JPS6085577A - Manufacture of thin film photoelectric conversion element - Google Patents

Manufacture of thin film photoelectric conversion element

Info

Publication number
JPS6085577A
JPS6085577A JP58193633A JP19363383A JPS6085577A JP S6085577 A JPS6085577 A JP S6085577A JP 58193633 A JP58193633 A JP 58193633A JP 19363383 A JP19363383 A JP 19363383A JP S6085577 A JPS6085577 A JP S6085577A
Authority
JP
Japan
Prior art keywords
electrode
film
photoelectric conversion
conversion element
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58193633A
Other languages
Japanese (ja)
Other versions
JPH0221663B2 (en
Inventor
Mario Fuse
マリオ 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP58193633A priority Critical patent/JPS6085577A/en
Publication of JPS6085577A publication Critical patent/JPS6085577A/en
Publication of JPH0221663B2 publication Critical patent/JPH0221663B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/208Particular post-treatment of the devices, e.g. annealing, short-circuit elimination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To prevent the generation of short-circuit between a second electrode on a photoelectric conversion film and a base first electrode by a method wherein, in, after the photoelectric conversion film was formed, an electroplating is performed to form a plating formation film, a metal is made to precipitate at pinhole parts in the photoelectric conversion film, a second electrode is formed thereon, and after that, the plating formation film, an oxide film formed on the plating formation film and the second electrode in the photoelectric conversion film are all removed. CONSTITUTION:A Cr electrode 2 patterned as a first electrode is formed on an insulative substrate 1. A hydrogenated amorphous Si layer 3, which is used as a photoelectric conversion film, is accumulated. A plating formation film 4 of Cu is formed in pinholes, namely, at the exposed parts of the electrode 2 in the film 4 by an electroplating method. An InSn oxide film 5, which is used as a second electrode, is accumulated on the layer 3. The film 4 is removed by performing an etching, and at the same time, the film 5 on the film 4 is also removed as well. As a result, the generation of short- circuit between the second electrode 5 and the first electrode 2 can be prevented, because the second electrode 2 is removed from the pinhole generating parts in the layer 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、薄膜光電変換素子の製造□方法に係り、特に
、サンドイッチ型の薄膜光電変換素子の製造方法に関す
る・。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a thin film photoelectric conversion element, and particularly relates to a method for manufacturing a sandwich type thin film photoelectric conversion element.

〔従来技術〕[Prior art]

最近、太陽電池やイメージセンサ等の大面積化、長尺化
に伴い、大面積にわたって堆積可能にアモルファスシリ
コン等の光電変換薄膜を用いた薄膜光電変換素子の開発
が進められている。
BACKGROUND ART Recently, as solar cells, image sensors, etc. have become larger in area and longer in length, development of thin film photoelectric conversion elements using photoelectric conversion thin films such as amorphous silicon that can be deposited over large areas has been progressing.

特に、イメージセンナの場合、原稿と同一幅をもつセン
ナ部を形成することにょ力、1対1結像が可能となり、
原稿とセンサ部とを密着させることができると共に、縮
小光学系が不要となることによシ、原稿読み取り部の小
型化が容易に可能となる。
In particular, in the case of an image sensor, it is possible to form a sensor part with the same width as the document, and one-to-one imaging is possible.
Since the document and the sensor section can be brought into close contact with each other and a reduction optical system is not required, it is possible to easily downsize the document reading section.

薄膜光電変換素子は、構造的に見て、第1電極と第2電
極とによって光導電体層をはさんだサンドイッチ構造と
、光導電体層上に対向電極を形成したプレーナ構造とに
大別されるが、センサ部の高密度化の観点からみて、通
常はサンドイッチ構造のものを使用することが多い。
Thin film photoelectric conversion elements are structurally divided into two types: a sandwich structure in which a photoconductor layer is sandwiched between a first electrode and a second electrode, and a planar structure in which a counter electrode is formed on the photoconductor layer. However, from the viewpoint of increasing the density of the sensor section, a sandwich structure is usually used.

