containing TiC (
The test results for black ceramics have also been added to Table 2. A(
The half width of the 203(IIG) plane is o, e o o'~
It was found that the sintered body of the present invention at an angle of 0.200° has excellent cutting performance.

実施例3 平均粒度1μのAl2O3粉末に重量で平均粒度1μの
MgO粉末を2%加え、これに平均粒度4μのCBN粉
末を体積%で5θ%配合した。この混合f5)末にカン
ファーを2%加え、外径10mm、晶さ1.5+++i
に型押成型した。これをMo製の容器に入れ脱ガスした
後、実施例1と同様にして焼結したところ、外径10m
n、厚さ1龍の焼結体を得ることができた。
Example 3 2% by weight of MgO powder with an average particle size of 1 μm was added to Al2O3 powder with an average particle size of 1 μm, and 5θ% by volume of CBN powder with an average particle size of 4 μm was added thereto. 2% camphor was added to this mixture f5), and the outer diameter was 10 mm and the crystallinity was 1.5+++i.
Embossed and molded. After putting this in a Mo container and degassing, it was sintered in the same manner as in Example 1, and the outer diameter was 10 m.
A sintered body having a thickness of 1 mm and a thickness of 1 mm was obtained.

但し、焼結時の圧力は50kbで温度は1300℃とし
た。この時のAl2O3(118)面の半価幅は0.3
80であった。焼結体をダイヤモンド切断刃を用いて切
断し、切削チップを作成し、市販のA’1203主成分
のコールドプレスセラミソクエ只と切削性能を比較した
。被削材としてはFC20を用い、切削速度400m/
分、切込み2 +1111.送り0.36mm/回転で
30分切削した。市販セラミックの逃げ面摩耗幅が0.
30吐であったのに対し、本発明焼結体のそれは0.2
0璽鶴であった。
However, the pressure during sintering was 50 kb and the temperature was 1300°C. At this time, the half width of the Al2O3 (118) plane is 0.3
It was 80. The sintered body was cut using a diamond cutting blade to prepare cutting chips, and the cutting performance was compared with that of a commercially available cold-pressed ceramic squeegee mainly composed of A'1203. FC20 was used as the work material, and the cutting speed was 400 m/
min, depth of cut 2 +1111. Cutting was performed for 30 minutes at a feed rate of 0.36 mm/rotation. The flank wear width of commercially available ceramics is 0.
30, whereas that of the sintered body of the present invention was 0.2.
It was 0 Sesaku.

実施例4 平均粒度1μのAl2O3粉末に重量で平均粒度0.5
μのAIN粉末を10%加え、これに平均粒度5μのC
BN粉末を体積%で45%配合した。これをMo製の容
器に入れ脱ガスした後、実施例1と同様にして圧力55
kb、i’U度1250℃で焼結した。焼結体中のAl
2O3(II[i)面の半価幅をCu Ka線の回折に
より1jlll定した結果0.400°であった。この
焼結体をダイヤモンド切断刃を用いて切断し、切削チッ
プを作成しFC35を切削速度30G+n/分、切り込
み1關、送り0.36mm/回転で15分間切削した。
Example 4 An average particle size of 0.5 by weight was added to Al2O3 powder with an average particle size of 1μ.
Add 10% of μ AIN powder and add C of average particle size 5μ.
45% by volume of BN powder was blended. After putting this in a Mo container and degassing it, the pressure was 55°C in the same manner as in Example 1.
kb, i'U degree Sintered at 1250°C. Al in the sintered body
The half width of the 2O3(II[i) plane was determined to be 0.400° by diffraction of Cu Ka rays. This sintered body was cut using a diamond cutting blade to prepare a cutting tip, and FC35 was cut for 15 minutes at a cutting speed of 30 G+n/min, a depth of cut of 1 step, and a feed rate of 0.36 mm/rotation.

