JPS6084766A - Zinc alkaline battery - Google Patents

Zinc alkaline battery

Info

Publication number
JPS6084766A
JPS6084766A JP58192758A JP19275883A JPS6084766A JP S6084766 A JPS6084766 A JP S6084766A JP 58192758 A JP58192758 A JP 58192758A JP 19275883 A JP19275883 A JP 19275883A JP S6084766 A JPS6084766 A JP S6084766A
Authority
JP
Japan
Prior art keywords
zinc
active material
magnesium
discharge
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58192758A
Other languages
Japanese (ja)
Inventor
Akira Miura
三浦 晃
Tsukasa Ohira
大平 司
Ryoji Okazaki
良二 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58192758A priority Critical patent/JPS6084766A/en
Publication of JPS6084766A publication Critical patent/JPS6084766A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase discharge performance of zinc electrode in alkaline electrolyte by using zinc alloy prepared by adding Mg as negative active material. CONSTITUTION:A zinc alkaline battery is formed by using alkaline solution as electrolite, zinc as negative active material, and manganese dioxide, silver oxide, mercuric oxide, or oxygen as positive active material. In this battery, zinc alloy obtained by adding 0.02-0.5wt% of Mg is used in a negative electrode. By using this negative active material, utilization rate of zinc in high rate discharge is increased, and large capacity is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電解液にアルカリ水溶液、負極活物質に亜鉛
、正極活物質に二酸化マンガン、酸化銀。
DETAILED DESCRIPTION OF THE INVENTION Industrial Application Field The present invention uses an alkaline aqueous solution as an electrolyte, zinc as a negative electrode active material, and manganese dioxide and silver oxide as a positive electrode active material.

酸化水銀、酸素などを用いる亜鉛アルカリ電池の負極の
改良に係るものである。
This invention relates to the improvement of negative electrodes for zinc alkaline batteries that use mercury oxide, oxygen, etc.

従来例の構成とその藺題点 アルカリ電解液中での亜鉛電極は、従来力)ら上記の各
正極活物質に代表される各種活物質と組合せだ各種アル
カリ電池系の負極として一般化されている。亜鉛のアル
カリ電解液中での自己消耗や水素カスの発生を抑制する
ため、水化亜鉛を用いるのが一般的で、亜鉛に鉛、カド
ミウム、インジウムなどを添加して合金化することも提
案されており、これらの方法により実用的には十分な防
食技術が確立されている。一方、亜鉛電極の放電特性を
向上させるために、粉体亜鉛を成型もしくはゲル状電解
液中に分散させて用い、反応表面積を拡大する方法が採
られている。通常、亜鉛粉体の粒度は50〜150メノ
ンユのものが用いられている。アルカリ電解液中の亜鉛
の放電反応生成物としてはまず、水酸化亜鉛又は酸化亜
鉛が粒子表面に生成し、亜鉛酸イオンとなって電解液中
に溶解するものとされている。しかし、本質的に改良す
べき課題として亜鉛粒子表面に形成される反応生成物の
層が電解液中に溶解し、あるいは溶解しないまでも上記
層中を電解液中の水酸イオンが十分に拡散し、亜鉛の反
応表面に水酸イオンが到達し易い状態では放電反応は円
滑に進行するが、放電反応が進み、あるいは、放電反応
速度が大きくなるにつれ、反応生成物は溶解し難くなる
と共に反応生成物の層が緻密化し、いわゆる不働態化膜
を亜鉛表面に形成して放電反応を阻害するので、大電流
放電での十分な容量を得ることができない問題があった
The structure of conventional examples and their problems Zinc electrodes in alkaline electrolytes have been commonly used as negative electrodes in various alkaline battery systems in combination with various active materials such as the above-mentioned positive electrode active materials. There is. In order to suppress the self-depletion of zinc in alkaline electrolytes and the generation of hydrogen scum, zinc hydrate is commonly used, and it has also been proposed to alloy zinc with lead, cadmium, indium, etc. Using these methods, corrosion prevention technology that is sufficient for practical use has been established. On the other hand, in order to improve the discharge characteristics of zinc electrodes, methods have been adopted in which powdered zinc is molded or dispersed in a gel electrolyte to increase the reaction surface area. Usually, the particle size of the zinc powder used is 50 to 150 menonyu. As a discharge reaction product of zinc in an alkaline electrolyte, zinc hydroxide or zinc oxide is first generated on the surface of particles, which becomes zincate ions and is dissolved in the electrolyte. However, the problem that essentially needs to be improved is that the layer of reaction products formed on the surface of the zinc particles dissolves in the electrolyte, or even if it does not dissolve, the hydroxide ions in the electrolyte sufficiently diffuse through the layer. However, the discharge reaction proceeds smoothly when hydroxide ions easily reach the reaction surface of zinc, but as the discharge reaction progresses or the discharge reaction rate increases, the reaction products become difficult to dissolve and the reaction slows down. Since the product layer becomes dense and a so-called passivation film is formed on the zinc surface and inhibits the discharge reaction, there is a problem in that sufficient capacity cannot be obtained for large current discharge.