ところで、サンドイッチ構造の光電変換素子は、例えば
セラミック基板上に着膜形成された複数個のクロム電極
(第1電極)と透光性の酸化インジウム錫(TTO)電
極(第2電極)とによって光導電体層としてのアモルフ
ァスシリコン層を挾んだ構造をとっている。このアモル
ファスシリコン層は、モノシランガス(5IH4)のグ
ロー放電分解法等によって、クロム電極上に堆積せしめ
られるわけであるが、堆積されるべき面積が大きくなれ
ばなるほど、全面にわたって均一なアモルファスシリコ
ン層を形成するのは難しく、ピンホールの発生をまぬが
れ得ないことがある。これは、製造装置内のダストが基
板表面に付着すること等の外因の他に、薄膜成長のメカ
ニズムと関係する内因をもつことが多いためである。
By the way, a photoelectric conversion element having a sandwich structure is configured to emit light using, for example, a plurality of chromium electrodes (first electrode) and a translucent indium tin oxide (TTO) electrode (second electrode) formed as a film on a ceramic substrate. It has a structure with amorphous silicon layers sandwiched between them as conductive layers. This amorphous silicon layer is deposited on the chromium electrode by glow discharge decomposition of monosilane gas (5IH4), etc., but the larger the area to be deposited, the more uniform the amorphous silicon layer will be over the entire surface. It is difficult to do so, and pinholes may occur. This is because, in addition to external causes such as dust in the manufacturing equipment adhering to the substrate surface, there are often internal causes related to the thin film growth mechanism.

ここで、サンドイッチ構造の光電変換素子において、光
導電体層にピンホールが存在することによって生じる素
子としての機能の変化を考えてみる。
Here, in a photoelectric conversion element having a sandwich structure, a change in the function of the element caused by the presence of a pinhole in the photoconductor layer will be considered.

オず、サンドイッチ構造の光電変換素子の最も簡単表等
側回路を考えると、第1図に示す如くなる。直列抵抗R
3け、電極の接触抵抗と外部回路の抵抗との和であり、
並列抵抗R11hは光導電体層自体の抵抗でちる。ここ
で、光導電体層にピンホールが無く、第1電極と第2電
極との間でショートが発生しなければ並列抵抗Rahは
無限大に)と考えて良い。第1図中、■、は入射光の強
度に比例した光電流、Ijはダイオードに流れる電流、
■shは、ショート等によるもれ電流である。
If we consider the simplest front-to-side circuit of a sandwich-structured photoelectric conversion element, it will be as shown in FIG. Series resistance R
Number 3 is the sum of the contact resistance of the electrode and the resistance of the external circuit,
The parallel resistance R11h is determined by the resistance of the photoconductor layer itself. Here, if there is no pinhole in the photoconductor layer and no short circuit occurs between the first electrode and the second electrode, the parallel resistance Rah can be considered to be infinite. In Figure 1, ■ is a photocurrent proportional to the intensity of incident light, Ij is a current flowing through the diode,
(2) sh is a leakage current due to a short circuit or the like.

ここで外部回路を流れる電流を1とすると、1 =−r
、+rj+r、h ・・−・・(1)が成立する。
Here, if the current flowing through the external circuit is 1, then 1 = -r
,+rj+r,h...(1) holds true.

光導電体層にピンホールの無い理想的な光電変換素子即
ち、並列抵抗Rsh−ω、RF、=0の場合の電流−電
圧特性曲線(1−v曲線)を第2図に示す。ここで、■
lは光入射時の特性曲線、I2は、暗時の特性曲線であ
る。Rsh””ωであるからI zQであり、光入射時
には光電流−ILが支配h 的とカリ、暗時においては、ダイオードを流れる電流1
、が支配的となる。
FIG. 2 shows a current-voltage characteristic curve (1-v curve) for an ideal photoelectric conversion element without pinholes in the photoconductor layer, that is, for parallel resistance Rsh-ω, RF, = 0. Here,■
1 is a characteristic curve when light is incident, and I2 is a characteristic curve when it is dark. Since Rsh""ω, IzQ, and when light is incident, the photocurrent -IL is dominant, and in the dark, the current flowing through the diode is 1
, becomes dominant.

ここで、光導電体層において、第1電極と第2電極とが
重なシ合う部分にピンホールが発生すると、第1電極と
第2電極との間が一部短絡し、並列抵抗Rshが大幅に
減少する。この場合の電流−電圧特性曲線を第3図に示
す。ここではR=Qとしておく。I3は光入射時の特性
曲線、I4は、暗時の特性曲線である。
Here, if a pinhole occurs in the photoconductor layer where the first electrode and the second electrode overlap, a short circuit will occur between the first electrode and the second electrode, and the parallel resistance Rsh will increase. significantly reduced. The current-voltage characteristic curve in this case is shown in FIG. Here, it is assumed that R=Q. I3 is a characteristic curve when light is incident, and I4 is a characteristic curve when it is dark.

