JPS6085576A - Manufacture of thin film photoelectric conversion element - Google Patents

Manufacture of thin film photoelectric conversion element

Info

Publication number
JPS6085576A
JPS6085576A JP58193632A JP19363283A JPS6085576A JP S6085576 A JPS6085576 A JP S6085576A JP 58193632 A JP58193632 A JP 58193632A JP 19363283 A JP19363283 A JP 19363283A JP S6085576 A JPS6085576 A JP S6085576A
Authority
JP
Japan
Prior art keywords
electrode
photoelectric conversion
thin film
conversion element
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58193632A
Other languages
Japanese (ja)
Other versions
JPH0221662B2 (en
Inventor
Mario Fuse
マリオ 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP58193632A priority Critical patent/JPS6085576A/en
Publication of JPS6085576A publication Critical patent/JPS6085576A/en
Publication of JPH0221662B2 publication Critical patent/JPH0221662B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/208Particular post-treatment of the devices, e.g. annealing, short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To prevent the generation of short-circuit between a second electrode formed on a photoelectric conversion film and a base first electrode by a method wherein, after the photoelectric conversion film was deposited, the base first electrode is anodized. CONSTITUTION:A Ta electrode 2 patterned as a base first electrode is formed on an insulative substrate 1. A hydrogenated amorphous Si layer 3, which is used as a photoelectric conversion film, is deposited. An anodizing is performed in the dark using the electrode 2 as an anode. By such a way, the exposed parts of the electrode 2 and the vicinity thereof due to pinholes 4, which generated during the accumulation process of the layer 3, are oxidized and Ta2O5 5 having an electric insulating property is formed. An InSn oxide electrode 6, which is used as second electrode, is accumulated. As a reslt, no short-circuit generates between the electrodes 2 and 4 even though the electrode 6 intrudes into the pinholes 4 and reaches the electrode 2, because the pinhole generating sites in the layer 3 and the electrode 2 in the vicinity thereof are converted into an insulating film.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、薄膜光電変換素子の製造方法に係り、特に、
サンドイッチ型の薄膜光電変換素子の製造方法に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a thin film photoelectric conversion element, and in particular,
The present invention relates to a method for manufacturing a sandwich-type thin film photoelectric conversion element.

し従来技術〕 最近、太陽電池やイメージセンサ等の大面積化長尺化に
伴い、大面積にわたって堆積可能なアモルファスシリコ
ン等の光電変換薄膜を用いた薄膜光電変換素子の開発が
進められている。
BACKGROUND ART [0002] Recently, as solar cells, image sensors, etc. have become larger in area and longer in length, development of thin film photoelectric conversion elements using photoelectric conversion thin films such as amorphous silicon that can be deposited over large areas has been progressing.

特に、イメージセンサの場合、原稿と同一幅をもつセン
サ部を形成することにより、1対1結像が可能となり、
原稿とセンサ部とを密着させることができると共に、縮
小光学系が不要となることにより、原稿読み取り部の小
型化が容易に可能となる。
In particular, in the case of an image sensor, one-to-one imaging is possible by forming a sensor part with the same width as the document.
Since the document and the sensor section can be brought into close contact with each other and a reduction optical system is not required, it is possible to easily downsize the document reading section.

薄膜光電変換素子は、構造的に見て、第1電極と第2電
極とによって光導電体層をはさんだサンドインチ構造と
、光導電体層上に対向電極を形成したプレーナ構造とに
大別されるが、センサ部の高密度化の観点からみて、通
常はサンドインチ構造のものを使用することが多い。
Thin film photoelectric conversion elements are structurally divided into two types: a sandwich structure in which a photoconductor layer is sandwiched between a first electrode and a second electrode, and a planar structure in which a counter electrode is formed on the photoconductor layer. However, from the viewpoint of increasing the density of the sensor section, a sandwich-inch structure is usually used.

