JPS6082671A - Vapor growth device - Google Patents

Vapor growth device

Info

Publication number
JPS6082671A
JPS6082671A JP19072283A JP19072283A JPS6082671A JP S6082671 A JPS6082671 A JP S6082671A JP 19072283 A JP19072283 A JP 19072283A JP 19072283 A JP19072283 A JP 19072283A JP S6082671 A JPS6082671 A JP S6082671A
Authority
JP
Japan
Prior art keywords
film
plasma
gas
substrate
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19072283A
Other languages
Japanese (ja)
Inventor
Saburo Adaka
阿高 三郎
Shigeo Goshima
五島 滋雄
Hiromitsu Mishimagi
三島木 宏光
Kiichi Kamiyanagi
喜一 上柳
Takahiro Kobashi
小橋 隆裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19072283A priority Critical patent/JPS6082671A/en
Publication of JPS6082671A publication Critical patent/JPS6082671A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5096Flat-bed apparatus

Abstract

PURPOSE:To provide a titled device for growing a film having uniform thickness and quality by providing plural gas spouting holes between a plasma chamber provided with differential pressure and a gas mixing chamber, and fixing the pitch of the holes in the radial direction and the number on the circumference. CONSTITUTION:A substrate 2 such as Si is placed on a hot plate 3 having a heater 5 in a plasma chamber, and a gaseous mixture of SiH4 and N2 is spouted from a reaction gas mixing chamber 6 through reaction gas spouting ports 7, and allowed to react by plasma to form an SiN film on the substrate 2. In said CVD device, the pitch of said gas spouting ports 7 of an electrode in the radial direction and the number per unit length on the circumference are fixed and set so that the gas concn. at the lower part of the electrode can be made uniform. The SiN film having uniform thickness and quality and excellent heat resistance is formed in this way.

Description

【発明の詳細な説明】 〔発明の対象〕 本発明はプラズマ窒化シリコンのCV D (che′
11icalvapor deposition ) 
装置および形成方法に係わる。特に均一性がよく、かつ
耐熱性のよいプラズマ窒化シリコンのCVD装置および
形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] The present invention relates to plasma silicon nitride CVD (che'
11cal vapor deposition)
Concerning the device and forming method. In particular, the present invention relates to a CVD apparatus and method for forming plasma silicon nitride which has good uniformity and good heat resistance.

〔発明の背景〕[Background of the invention]

従来窒化シリコンのプラズマCVD法として知られてい
る反応系にはS j H4−NH3N2系と5i)(4
N2系とがある。一般にはS i HJNHs Nz系
がよく用いられている。
The reaction systems conventionally known as plasma CVD of silicon nitride include S j H4-NH3N2 system and 5i) (4
There is the N2 series. In general, the S i HJNHs Nz system is often used.

しかしながらSfH< NHs N2系の場合には膜中
に水素が取シ込まれやすく、これが耐熱性を低下させて
いた。また従来の装置Fi第1図に示すように反応ガス
がホットプレートの中央から出て来るために、SiH,
−N2系の場合、膜厚の均一性、膜質の均一性が不十分
であった。第1図の1は上部電極、2は基板、3はホッ
トプレート、4は反応ガス、5はヒータであり0〔発明
の目的〕 本発明の目的は5jH4N!系のプラズマ窒化シリコン
の作成において、均一性と耐熱性を改善したプラズマ窒
化シリコンを形成するだめの装置および形成方法を提供
するものである。
However, in the case of SfH<NHsN2 system, hydrogen is easily incorporated into the film, which lowers the heat resistance. In addition, as shown in Figure 1 of the conventional apparatus Fi, since the reaction gas comes out from the center of the hot plate, SiH,
- In the case of N2 type, uniformity of film thickness and uniformity of film quality were insufficient. In FIG. 1, 1 is an upper electrode, 2 is a substrate, 3 is a hot plate, 4 is a reaction gas, and 5 is a heater.0 [Object of the Invention] The object of the present invention is 5jH4N! The present invention provides an apparatus and method for forming plasma silicon nitride with improved uniformity and heat resistance.

〔発明の概要〕[Summary of the invention]

5jH4Nz系によるプラズマSiNの作成は、これま
でのところ膜厚均一性、膜質均一性の点で、S j H
4NH3f’h系よシも劣っている。その原因としては
反応ガス中のクラスターが均一に電極間に分布していな
いことが挙げられる。
The production of plasma SiN using the 5jH4Nz system has so far been superior to SjH in terms of film thickness uniformity and film quality uniformity.
The 4NH3f'h series is also inferior. The reason for this is that the clusters in the reaction gas are not uniformly distributed between the electrodes.