この場合、たとえば、ダイオード電流r、ZOの・々イ
アス領域では関係式(1)は、 ■ター1. + l5h 2−■ +−・・−・・(2) Rsh となシ、光照射時においても暗時においても、電流■の
電圧V依存性が大きいことからもわかるように、第2図
に示された理想的な光電変換素子のもつ特性に比べて、
大幅に特性が低下している。
In this case, for example, in the diode current r and ZO region, the relational expression (1) becomes: (1). + l5h 2-■ +-...-... (2) Rsh As can be seen from the large dependence of the current on the voltage V both during light irradiation and in the dark, Figure 2 shows that Compared to the characteristics of the ideal photoelectric conversion element shown,
Characteristics have significantly deteriorated.

すなわち、太陽電池においては、順バイアス領域すなわ
ちLV〉0領域が利用されるが、理想的な光電変換素子
の場合に比べ、ピンホールを有する場合は変換効率が悪
い。
That is, in a solar cell, a forward bias region, that is, a LV>0 region is used, but the conversion efficiency is lower in the case of a pinhole than in the case of an ideal photoelectric conversion element.

一方、イメージセンサでは、逆バイアス領域すなわちV
〈0の領域を利用するが、理想的な光電変換素子に比べ
、明暗比が大幅に低下している。
On the other hand, in an image sensor, the reverse bias region, that is, V
Although the <0 region is utilized, the contrast ratio is significantly lower than that of an ideal photoelectric conversion element.

このように、光電変換素子の光導電体層におけるピンホ
ールの発生は、太陽電池においては、変換効率の低下お
よび開放端電圧の低下をもたらし、イメージセンサにお
いては光学像の読み取り能力の低下を招く等、致命的な
欠陥であシ、素子としての製造歩留りの低下が太き々問
題となっている。
In this way, the occurrence of pinholes in the photoconductor layer of a photoelectric conversion element leads to a decrease in conversion efficiency and open-circuit voltage in solar cells, and a decrease in the ability to read optical images in image sensors. These are fatal defects, and a decline in the manufacturing yield of devices has become a serious problem.

〔発明の目的〕[Purpose of the invention]

本発明は、前記実情に鑑みてなされたもので、万一、光
導電体層にピンホールが発生した場合にも、素子特性に
太き々影響を及ぼすことのないようにし、光電変換素子
の製造歩留りの低下を防ぐことを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and even if a pinhole occurs in the photoconductor layer, the device characteristics will not be significantly affected, and the photoelectric conversion device can be improved. The purpose is to prevent a decline in manufacturing yield.

〔発明の構成〕 前記目的を達成するため、本発明の方法は、第1電極上
に形成された光導電体層すなわち、光電変換膜中にピン
ホールが発生した場合にも、その上すなわち、ピンホー
ルに第2電極が堆積しないようにし、第1電極と第2電
極との間の短絡を防ごうとするものである。
[Structure of the Invention] In order to achieve the above-mentioned object, the method of the present invention is applicable to the case where a pinhole is generated in the photoconductor layer, that is, the photoelectric conversion film formed on the first electrode, and also to This is intended to prevent the second electrode from being deposited in the pinhole and to prevent short circuits between the first and second electrodes.

すなわち、サンドイッチ構造の光電変換素子を、製造す
るにあたり、基板上に形成された第1電極上に光電変換
膜を着膜した後、電解メッキを行なうことにより、前記
光電変換膜中に露呈する第1電極上に金属を析出させる
工程と、次いで第2電極を着膜形成した後に1析出され
た前記金属をエツチング除去することにより、金属上の
第2電極を除去する工程とを含むことを特徴とするもの
である。
That is, when manufacturing a photoelectric conversion element having a sandwich structure, a photoelectric conversion film is deposited on a first electrode formed on a substrate, and then electrolytic plating is performed to remove the first electrodes exposed in the photoelectric conversion film. It is characterized by comprising a step of depositing a metal on one electrode, and then a step of removing the second electrode on the metal by etching and removing the deposited metal after forming a second electrode. That is.

〔実施例〕〔Example〕

以下、本発明の光電変換素子の製造方法について、図面
を参照しつつ実施例に基づいて説明する。
EMBODIMENT OF THE INVENTION Hereinafter, the manufacturing method of the photoelectric conversion element of this invention is demonstrated based on an Example with reference to drawings.