ところで、サンドイッチ構造の光電変−素子は、例えば
セラミック基板上に着膜形成された複数個のクロム電極
(第1電極)と透光性の酸化インジウム錫(ITO)電
極(第2電極)とによって光導電体層としてのアモルフ
ァスシリコン層を挟んり構造をとっている。このアモル
ファスシリコン層は、モノシランガス(SiH4)のグ
ロー放電分解法等によってクロム電極上に堆積せしめら
れるわけであるが、堆積されるべき面積が大きくなれば
なるほど、全面にわたって均一なアモルファスシリコン
層を形成するのは難しく、ピンホールの発生をまぬがれ
得ないことがある。これは、製造装置内のダストが基板
表面lこ付着すること等の外因の他に、薄膜成長のメカ
ニズムと関係する内因をもつことが多いためである。
By the way, a photoelectric conversion element with a sandwich structure is made of, for example, a plurality of chromium electrodes (first electrode) and a transparent indium tin oxide (ITO) electrode (second electrode) formed as a film on a ceramic substrate. It has a structure with an amorphous silicon layer sandwiched therebetween as a photoconductor layer. This amorphous silicon layer is deposited on the chromium electrode by glow discharge decomposition of monosilane gas (SiH4), etc., and the larger the area to be deposited, the more uniform the amorphous silicon layer will be over the entire surface. It is difficult to do so, and pinholes may occur. This is because, in addition to external causes such as dust in the manufacturing equipment adhering to the substrate surface, there are often internal causes related to the thin film growth mechanism.

ここで、サンドイッチ構造の光電変換素子において光導
電体層にピンホールが存在することによって生じる素子
としての機能の変化を考えてみる。
Here, let us consider the change in the function of the element caused by the presence of pinholes in the photoconductor layer in a sandwich-structured photoelectric conversion element.

まず、サンドイッチ構造の光電変換素子の最も簡単な等
価回路を考えると、第1図に示す如くになる。直列抵抗
R5は、電極の接触抵抗と外部回路の抵抗との和であり
、並列抵抗Rshは光導電体層自体の抵抗である。ここ
で、光導電体層にピンホールが無く、第1電極と第2電
極との間でショートが発生しなければ並列抵抗Rshは
無、成人(−5)と考えて良い。第1図中、ILは入射
光の強度に比例した光電流、工jはダイオードに流れる
電流、Ishはショート等によるもれ電流である。
First, if we consider the simplest equivalent circuit of a sandwich-structured photoelectric conversion element, it will be as shown in FIG. The series resistance R5 is the sum of the contact resistance of the electrodes and the resistance of the external circuit, and the parallel resistance Rsh is the resistance of the photoconductor layer itself. Here, if there is no pinhole in the photoconductor layer and no short circuit occurs between the first electrode and the second electrode, the parallel resistance Rsh can be considered to be zero and an adult (-5). In FIG. 1, IL is a photocurrent proportional to the intensity of incident light, Ish is a current flowing through the diode, and Ish is a leakage current due to a short circuit or the like.

ここで外部回路を流れる電流をlとすると、I=−IL
+Ij+I、11 ・・・(υが成立する。
If the current flowing through the external circuit is l, then I=-IL
+Ij+I, 11...(υ holds true.

光導電体層にピンホールの無い理想的な九電変換素子即
ち、並列抵抗Rsh=Φ、R5=Qの場合の電流−電圧
特性曲線(I−V曲線)を第2図に示す。ここで、11
は光入射時の特性曲線、I2は、暗時の特性曲線である
。Rsh=〜であるからIshに0であり、光入射時に
は光電流−ILが支配的となり、暗時においては、ダイ
オードを流れる電流Ijが支配的となる。
FIG. 2 shows a current-voltage characteristic curve (IV curve) for an ideal nine-density conversion element without pinholes in the photoconductor layer, ie, parallel resistance Rsh=Φ, R5=Q. Here, 11
I2 is the characteristic curve when light is incident, and I2 is the characteristic curve when it is dark. Since Rsh=~, Ish is 0, and the photocurrent -IL is dominant when light is incident, and the current Ij flowing through the diode is dominant during darkness.