発明、の目的 本発明は、アルカリ電解液中での亜鉛電極の放電性能、
特に大電流放電での性能を向上させることを目的とする
OBJECTS OF THE INVENTION The present invention relates to the discharge performance of a zinc electrode in an alkaline electrolyte,
In particular, the purpose is to improve performance in large current discharge.

発明の構成 本発明は、電解浅にカセイカリ、カセインーダなどを主
成分とするアルカリ水溶液、負極活物質に亜鉛、正極活
物質に二酸化マンガン、酸化銀。
Structure of the Invention The present invention uses an alkaline aqueous solution containing caustic potash, caustic acid, etc. as the main components for electrolysis, zinc as a negative electrode active material, and manganese dioxide and silver oxide as positive electrode active materials.

酸化水銀、酸素などを備えた、いわゆる亜鉛アルカリ電
池の負極にマグネシウムを添加した亜鉛合金を用いるも
のであシ、好ましくはこの亜鉛合金中のマグネシウムの
含量を0.02〜0.5wt%とすることを特徴とする
ものである。
A zinc alloy to which magnesium is added is used for the negative electrode of a so-called zinc alkaline battery, which is equipped with mercury oxide, oxygen, etc., and preferably the content of magnesium in this zinc alloy is 0.02 to 0.5 wt%. It is characterized by this.

本発明は後述する実施例に示すように、マグネシウムを
添加した亜鉛合金を負極に用いることによシ、大電流放
電における亜鉛の放電利用率を高め、大容量を得ること
ができることを実験的に明らかにしたものである。その
作用機構についての解明は不十分であるが、負極亜鉛中
に合金として含まれている亜鉛よυ卑な電位を有するマ
グネシウムが、亜鉛とともに放電し、その放電生成物が
、亜鉛の放電生成物の電解液中への溶解を促進させるか
、未泥解の放電生成物の層が緻密化して、亜鉛表面が不
働態化する作用を緩和する役割を果しているものと考え
られる。これにより、亜鉛粉末の活性面に水酸イオンが
豊富に供給される状態が放電初期から亜鉛が消耗し尽す
まで継続して確保されて、亜鉛の放電反応の利用率が高
捷る。本発明の効果は、水酸イオンの亜鉛の活性面への
供給が、放電性能を支配する大電流放電において、特に
著しい。尚、亜鉛合金中のマグネシウムの含量によって
当然、効果は異シ、適量を超へた場合は保存期間中に電
解液との反応でマグネシウム成分の酸化、及び水素ガス
発生などの幣害があり、適正な含量は後述の実施例に示
す実験より0.02〜0.6wt%、さらに好ましくは
O、O5−0,25wt%テすることを確認した。
As shown in the examples below, the present invention has experimentally demonstrated that by using a zinc alloy to which magnesium is added for the negative electrode, it is possible to increase the discharge utilization rate of zinc in a large current discharge and obtain a large capacity. It has been made clear. Although the mechanism of its action is not fully understood, magnesium, which is contained as an alloy in the negative electrode zinc and has a potential lower than that of zinc, is discharged together with zinc, and the discharge products are the discharge products of zinc. This is thought to play a role in promoting the dissolution of zinc into the electrolytic solution, or by densifying the layer of undissolved discharge products, thereby alleviating the effect of passivating the zinc surface. As a result, a state in which hydroxide ions are abundantly supplied to the active surface of the zinc powder is ensured continuously from the initial stage of discharge until the zinc is completely exhausted, and the utilization rate of the zinc discharge reaction is increased. The effects of the present invention are particularly remarkable in high current discharge where the supply of hydroxide ions to the active surface of zinc dominates the discharge performance. Naturally, the effect will vary depending on the content of magnesium in the zinc alloy, and if it exceeds the appropriate amount, there will be damage such as oxidation of the magnesium component and generation of hydrogen gas due to reaction with the electrolyte during storage. From experiments shown in Examples below, it was confirmed that the appropriate content is 0.02 to 0.6 wt%, more preferably O, O5-0.25 wt%.