まず、商品名コーニング7059≠とじて市販されてい
るガラス基板10表面金体に蒸着法によって、膜厚的2
000にのクロムCr膜を堆積した後、フォトリソグラ
フィー法にょ勺、第4図に示す如く第1電極としてのク
ロム電極2のツクターニングを行なう。
First, a film with a film thickness of 2
After depositing a chromium Cr film of 0.000 mm, the chromium electrode 2 serving as the first electrode is turned by photolithography as shown in FIG.

次いで、モノシランガス(5IH4)のグロー放電分解
法によって、第5図に示す如く光電変換膜としてのアモ
ルファス水素化シリコン層3を膜厚的1μmとなるよう
に堆積する。
Next, as shown in FIG. 5, an amorphous hydrogenated silicon layer 3 as a photoelectric conversion film is deposited to a thickness of 1 μm by glow discharge decomposition of monosilane gas (5IH4).

この後、硫酸銅CuSO4・5H20+蒸留水をメッキ
液とし、陽極としてプラチナ板(pt )を使用してな
る電解メッキ処理装置を使用し、銅のメッキ生成膜4を
ピンホールすなわち、光電変換膜内のクロム電極露呈部
に生成させる。この電解メッキ処理装置は、第9図に示
す如く、電解液槽31内に浸漬された陽極32と陰極3
3とよりなるもので・ガラス基板1をメッキ液内に浸漬
し、陰極33に前記クロム電極2を接続せしめ、これと
該陽極との間に約6vの電圧を印加し、暗所で、約1分
間通電する。このようにして第6図に示す如く、前記ア
モルファス水素化シリコン層3の着膜工程で発生したピ
ンホール5内に、アモルファス水素化シリコン層3より
も約5μm突出するように銅メツキ生成膜4(金属析出
柱)を形成するわけである。
Thereafter, using an electrolytic plating apparatus that uses copper sulfate CuSO4.5H20 + distilled water as a plating solution and a platinum plate (PT) as an anode, the copper plating film 4 is formed into pinholes, that is, inside the photoelectric conversion film. It is generated on the exposed part of the chromium electrode. As shown in FIG. 9, this electrolytic plating processing apparatus consists of an anode 32 and a cathode 3 immersed in an electrolytic solution tank 31.
3. The glass substrate 1 is immersed in a plating solution, the chromium electrode 2 is connected to the cathode 33, a voltage of about 6 V is applied between this and the anode, and the plating is carried out in a dark place. Turn on electricity for 1 minute. In this way, as shown in FIG. 6, the copper plating produced film 4 is formed so as to protrude by about 5 μm from the amorphous silicon hydride layer 3 into the pinhole 5 generated in the process of depositing the amorphous silicon hydride layer 3. (Metal deposit pillars) are formed.

そして更に、充分、洗浄を行なった後、反応性スパッタ
リング法によって、室温にて第2電極としての酸化イン
ジウム錫(rTo ) 膜5を第7図の如く、約700
1堆積させる。
Further, after thorough cleaning, an indium tin oxide (rTo) film 5 as a second electrode is deposited at room temperature using a reactive sputtering method with a thickness of about 700% as shown in FIG.
1 deposit.

最後に、希硝酸を主成分とするエツチング液に浸漬し、
銅メツキ生成膜をエツチング除去することにより、前記
ピンホール上の第2電極をも除去せしめられ、第8図の
如くなる。
Finally, it is immersed in an etching solution containing dilute nitric acid as its main component.
By etching away the copper plating film, the second electrode above the pinhole is also removed, resulting in the result as shown in FIG.

このようにして、光電変換層内のピンホール発生部位で
は第2電極が除去されることにより、第2電極と第1電
極との間のショートの発生を防ぐことが可能となり、信
頼性の高い光電変換素子を得ることができる。
In this way, the second electrode is removed at the pinhole occurrence site in the photoelectric conversion layer, making it possible to prevent short circuits between the second electrode and the first electrode, resulting in highly reliable A photoelectric conversion element can be obtained.

なお、実施例における銅メツキ生成膜は、フォトリソグ
ラフィー技術のリフトオフ法におけるレジストの働きと
同様の働きをするものであり、従って、メッキ生成膜と
しては、銅に限定されるものではなく、他の金属でも同
様の効果を呈することが可能である。
The copper plating film in the examples has a similar function to that of a resist in the lift-off method of photolithography, and therefore, the plating film is not limited to copper, and may be other than copper. Similar effects can also be achieved with metals.