そこで従来の第1図の方式に替えて、第2図のようなシ
ャワ一方式を取シ上げ、プラズマ条件を検討した結果、
S I H4N2系においても膜質均一性、膜厚均一性
のよい、かつ耐熱性の憂れた5iNi作成することがで
きた。
Therefore, instead of the conventional method shown in Fig. 1, we adopted a single shower system as shown in Fig. 2, and as a result of examining the plasma conditions, we found that:
Even in the S I H4N2 system, it was possible to produce 5iNi with good film quality uniformity and film thickness uniformity, and poor heat resistance.

第2図において、6は反応カス混合室、7はガス噴出口
、3はホットプレート、5はヒータ、2は資料基板であ
る。
In FIG. 2, 6 is a reaction mixture mixing chamber, 7 is a gas outlet, 3 is a hot plate, 5 is a heater, and 2 is a material substrate.

即ち、プラズマ室とガス混合室6とを持ち、両者の間に
差圧を設け、かつガス混合室からプラズマ室へ反応ガス
ヲ噴出させる穴7のピッチを径方向に一定ピッチとした
構造のCVD装置となす。
That is, the CVD apparatus has a structure in which a plasma chamber and a gas mixing chamber 6 are provided, a pressure difference is provided between the two, and the pitch of holes 7 for ejecting reaction gas from the gas mixing chamber to the plasma chamber is constant in the radial direction. Nasu.

窒化シリコン膜の形成においては下記の条件が良い。The following conditions are suitable for forming a silicon nitride film.

5rH4N2系のプラズマCVD法において5fH4の
濃度全0.5〜2.0%(体積比)、基板温度を350
±50′Cに設定するのが良い。とくに好適なプラズマ
条件は放電圧力0.3±0.1Torrである。又4チ
S j H4/ N2の流量200−/sin、N2流
t 200 ml/ M、放電電力200W(周波数1
3.56MH2)の条件全長くの場合用いている。但し
、ガス流量や、放電電力の周波数等は特にこれに固定的
なものではない。こうした点に関して通常のプラズマC
VD法で用いている手法を用いることが出来る。
In the 5rH4N2 plasma CVD method, the total concentration of 5fH4 is 0.5 to 2.0% (volume ratio) and the substrate temperature is 350.
It is best to set it to ±50'C. A particularly suitable plasma condition is a discharge pressure of 0.3±0.1 Torr. In addition, 4 channels S j H4/N2 flow rate 200-/sin, N2 flow t 200 ml/M, discharge power 200W (frequency 1
3.56MH2) is used for the full length condition. However, the gas flow rate, the frequency of discharge power, etc. are not particularly fixed. Regarding these points, normal plasma C
The method used in the VD method can be used.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例で詳しく説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

第2図に本発明によるプラズマSiN形成に用いたCV
D装置を示す。6は反応ガス用の混合室で、7は反応ガ
ス噴出口である。2は基板(SiまたはGaAs et
c )、3はホットプレート、5はヒータである。7給
よび3はAtgである。
Figure 2 shows the CV used for plasma SiN formation according to the present invention.
D device is shown. 6 is a mixing chamber for reaction gas, and 7 is a reaction gas outlet. 2 is a substrate (Si or GaAs et
c), 3 is a hot plate, and 5 is a heater. 7 and 3 are Atg.

第2図において、全体’t4〜5X 10−4Tc)r
r塘で排気し、N2ガスt O,3〜0.4 Torr
導入してから、放電電力200Wで放電によるりIJ 
−ユングを行なった。クリーニング後に4%SiH4を
含有するN2を流量300 ml / M% N 2流
景100ml/win流してから放電電力200Wで所
定時間放電して所定膜厚のSix膜を得た。ここで電極
7のガス噴出口を径方向に一定ピッチとし、円周上では
単位長当りの穴の数を一定にすることにより、各円周上
での空孔率が等しくなり電極の中心でも周辺でもガス噴
出量が等しく電極下部でのガス濃度が等しくなるように
設計した。
In Figure 2, the whole 't4~5X 10-4Tc)r
Evacuate at r ton and use N2 gas tO, 3 to 0.4 Torr.
After installation, IJ was discharged with a discharge power of 200W.
-I did Jung. After cleaning, N2 containing 4% SiH4 was flowed at a flow rate of 300 ml/M% N2 stream 100 ml/win, and discharged for a predetermined time with a discharge power of 200 W to obtain a Six film of a predetermined thickness. By setting the gas ejection ports of the electrode 7 at a constant pitch in the radial direction, and by making the number of holes per unit length constant on the circumference, the porosity on each circumference is equal, and even at the center of the electrode. It was designed so that the amount of gas ejected at the periphery was equal and the gas concentration at the bottom of the electrode was equal.