ここで、光導電体層において、第1電極と第2電極とが
重なり合う部分にピンホールが発生すると、第1電極と
第2電極との間が一部短絡し、並列抵抗Rshが大幅に
減少する。この場合の電流−電圧特性曲線を第3図に示
す。ここではR5=0としておく。I3は光入射時の特
性曲線、I4は、暗時の特性曲線である。
Here, if a pinhole occurs in the photoconductor layer where the first electrode and the second electrode overlap, a short circuit will occur between the first electrode and the second electrode, and the parallel resistance Rsh will decrease significantly. do. The current-voltage characteristic curve in this case is shown in FIG. Here, let R5=0. I3 is a characteristic curve when light is incident, and I4 is a characteristic curve when it is dark.

この場合、たとえばダイオード電流Ij弓Oのバイアス
領域では関係式(υは、 IニーIL+I5h ■ =r L 十R、h ・−G2) となり、光照射時においても暗時においても、電流Iの
電圧■依存性が大きいことからもわかるように、第2図
に示された理想的な光電変換素子のもつ特性に比べて、
大幅に一特性が低下している。
In this case, for example, in the bias region of the diode current Ij bow O, the relational expression (υ is I IL + I5h ■ = r L + R, h ・-G2), and the voltage of the current I is ■As can be seen from the large dependence, compared to the characteristics of the ideal photoelectric conversion element shown in Figure 2,
One characteristic has significantly decreased.

すなわち、太陽電池においては、順バイアス領域すなわ
ちV>o領域が利用されるが、理想的な光電変換素子の
場合に比べ、ピンホールを有する場合は変換効率が悪い
That is, in a solar cell, a forward bias region, that is, a V>o region is used, but the conversion efficiency is lower in the case of a pinhole than in the case of an ideal photoelectric conversion element.

一方、イメージセンサでは、逆にバイアス領域すなわち
V<Oの領域を利用するが、理想的な光電変換素子に比
べ、明暗比が大幅に低下している。
On the other hand, an image sensor uses a bias region, that is, a region where V<O, but the contrast ratio is significantly lower than that of an ideal photoelectric conversion element.

このように、光電変換素子の光導電体層におけるピンホ
ールの発生は、太陽電池においては、変換効率の低下お
よび開放端電圧の低下をもたらし、イメージセンサにお
いては光学像の読み取り能力の低下を招く等、致命的な
欠陥であり、素子としての製造歩留りの低下が大きな問
題となっている。
In this way, the occurrence of pinholes in the photoconductor layer of a photoelectric conversion element leads to a decrease in conversion efficiency and open-circuit voltage in solar cells, and a decrease in the ability to read optical images in image sensors. These are fatal defects, and a decrease in the manufacturing yield of devices is a major problem.

し発明の目的〕 本発明は、前記実情に鑑みてなされたもので、万一、光
導電体層にピンホールが発生した場合にも、素子特性に
大きな影響を及ぼすことのないようにし、光電変換素子
の製造歩留りの低下を防ぐことを目的とする。
OBJECT OF THE INVENTION] The present invention has been made in view of the above-mentioned circumstances, and even if a pinhole occurs in the photoconductor layer, it can be prevented from greatly affecting the device characteristics, and the photoconductor layer can be easily The purpose is to prevent a decrease in manufacturing yield of conversion elements.

〔発明の構成〕[Structure of the invention]

上記目的を達成するため、本発明の薄膜光電変換素子の
製造方法は、基板上に形成された第1電極上に、光導電
体層すなわち、光電変換膜を着膜した後に下地の第1電
極を陽極酸化する工程を含むことを特徴とするもので、
これにより、光電変換膜中にピンホールが発生した場合
でも、ピンホールによって膜中に露呈する下地の第1電
極は絶縁化され、光電変換膜上に形成される第2電極と
第1電極との短絡を防ぐことができる。
In order to achieve the above object, the method for manufacturing a thin film photoelectric conversion element of the present invention includes depositing a photoconductor layer, that is, a photoelectric conversion film on a first electrode formed on a substrate, and then depositing a first electrode on the base. It is characterized by including a step of anodizing the
As a result, even if a pinhole occurs in the photoelectric conversion film, the underlying first electrode exposed in the film due to the pinhole is insulated, and the second electrode and first electrode formed on the photoelectric conversion film are insulated. can prevent short circuits.