また、実施例においては、金属生成膜すなわち銅メツキ
生成膜のエツチングに用いるエツチング液としては、希
硝酸を用いたが、必ずしもこれに限定さり、るものでは
ない。この時は、第2電極および第1電極をエツチング
しないものかあるいはこれらに対するエツチング速度が
極めて小さいエツチング液を選ぶことが大切である。
Furthermore, in the embodiment, dilute nitric acid was used as the etching solution for etching the metal-formed film, that is, the copper-plated film, but the present invention is not necessarily limited to this. At this time, it is important to select an etching solution that does not etch the second electrode and the first electrode or has an extremely low etching rate for these.

更に、電解メッキ工程においては、光電変換膜を絶縁性
に保つととすなわち、暗所で行なうことが重要である。
Furthermore, in the electrolytic plating process, it is important to keep the photoelectric conversion film insulating, that is, to perform it in a dark place.

〔発明の効果〕〔Effect of the invention〕

以上、説明してきたように、本発明の方法によれば、光
電変換膜の形成後に、電解メッキを行なうことにより、
絶縁性の光電変換膜中のピンホール部に、金属を析出芒
せ、咀に、この上に第2電極ヲ形成した後、エツチング
により、該金属をエツチング除去することにより、この
ピンホール上の第2電極をも除去し、ビンホール−ヒに
は第2′区極が存在しない状態にし、第2電極と第1電
極とのショートを防ぎ、信頼性の高い光′出、変換素子
を提供することが可能となる。
As explained above, according to the method of the present invention, by performing electrolytic plating after forming the photoelectric conversion film,
A metal is deposited on the pinhole in the insulating photoelectric conversion film, a second electrode is formed thereon, and then the metal is removed by etching. The second electrode is also removed, and the second electrode is not present in the bin hole, thereby preventing short circuit between the second electrode and the first electrode, and providing a highly reliable light output and conversion element. becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、サンドイッチ型光電変喚素子の等何回路を示
す図、 第2図は、理想的な光電変換素子の電流−電圧特性曲線
を示す図、 第3図は、光電変換層において、第1電極と第2電極と
が重々り合う部分にピンホールが発生、した場合の光電
変換素子の電流−電圧・特性的afF示す図、 第4図乃至第8図は、本発明実施例の光電変換素子の製
造工程を示す図、第9図は、本発明実施例の光電変換素
子の製造工程で用いられる電解メッキ処理装置を示す図
である。 1・・・ガラス基板、2・・・クロム電極、3・・・ア
モルファス水素化7937層、4・・・銅メツキ生成膜
、5・・・酸化インジウム錫膜、31・・・電解液槽、
32・・・陽極、33・・・陰極、■l、r3・・・光
照射時のI−V特性曲線、■2+丁4・・・暗時のT−
V特性曲線。 第1図 第2図 第3図 第4□ 第8図 第5図 第6図 第7図 第9図
FIG. 1 is a diagram showing a circuit of a sandwich-type photoelectric conversion device, FIG. 2 is a diagram showing a current-voltage characteristic curve of an ideal photoelectric conversion device, and FIG. 3 is a diagram showing a current-voltage characteristic curve of an ideal photoelectric conversion device. Figures 4 to 8 show the current-voltage characteristic afF of the photoelectric conversion element when a pinhole occurs in the portion where the first electrode and the second electrode overlap. FIG. 9, a diagram showing the manufacturing process of a photoelectric conversion element, is a diagram showing an electrolytic plating processing apparatus used in the manufacturing process of a photoelectric conversion element according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Glass substrate, 2... Chrome electrode, 3... Amorphous hydrogenated 7937 layer, 4... Copper plating film, 5... Indium tin oxide film, 31... Electrolyte tank,
32...Anode, 33...Cathode, ■l, r3...I-V characteristic curve during light irradiation, ■2+d4...T- in darkness
V characteristic curve. Figure 1 Figure 2 Figure 3 Figure 4 □ Figure 8 Figure 5 Figure 6 Figure 7 Figure 9

Claims (1)