第3図に従来法および各種条件におけるプラズマS i
 N膜の膜厚方向のエツチング深さを示す。
Figure 3 shows the plasma Si under the conventional method and various conditions.
The etching depth in the film thickness direction of the N film is shown.

ここで、8,9.11は5IH4N2系におけるプラズ
マCVD条件がそれぞれ基板溝vao。
Here, the plasma CVD conditions of 8, 9, and 11 in the 5IH4N2 system are substrate grooves vao, respectively.

r、350C,250Cで、S iH4濃度1%、全流
量400 mll / minの′場合におけるプラズ
マSiN膜における特性曲線である。10は5jH4−
NH3N2系におけるプラズマSiN膜である。
3 is a characteristic curve of a plasma SiN film at 350C, 250C, an SiH4 concentration of 1%, and a total flow rate of 400 ml/min. 10 is 5jH4-
This is a plasma SiN film in the NH3N2 system.

すなわち8以外は膜厚方向にエツチング速度が変化して
いること全示している。9,11は膜厚方向に対して、
エツチング速度が速くなっている。
That is, all of the samples other than 8 indicate that the etching rate changes in the film thickness direction. 9 and 11 are for the film thickness direction,
Etching speed is increasing.

10は逆にエツチング速度が遅くなっている。いずれに
しても、このように膜厚方向に対して膜質が不均一であ
ることを示している。
On the other hand, the etching speed of No. 10 is slow. In any case, this shows that the film quality is non-uniform in the film thickness direction.

これに対して本発明による8ではエツチングの深さと時
間とが直線性があシ、膜厚方向のエツチング速度が一定
で、膜質の均一性を示している。
On the other hand, in the case of No. 8 according to the present invention, the etching depth and time are not linear, the etching rate in the film thickness direction is constant, and the film quality is uniform.

なお基板温度が300±2Orにおいて膜厚、膜質の均
一性のよいものが得られている。
Note that a film with good uniformity in film thickness and film quality was obtained at a substrate temperature of 300±2 Orr.

また基板温度300±2ocで得られたSix膜は80
0Cの高温にも膜はがれ金主ずることなく、従来におい
て耐熱性の膜であることが確認されている。
Furthermore, the Six film obtained at a substrate temperature of 300±2oc was 80
It has been confirmed that the film does not peel off even at high temperatures of 0C, and is a heat-resistant film.

第4図に本発明における81)14 N2系の各SiH
4濃度と膜厚分布との関係を示す。ここでS iH4m
WIl”L8 jH4/S iH4+N2X100(%
)と定義する。
Figure 4 shows each SiH of the 81)14 N2 system in the present invention.
4 shows the relationship between concentration and film thickness distribution. Here S iH4m
WIl”L8 jH4/S iH4+N2X100(%
).

図より5IH4濃度1%の場合が膜厚均一性がよいこと
がわかる。SiH4濃度が0.5%以下になると形成速
度が遅くなって実用的でなくなる。
From the figure, it can be seen that the film thickness uniformity is good when the 5IH4 concentration is 1%. When the SiH4 concentration is less than 0.5%, the formation rate becomes slow and it becomes impractical.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、11@厚および膜實均−化に大きな効
果がある。
According to the present invention, there is a great effect on 11@thickness and film uniformity.

本発明のプラズマSiN膜は膜厚および膜質均一性がよ
いので、ドライエツチングによる加工膜として最適であ
る。またi品度800cまで耐熱性が秀れているので、
イオン打込み後のアニール膜として、拡散マスクとして
適している。
Since the plasma SiN film of the present invention has good uniformity in film thickness and film quality, it is most suitable as a film to be processed by dry etching. In addition, it has excellent heat resistance up to i grade 800c,
It is suitable as an annealing film after ion implantation and as a diffusion mask.