し実施例〕 以下、本発明実施例のイメージセンサ用薄膜光電変換素
子の製造方法について、図面を参照しつつ説明する。
Embodiment] Hereinafter, a method for manufacturing a thin film photoelectric conversion element for an image sensor according to an embodiment of the present invention will be described with reference to the drawings.

まず、商品名コーニング7059 で市販されている絶
縁性のガラス基板1上に、蒸着法により、タンタルTa
膜を約1000Xの膜厚で着膜した後、フォトリソグラ
フィー法により、第4図に示す如く下地の第1電極とし
てタンタル電極2をパターニングする。
First, tantalum (Ta) was deposited on an insulating glass substrate 1 (commercially available under the trade name Corning 7059) by vapor deposition.
After depositing a film to a thickness of about 1000×, a tantalum electrode 2 is patterned as a first electrode as a base by photolithography as shown in FIG.

次いで、モノシラン・ガス(SiH4)のグロー放電分
解法により、第5図に示す如く光電変換膜としてのアモ
ルファス水素化シリコン層3を膜厚約1μmとなるよう
に堆積する。
Next, as shown in FIG. 5, an amorphous hydrogenated silicon layer 3 as a photoelectric conversion film is deposited to a thickness of about 1 μm by glow discharge decomposition of monosilane gas (SiH4).

この後、前記タンタル電極を陽極として、第8図に示す
如き、陽極酸化装置を使用して暗中で陽極酸化を行う。
Thereafter, using the tantalum electrode as an anode, anodic oxidation is performed in the dark using an anodizing apparatus as shown in FIG.

この陽極酸化装置は、電解液槽31内に浸漬されたプラ
チナpt板よりなる陰極32と、陽極33とよりなるも
ので、電解液としては5チの酒石酸アンモニウム水溶液
を使用している。第8図に示す如く、この陽極酸化装置
の電解液槽31内に、前記アモルファス水素化シリコン
層形成後のガラス基板1を浸漬し、タンタル電極2を陽
極33に接続し、酸化がタンタル電極2の厚さ全体に及
ぶまで50Vの化成電圧を印加する。このとき、アモル
ファスシリコン層から露出するように設計されている部
分のタンタル電極は液面上になるように留意する。
This anodizing device consists of a cathode 32 made of a platinum PT plate immersed in an electrolytic solution tank 31, and an anode 33, and an aqueous solution of ammonium tartrate of 5% is used as the electrolytic solution. As shown in FIG. 8, the glass substrate 1 on which the amorphous silicon hydride layer has been formed is immersed in the electrolyte tank 31 of this anodizing apparatus, and the tantalum electrode 2 is connected to the anode 33, so that the oxidation occurs on the tantalum electrode 2. A forming voltage of 50 V is applied until the entire thickness is covered. At this time, care must be taken so that the portion of the tantalum electrode designed to be exposed from the amorphous silicon layer is above the liquid level.

これにより、アモルファ、ス水素化シリコン層の堆積工
程中に発生したピンホール4によるタンタル電極2の露
呈部およびその周辺は酸化され、第6図に示す如く、電
気絶縁性の酸化タンタルTa20B被膜5が形成される
As a result, the exposed portion of the tantalum electrode 2 due to the pinhole 4 generated during the deposition process of the amorphous silicon hydride layer and its surrounding area are oxidized, and as shown in FIG. is formed.

更に、充分洗浄を行った後、アルゴンArガスと酸素0
2の混合ガスを用いた反応性スパッタリング法により、
第7図に示す如く、第2電極としての酸化インジウム錫
(ITO)電極6を、膜厚700Aとなるように堆積す
る。
Furthermore, after thorough cleaning, argon Ar gas and oxygen 0
By reactive sputtering method using mixed gas of 2,
As shown in FIG. 7, an indium tin oxide (ITO) electrode 6 as a second electrode is deposited to a thickness of 700 Å.