比較のためTiCを含イjしたAl2O3セラミックも
切削テストした。その結果、市1uのセラミックの逃げ
面摩耗幅が0.45mmに対し、本発明焼結体のそれは
O,IOn+11であった。
For comparison, a cutting test was also conducted on Al2O3 ceramic containing TiC. As a result, while the flank wear width of the Ichi 1u ceramic was 0.45 mm, that of the sintered body of the present invention was O, IOn+11.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は50〜Go kbの圧力下で焼!−,シたCB
N−Al2O3(J’6結休粘体結温度と焼結体中のA
l203(116)面のCu K a線のX線回折にお
けるゝF 411i幅の関係を示したものであり、図中
(a)は1200″Cift結のもの、(b)は使用す
るAl2O3原料粉末を変え、1080℃で焼結したも
のである。 第2図は本発明焼結体の製造条件に関するもの :介1
図 #剌温度(6C)
Figure 1 is baked under a pressure of 50 ~ Go kb! -, Shita CB
N-Al2O3 (J'6 quenching temperature and A in the sintered body
This figure shows the relationship between the F411i width in the Cu Ka line X-ray diffraction of the l203 (116) plane, in which (a) shows the 1200″Cift, and (b) shows the Al2O3 raw material powder used. Fig. 2 shows the manufacturing conditions of the sintered body of the present invention.
Figure # Temperature (6C)

Claims (1)

【特許請求の範囲】 1、立方晶型窒化硼素を体積%で55〜20%含有し、
残部がAl2O3からなり、この残部が坑粘体ill織
中で連結した相をなす焼結体において、焼結体中のAl
2O3結晶のCu Ka線のX線回折における(+1[
i)面の半価幅が0.GOO°〜0.200°の範囲に
あり、かつ立方晶型窒化硼素の粒度が5ミクロン以下で
あることを特徴とする高硬度コニ具用ブ11粘体。 2、0.5+im以上の厚みで、超硬合金よりなる合金
に直接接合されている特許請求の範囲第1項または第2
項記載の高硬度工具用焼結体。
[Claims] 1. Contains 55 to 20% by volume of cubic boron nitride,
In a sintered body in which the remainder consists of Al2O3 and this remainder forms a connected phase in an anti-viscous Ill weave, the Al in the sintered body
(+1[
i) The half width of the surface is 0. 11. A high-hardness viscous material for use in hardened steel tools, characterized in that the particle size of cubic boron nitride is in the range of GOO° to 0.200° and is 5 microns or less. 2. Claim 1 or 2, which has a thickness of 0.5+im or more and is directly joined to an alloy made of cemented carbide.
A sintered body for high-hardness tools as described in .
JP59151942A 1984-07-21 1984-07-21 Sintered body for high hardness tool Pending JPS6060977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59151942A JPS6060977A (en) 1984-07-21 1984-07-21 Sintered body for high hardness tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59151942A JPS6060977A (en) 1984-07-21 1984-07-21 Sintered body for high hardness tool

Publications (1)

Publication Number Publication Date
JPS6060977A true JPS6060977A (en) 1985-04-08

Family

ID=15529576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59151942A Pending JPS6060977A (en) 1984-07-21 1984-07-21 Sintered body for high hardness tool

Country Status (1)

Country Link
JP (1) JPS6060977A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61266346A (en) * 1985-05-21 1986-11-26 東芝セラミツクス株式会社 Ceramic composite material and manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61266346A (en) * 1985-05-21 1986-11-26 東芝セラミツクス株式会社 Ceramic composite material and manufacture

Similar Documents

Publication Publication Date Title
JP2907315B2 (en) Production of polycrystalline cubic boron nitride
KR100823760B1 (en) Method of producing an abrasive product containing cubic boron nitride
US4389465A (en) Sintered compact for use in a tool and the method for producing the same
US5271749A (en) Synthesis of polycrystalline cubic boron nitride
US4647546A (en) Polycrystalline cubic boron nitride compact
KR100227879B1 (en) Group ivb boride based cutting tools
JPH013065A (en) Oxide-based ceramic cutting inserts
JP2004505786A (en) Manufacturing method of polishing products containing diamond
GB1593770A (en) Sintered compact for a machine tool and a method of producing the compact
KR101190963B1 (en) Method of making a cbn compact
JPS61201751A (en) High hardness sintered body and its manufacture
EP0816304B1 (en) Ceramic bonded cubic boron nitride compact
JPS6132275B2 (en)
GB2091763A (en) Laminated sintered compositions including boron nitride
JPS6119585B2 (en)
JPS6060977A (en) Sintered body for high hardness tool
JPS6213311B2 (en)
JPS6246510B2 (en)
JPS6137221B2 (en)
JPH0215515B2 (en)
JPS6335456A (en) High hardness sintered body for cast iron catting work
JPS638072B2 (en)
JPS594501B2 (en) High hardness sintered body
JPS639009B2 (en)
GB2591616A (en) Polycrystalline cubic boron nitride material