【特許請求の範囲】[Claims] 光電変換薄膜を第1および第2の電極によって挾んだサ
ンドイッチ構造の薄膜光電変換素子を製造するにあたシ
、基板上に第1の電極を形成し、この上に絶縁性の光電
変換薄膜を堆積した後、電解メッキ法によって、前記光
電変換薄膜中の一ンホールに起因する第1の電極の露呈
部に金属生成膜を析出せしめる電解メッキ工程と、更に
、この上に第2の電極を形成した後、前記金属生成膜を
エツチング除去することにより、この金属生成膜上の第
2電極をも除去するためのエツチング工程とを含むこと
を特徴とする薄膜光電変換素子の製造方法。
To manufacture a thin film photoelectric conversion element having a sandwich structure in which a photoelectric conversion thin film is sandwiched between first and second electrodes, the first electrode is formed on a substrate, and an insulating photoelectric conversion thin film is formed on the first electrode. After depositing, an electrolytic plating step is performed to deposit a metal-forming film on the exposed portion of the first electrode caused by a hole in the photoelectric conversion thin film, and a second electrode is further deposited on this. A method for manufacturing a thin-film photoelectric conversion element, comprising the step of etching away the metal-generated film after formation, thereby also removing the second electrode on the metal-generated film.
JP58193633A 1983-10-17 1983-10-17 Manufacture of thin film photoelectric conversion element Granted JPS6085577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58193633A JPS6085577A (en) 1983-10-17 1983-10-17 Manufacture of thin film photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58193633A JPS6085577A (en) 1983-10-17 1983-10-17 Manufacture of thin film photoelectric conversion element

Publications (2)

Publication Number Publication Date
JPS6085577A true JPS6085577A (en) 1985-05-15
JPH0221663B2 JPH0221663B2 (en) 1990-05-15

Family

ID=16311184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58193633A Granted JPS6085577A (en) 1983-10-17 1983-10-17 Manufacture of thin film photoelectric conversion element

Country Status (1)

Country Link
JP (1) JPS6085577A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147291A (en) * 1984-08-14 1986-03-07 Ricoh Co Ltd Multicolor thermal recording method
EP0236936A2 (en) * 1986-03-11 1987-09-16 Siemens Aktiengesellschaft Method for avoiding short-circuits during the production of electrical components, particularly for amorphous silicon solar cells
JPH02223924A (en) * 1989-02-27 1990-09-06 Hitachi Ltd Production of display panel
US6132585A (en) * 1992-07-01 2000-10-17 Canon Kabushiki Kaisha Semiconductor element and method and apparatus for fabricating the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147291A (en) * 1984-08-14 1986-03-07 Ricoh Co Ltd Multicolor thermal recording method
EP0236936A2 (en) * 1986-03-11 1987-09-16 Siemens Aktiengesellschaft Method for avoiding short-circuits during the production of electrical components, particularly for amorphous silicon solar cells
EP0236936A3 (en) * 1986-03-11 1989-03-29 Siemens Aktiengesellschaft Method for avoiding short-circuits during the production of electrical components, particularly for amorphous silicon solar cells
JPH02223924A (en) * 1989-02-27 1990-09-06 Hitachi Ltd Production of display panel
US6132585A (en) * 1992-07-01 2000-10-17 Canon Kabushiki Kaisha Semiconductor element and method and apparatus for fabricating the same

Also Published As

Publication number Publication date
JPH0221663B2 (en) 1990-05-15

Similar Documents

Publication Publication Date Title
US6051116A (en) Etching apparatus
KR0143915B1 (en) Stable ohmic contacts to thin films of p-type tellurium-containing ñœ-ñá semiconductors
US20120103669A1 (en) Metal transparent conductors with low sheet resistance
JPS62213177A (en) Method for avoiding short circuit when electric device is produced
JP3619681B2 (en) Solar cell and manufacturing method thereof
US6221685B1 (en) Method of producing photovoltaic element
JPS6085577A (en) Manufacture of thin film photoelectric conversion element
JPS6085578A (en) Manufacture of thin film photoelectric conversion element
JPS6085576A (en) Manufacture of thin film photoelectric conversion element
US5084399A (en) Semi conductor device and process for fabrication of same
JPS61216360A (en) Contact-type image sensor
Horiuchi et al. Fabrication and photoelectrochemical properties of interdigitated array microelectrodes consisting of optically transparent and nontransparent band electrodes
JPH0629206A (en) Method and apparatus for manufacture semiconductor device
JPH11233802A (en) Manufacture of photovoltaic device
JPS62113483A (en) Thin-film solar cell
JPH067598B2 (en) Solar cell manufacturing method
JPH04249379A (en) Photovoltaic device and manufacture thereof
JPH06232430A (en) Manufacture of photovoltaic device
JPS6174365A (en) Thin film semiconductor element and manufacture thereof
JPH01252937A (en) Production of active matrix element
JPH0629205A (en) Method and apparatus for manufacture of semiconductor device
JP2000031524A (en) Manufacture of photoelectric conversion element
JPS61234574A (en) Photocell unit and manufacture thereof
JPH06324349A (en) Method and apparatus for producing semiconductor device
JPH02148773A (en) Optical sensor