このようにして、光電変換膜内のピンホール発生部位お
よびその周辺の第1電極は、絶縁膜と化すため、第2電
極がピンホール内に入り込み第1電極面に達しても、第
1電極と第2電極の間でショートが発生することはなく
、信頼性の高いイメージセンサを形成することができる
In this way, the pinhole generation site in the photoelectric conversion film and the first electrode around it become an insulating film, so even if the second electrode enters the pinhole and reaches the first electrode surface, the first electrode No short circuit occurs between the first electrode and the second electrode, and a highly reliable image sensor can be formed.

なお、陽極酸化工程においては、光電変換膜から露呈し
ている第1電極すなわち、第1電極のリード部には、電
解液が接触しないようにすることが必要であり、実施例
の如く、液面上に出す方法の他、この部分をレジスト被
覆した後に、陽極酸化を行う等の方法をとることが大切
である。
In addition, in the anodic oxidation process, it is necessary to prevent the electrolyte from coming into contact with the first electrode exposed from the photoelectric conversion film, that is, the lead part of the first electrode. In addition to exposing the area on the surface, it is important to apply a method such as coating this area with a resist and then anodizing it.

また、陽極酸化に使用する電解液としては、実施例で使
用した酒石酸アンモニウム水溶液の他、硼酸アンモニウ
ム水溶液等のように、生成被膜を溶解しないものを使用
しなければならない。
Furthermore, as the electrolytic solution used for anodization, in addition to the ammonium tartrate aqueous solution used in the examples, one such as an ammonium borate aqueous solution that does not dissolve the formed film must be used.

更に、実施例においては、第1電極の膜厚全体にわたっ
て陽極酸化を行ったが、必ずしも、すべて酸化膜とする
必要はなく、表面近傍のみを酸化膜としてもよい。いず
れにしても、ピンホール部と接する第1電極が金属酸化
物と化し、絶縁体となることにより、その上に第2電極
が堆積されても短絡を起さない程度であればよい。
Further, in the embodiment, the entire thickness of the first electrode was anodized, but it is not necessarily necessary to form an oxide film entirely, and only the vicinity of the surface may be formed as an oxide film. In any case, it is sufficient that the first electrode in contact with the pinhole portion turns into a metal oxide and becomes an insulator, so that even if the second electrode is deposited thereon, no short circuit will occur.

更に才た、下地の第1電極の材料としては、実施例で使
用したタンタルの他、アルミニウムAI!、チタンTi
1ジルコニウムZr、二;h−iNb、ハフニウムHf
等、陽極酸化によって、酸化膜を容易に形成することの
できるものであれば良い。
In addition to the tantalum used in the examples, the material for the underlying first electrode is aluminum AI! , titanium
1 Zirconium Zr, 2; h-iNb, Hafnium Hf
Any material that can easily form an oxide film by anodic oxidation may be used.

加えて、絶縁性光電変換膜としては、実施例で用いたア
モルファス水素化シリコンに限定されることなくアモル
ファス水素化シリコンゲルマニウム、セレンSe−テル
ルTeなどのカルコゲナイドガラス、硫化カドミウムC
d5−テルル化カドミウムCdTe等でもよいことは言
うまでもない。
In addition, the insulating photoelectric conversion film is not limited to the amorphous silicon hydride used in the examples, but may also include amorphous silicon germanium hydride, chalcogenide glass such as selenium Se-tellurium Te, and cadmium sulfide C.
Needless to say, d5-cadmium telluride, CdTe, etc. may also be used.

ぢなみに、これらの膜は、光照射時には導電性を呈する
ため、陽極酸化工程は、いずれの場合も暗中で実施する
ことが重要である。
Incidentally, since these films exhibit conductivity when irradiated with light, it is important to carry out the anodization process in the dark in any case.