実施例の説明 純度99.997%で、鉛、カドミウム、鉄を不純物と
して微量含む亜鉛地金に合金元素としてのマグネシウム
の添加量を変えた各種の合金を作成し、約500”Cで
溶融して圧縮空気にょシ噴射して粉体とし、50〜15
0メツシユの粒度範囲にフルイ別け、カセイカリの10
%濃度の水溶液中に投入し、攪拌しながら、重量比で亜
鉛合金粉100に対し5の基暴蕪4水銀を滴下して永化
し、水洗、乾燥して水化亜鉛合金粉を作成した。
Description of Examples Various alloys were created by adding varying amounts of magnesium as an alloying element to zinc base metal with a purity of 99.997% and containing trace amounts of lead, cadmium, and iron as impurities, and melted at approximately 500"C. Blow out compressed air to make powder, and reduce to 50-15
Sorted by sieve into particle size range of 0 mesh, 10 of caustic potash
% concentration of aqueous solution, and while stirring, mercury with a weight ratio of 5 to 100 parts of zinc alloy powder was added dropwise, and the powder was washed with water and dried to prepare a hydrated zinc alloy powder.

さらに比較例としてマグネシウムを添加しない亜鉛、及
び亜鉛、マグネシウムよシも卑な電位を有するカルシウ
ムを合金元素として添加した亜鉛合金を各々、前記と同
法で作成し、永−化粉体とした。これらの各汞化粉体を
用い、図に示すボタン形酸化銀電池を製作した。図にお
いて、1はステンレススチール製の封目板で、内面には
銅メッキ1が施されている。2は40%濃度のカセイヵ
リ水溶液に酸化亜鉛を飽和させた電解液をカルポキシメ
チルセルースにょシゲル化し、このクル中に水化亜鉛粉
体を分散させた負極、3はセルロース系の保液材、4は
多孔性ポリプロピレン環のセパレータ、6は酸化銀粉末
に黒鉛を混合して加圧成型した」極、6′は鉄にニッケ
ルメッキを施した正極リンク、6はステンレススチール
製の正極缶で、内外両面にニッケルメッキ6′が施され
ている。7はポリプロピレン環のカスヶソトで、正極缶
6の開口部の折り曲げにより正極缶6と封口板1′との
間を密封している。試作した電池はいずれも直径11.
61171j、高さ5.4鼠で、負極の水化亜鉛(又は
合金)の粉体重量を193mgに統一した。
Furthermore, as comparative examples, zinc alloys containing no added magnesium and zinc alloys containing calcium as an alloying element, which has a more base potential than zinc and magnesium, were prepared in the same manner as described above and made into permanent powders. The button-shaped silver oxide battery shown in the figure was manufactured using each of these phosphorized powders. In the figure, 1 is a sealing plate made of stainless steel, and the inner surface is coated with copper plating 1. 2 is a negative electrode made of a 40% caustic acid aqueous solution saturated with zinc oxide to form a carpoxymethyl cellulose gel, and zinc hydride powder is dispersed in this gel; 3 is a cellulose-based liquid retaining material. , 4 is a porous polypropylene ring separator, 6 is a pressure-molded electrode made by mixing graphite with silver oxide powder, 6' is a positive electrode link made of nickel-plated iron, and 6 is a stainless steel positive electrode can. , nickel plating 6' is applied to both the inside and outside surfaces. Reference numeral 7 denotes a polypropylene ring scraper, which seals between the positive electrode can 6 and the sealing plate 1' by bending the opening of the positive electrode can 6. All of the prototype batteries had a diameter of 11.
61171j, height 5.4 mice, and the negative electrode zinc hydrate (or alloy) powder weight was unified to 193 mg.

試作した電池の内訳と60 ℃で1力月保存した後の放
電試験(20℃、61oΩ、0.9V終止)、及び電池
総高の保存による増加量を測定した結果を次表に示す。
The following table shows the details of the prototype battery, the discharge test after storage at 60°C for one month (20°C, 61oΩ, 0.9V termination), and the results of measuring the amount of increase in total battery height due to storage.

表に見られるようにマグネシウム含量として最も効果的
なのは0.1〜0.25wt % 、効果があると判断
される範囲は0.02〜Q、5wt%である。表中iの
場合はマグネシウム含量が多すぎたため、水 4素ガス
発生による電池の膨張と、電池性能の劣化が見られる。
As seen in the table, the most effective magnesium content is 0.1 to 0.25 wt%, and the range judged to be effective is 0.02 to Q, 5 wt%. In case i in the table, since the magnesium content was too high, expansion of the battery due to hydrogen gas generation and deterioration of battery performance were observed.