し発明の効果〕 以上、説明してきたように、本発明の薄膜光電変換素子
の製造方法によれば、基板上に形成された第1電極上に
、絶縁性の光電変換薄膜を堆積した後に、第4の電極に
陽極酸化を施し、光電変換薄膜のピンホールに起因する
第1の電極の露呈部を絶縁性の酸化膜と化すことにより
、この後、光電変換膜上に着膜される第2電極がピンホ
ール内に入り込み第1電極面に達した場合にも、第1電
極と第2電極との間で短絡が起ることはなく、信頼性の
高い薄膜光電変換素子を形成することが可能きなる。
[Effects of the Invention] As described above, according to the method for manufacturing a thin film photoelectric conversion element of the present invention, after depositing an insulating photoelectric conversion thin film on the first electrode formed on the substrate, By anodizing the fourth electrode and turning the exposed portion of the first electrode caused by pinholes in the photoelectric conversion thin film into an insulating oxide film, the fourth electrode is subsequently deposited on the photoelectric conversion film. Even when two electrodes enter a pinhole and reach the first electrode surface, a short circuit does not occur between the first electrode and the second electrode, and a highly reliable thin film photoelectric conversion element is formed. is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は通常のサンドイッチ型光電変換素子の等価回路
を示す図、 ° 第2図は、理想的な光電変換素子の電流−電圧特性
曲線を示す図、 第3図は、光電変換層において、第1電極と第2電極と
が重なり合う部分にピンホールが発生した場合の光電変
換素子の電流−電圧特性曲線を示す図、 第4図乃至第7図は、本発明実施例の光電変換素子の製
造工程を示す図、第8図は、本発明実施例の光電変換素
子の製造工程で用いられる陽極酸化処理装置を示す図で
ある。 1・・・ガラス基板、2・・・タンクル電極、3・・ア
モルファス水素化シリコン層、4・・ピンホール、5・
・・酸化タンタル被膜、6・酸化インジウム錫電極、3
1・・電解液槽、32・・陰極、33・・・陽極、工l
 。 I3 ・光照射時のI−V特性曲線、I2 、I4 ・
・・暗時のI−V特性曲線。 第1図 第4図 第5図 第6図 第7図 第8図
Figure 1 is a diagram showing the equivalent circuit of a normal sandwich type photoelectric conversion element; Figure 2 is a diagram showing the current-voltage characteristic curve of an ideal photoelectric conversion element; Figure 3 is a diagram showing the current-voltage characteristic curve of an ideal photoelectric conversion element; Figures 4 to 7 show current-voltage characteristic curves of the photoelectric conversion element when a pinhole occurs in the overlapping portion of the first electrode and the second electrode. FIG. 8, which is a diagram showing the manufacturing process, is a diagram showing an anodizing treatment apparatus used in the manufacturing process of the photoelectric conversion element of the embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Glass substrate, 2... Tank electrode, 3... Amorphous hydrogenated silicon layer, 4... Pinhole, 5...
・・Tantalum oxide film, 6・Indium tin oxide electrode, 3
1... Electrolyte tank, 32... Cathode, 33... Anode, work l
. I3 ・I-V characteristic curve during light irradiation, I2 , I4 ・
...I-V characteristic curve in the dark. Figure 1 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】[Claims] 絶縁性の光電変換薄膜を第1および第2の電極によって
挟持したサンドインチ構造の薄膜光電変換素子を製造す
るにあたり、基板上に形成された第1の電極上に、光電
変換薄膜を着膜した後、該第1の電極を陽極酸化するこ
と?こより、光電変換薄膜中のピンホールに起因する第
1の電極の露呈部を絶縁化する工程を含むことを特徴と
する薄膜光電変換素子の製造方法。
In manufacturing a thin film photoelectric conversion element with a sandwich structure in which an insulating photoelectric conversion thin film is sandwiched between first and second electrodes, a photoelectric conversion thin film is deposited on a first electrode formed on a substrate. After that, anodizing the first electrode? Accordingly, a method for manufacturing a thin film photoelectric conversion element is characterized in that it includes a step of insulating an exposed portion of the first electrode caused by a pinhole in the photoelectric conversion thin film.
JP58193632A 1983-10-17 1983-10-17 Manufacture of thin film photoelectric conversion element Granted JPS6085576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58193632A JPS6085576A (en) 1983-10-17 1983-10-17 Manufacture of thin film photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58193632A JPS6085576A (en) 1983-10-17 1983-10-17 Manufacture of thin film photoelectric conversion element

Publications (2)

Publication Number Publication Date
JPS6085576A true JPS6085576A (en) 1985-05-15
JPH0221662B2 JPH0221662B2 (en) 1990-05-15

Family

ID=16311168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58193632A Granted JPS6085576A (en) 1983-10-17 1983-10-17 Manufacture of thin film photoelectric conversion element

Country Status (1)

Country Link
JP (1) JPS6085576A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4729970A (en) * 1986-09-15 1988-03-08 Energy Conversion Devices, Inc. Conversion process for passivating short circuit current paths in semiconductor devices
US7098058B1 (en) 2004-01-15 2006-08-29 University Of Toledo Photovoltaic healing of non-uniformities in semiconductor devices
WO2011032854A3 (en) * 2009-09-18 2012-05-18 Oerlikon Solar Ag, Truebbach Method for manufacturing a thin film photovoltaic device
US8574944B2 (en) 2008-03-28 2013-11-05 The University Of Toledo System for selectively filling pin holes, weak shunts and/or scribe lines in photovoltaic devices and photovoltaic cells made thereby

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538088A (en) * 1976-07-12 1978-01-25 Hitachi Ltd Production of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538088A (en) * 1976-07-12 1978-01-25 Hitachi Ltd Production of semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4729970A (en) * 1986-09-15 1988-03-08 Energy Conversion Devices, Inc. Conversion process for passivating short circuit current paths in semiconductor devices
JPS6376442A (en) * 1986-09-15 1988-04-06 エナージー・コンバーシヨン・デバイセス・インコーポレーテツド Method of conversion for realize passive state of short circuit current in semiconductor device and article manufactured by the method
US7098058B1 (en) 2004-01-15 2006-08-29 University Of Toledo Photovoltaic healing of non-uniformities in semiconductor devices
US8574944B2 (en) 2008-03-28 2013-11-05 The University Of Toledo System for selectively filling pin holes, weak shunts and/or scribe lines in photovoltaic devices and photovoltaic cells made thereby
WO2011032854A3 (en) * 2009-09-18 2012-05-18 Oerlikon Solar Ag, Truebbach Method for manufacturing a thin film photovoltaic device

Also Published As

Publication number Publication date
JPH0221662B2 (en) 1990-05-15

Similar Documents

Publication Publication Date Title
KR0143915B1 (en) Stable ohmic contacts to thin films of p-type tellurium-containing ñœ-ñá semiconductors
US4729970A (en) Conversion process for passivating short circuit current paths in semiconductor devices
AU667718B2 (en) Semiconductor element and method and apparatus for fabricating the same
KR100334595B1 (en) Manufacturing method of photovoltaic device
KR0171648B1 (en) Thin film device and method of producing the same
CN1008784B (en) A kind of semiconductor image sensor
JPS6085578A (en) Manufacture of thin film photoelectric conversion element
JPS6085576A (en) Manufacture of thin film photoelectric conversion element
Skotheim et al. A partially stabilized photoeletrochemical cell using hydrogenated amorphous silicon photoanodes coated with thin films of polypyrrole
JPS61159771A (en) Photovoltaic device
JPH0221663B2 (en)
JPS60142566A (en) Insulated gate thin film transistor and manufacture thereof
US5084399A (en) Semi conductor device and process for fabrication of same
EP0070682B1 (en) Method of producing a semiconductor layer of amorphous silicon and a device including such a layer
JPH0729649Y2 (en) Photoelectric conversion device
JPH0629206A (en) Method and apparatus for manufacture semiconductor device
JP2764297B2 (en) Photoelectric conversion device
JPS6240871B2 (en)
JP3469061B2 (en) Solar cell
JPH0730118A (en) Thin film transistor for liquid crystal display device
JP2695827B2 (en) Matrix array substrate
JPS61203666A (en) Manufacture of photo-diode
JPH01194356A (en) Solid state image pickup device
JPS639756B2 (en)
JPH11233802A (en) Manufacture of photovoltaic device