またカルシウムを添加したj、kにおいてはマグネシウ
ムの最適含量に合せた添加量としたにもかかわらず、電
池の膨張、電池性能劣化が見られ、逆効果であった。そ
の原因は不明であるが、マグネシウムとカルシウムが亜
鉛より卑で、アルカリ土類金属である点は共通している
が、カルシウムがマグネシウムよりさらに卑である点に
水素ガス発生を促進する要因があるのではないかと思わ
れる。lのカルシウム、マグネシウムを同時に添加した
場合もカルシウムが悪影響を及ばずらしく、逆効果であ
った。尚適正範囲内でのマグネシウムの添加効果は前述
の理由によるものと推定される。
Furthermore, in cases j and k in which calcium was added, battery expansion and deterioration of battery performance were observed despite the addition amount matching the optimum content of magnesium, which had the opposite effect. The cause is unknown, but magnesium and calcium are more base than zinc and are alkaline earth metals in common, but calcium is even more base than magnesium, which is a factor that promotes hydrogen gas generation. It seems that it is. Even when 1 liter of calcium and magnesium were added at the same time, the calcium was unlikely to have an adverse effect and had the opposite effect. It is presumed that the effect of adding magnesium within an appropriate range is due to the reasons mentioned above.

発明の効果 上述のように亜鉛に適量のマグネシウムを合金元素とし
て添加した亜鉛合金をアルカリ電池の負極に用いること
により、放電性能のすぐれた電池を得ることができる。
Effects of the Invention As described above, by using a zinc alloy prepared by adding an appropriate amount of magnesium as an alloying element to zinc for the negative electrode of an alkaline battery, a battery with excellent discharge performance can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (2)

【特許請求の範囲】[Claims] (1)亜鉛を主成分とし、合金元素としてマグネシウム
を添加した亜鉛合金を負極活物質に用いたことを特徴と
する亜鉛アルカリ電池。
(1) A zinc-alkaline battery characterized in that a zinc alloy containing zinc as a main component and magnesium added as an alloying element is used as a negative electrode active material.
(2) マグネシウムの含量が、0.02〜0.5wt
%である亜鉛合金を用いた特許請求の範囲第1項記載の
亜鉛アルカリ電池。
(2) Magnesium content is 0.02 to 0.5wt
% of the zinc alloy according to claim 1.
JP58192758A 1983-10-14 1983-10-14 Zinc alkaline battery Pending JPS6084766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58192758A JPS6084766A (en) 1983-10-14 1983-10-14 Zinc alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58192758A JPS6084766A (en) 1983-10-14 1983-10-14 Zinc alkaline battery

Publications (1)

Publication Number Publication Date
JPS6084766A true JPS6084766A (en) 1985-05-14

Family

ID=16296558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58192758A Pending JPS6084766A (en) 1983-10-14 1983-10-14 Zinc alkaline battery

Country Status (1)

Country Link
JP (1) JPS6084766A (en)

Similar Documents

Publication Publication Date Title
JP3215448B2 (en) Zinc alkaline battery
JP3215446B2 (en) Zinc alkaline battery
JP3215447B2 (en) Zinc alkaline battery
JPS6084766A (en) Zinc alkaline battery
JPH0371738B2 (en)
JPS6084767A (en) Zinc alkaline battery
JPS60146457A (en) Zinc alkaline battery
JPS62123653A (en) Zinc-alkaline battery
JPH0317181B2 (en)
JPH0636765A (en) Zinc-alkaline battery
JPH01279564A (en) Manufacture of amalgamated zinc alloy powder
JP3587213B2 (en) Negative electrode active material for air-Ga primary battery and air-Ga primary battery using the same
JPH05299075A (en) Zinc alkaline battery
JPH0622119B2 (en) Zinc alkaline battery
JPH0441470B2 (en)
JPS636749A (en) Zinc alkaline battery
JPH0317182B2 (en)
JPS612270A (en) Alkaline battery
JPS60175369A (en) Zinc-alkaline primary cell
JPH0142576B2 (en)
JPS61140067A (en) Zinc alkali battery
JPS6273565A (en) Zinc alkaline battery
JPS60146455A (en) Zinc alkaline battery
JPS6316553A (en) Zinc alkaline battery
JPS63178452A (en) Zinc alkaline battery