【図面の簡単な説明】[Brief explanation of drawings]

第1(シ1は従来のプラズマ窒化シリコンの形成装置の
模式図である。第2図は本発明による5IH4−N2系
のプラズマ窒化シリコンの形成装置の模式図である。第
3図は本発明および基板温度さらにS I H4N H
3N2系のプラズマSiN膜のエツチング深さとエツチ
ング時間との関係を示す図である。第4図は膜厚分布全
示したもので、SII±4−N2系の各SiH4濃度(
SiH4/St丁I4+N2X100)(φ)と基板中
の位置との関係金示す図である。 ■・・・上部電極、2・・・基板、3・・・ホットプレ
ート、4・・・反応ガス流、5・・・ヒータ、6・・・
反応ガス混合子 1 図 府2 図 第1頁の続き [株]・発明者 小橋 降格 国分寺市東恋ケ窪1丁目28幡地 株式会社日立製作所
中央研究所内
1 is a schematic diagram of a conventional plasma silicon nitride forming apparatus. FIG. 2 is a schematic diagram of a 5IH4-N2 plasma silicon nitride forming apparatus according to the present invention. FIG. 3 is a schematic diagram of a conventional plasma silicon nitride forming apparatus. and substrate temperature further S I H4N H
FIG. 3 is a diagram showing the relationship between etching depth and etching time of a 3N2-based plasma SiN film. Figure 4 shows the entire film thickness distribution, with each SiH4 concentration (
FIG. 3 is a diagram showing the relationship between SiH4/St 14+N2X100) (φ) and the position in the substrate. ■... Upper electrode, 2... Substrate, 3... Hot plate, 4... Reaction gas flow, 5... Heater, 6...
Reactant gas mixer 1 Figure 2 Continuation of Figure 1 page [Inventor] Kobashi Demoted 1-28 Higashi Koigakubo, Kokubunji City Hitachi, Ltd. Central Research Laboratory

Claims (1)

【特許請求の範囲】[Claims] 1、プラズマ室とガス混合室とを少なくとも有し、両者
に差圧を設は且両者の間に複数のガス噴出穴を設け、こ
のガス噴出穴のピッチを径方向に一定ピッチとし、且円
周上でのガス噴出穴の数−を一定となしたことを特徴と
する気相成長装置。
1. It has at least a plasma chamber and a gas mixing chamber, a pressure difference is provided between the two, and a plurality of gas ejection holes are provided between the two, and the pitch of the gas ejection holes is constant in the radial direction. A vapor phase growth apparatus characterized in that the number of gas ejection holes on the circumference is constant.
JP19072283A 1983-10-14 1983-10-14 Vapor growth device Pending JPS6082671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19072283A JPS6082671A (en) 1983-10-14 1983-10-14 Vapor growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19072283A JPS6082671A (en) 1983-10-14 1983-10-14 Vapor growth device

Publications (1)

Publication Number Publication Date
JPS6082671A true JPS6082671A (en) 1985-05-10

Family

ID=16262724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19072283A Pending JPS6082671A (en) 1983-10-14 1983-10-14 Vapor growth device

Country Status (1)

Country Link
JP (1) JPS6082671A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5773100A (en) * 1987-08-14 1998-06-30 Applied Materials, Inc PECVD of silicon nitride films

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5773100A (en) * 1987-08-14 1998-06-30 Applied Materials, Inc PECVD of silicon nitride films

Similar Documents

Publication Publication Date Title
JP4195192B2 (en) Growth of extremely uniform silicon carbide epitaxial layers
JP2760717B2 (en) Method for manufacturing semiconductor device
US20050263248A1 (en) Blocker plate bypass to distribute gases in a chemical vapor deposition system
JPH1032173A (en) Manufacture of silicon carbide using chemical vapor precipitation method and device
JPH09330884A (en) Epitaxial growth device
JPS63187619A (en) Plasma cvd system
JPS6347141B2 (en)
US4781945A (en) Process for the formation of phosphosilicate glass coating
JP3682178B2 (en) Plasma processing method and plasma processing apparatus
JPH01125923A (en) Vapor growth apparatus
JPS5946088B2 (en) Gas phase reactor
JPS6082671A (en) Vapor growth device
JPH0658880B2 (en) Vapor phase epitaxial growth system
JP2881069B2 (en) Manufacturing method of semiconductor device
JPS59159980A (en) Vapor growth device
JPH0682626B2 (en) Vapor phase growth equipment
JP2949852B2 (en) Gas phase processing equipment
JPH11131239A (en) Formation of plasma cvd coating film and device therefor
JPS6168393A (en) Hot wall type epitaxial growth device
JPS61248519A (en) Chemical vapor deposition apparatus
JP2001501161A (en) Apparatus for epitaxially growing an object and method for performing such growth
JP2928655B2 (en) Chemical vapor deposition equipment
JPH0458530A (en) Manufacturing apparatus for semiconductor
JP2023540432A (en) CVD deposition method for N-type doped silicon carbide and epitaxial reactor
JPH0777197B2 (en) Thin film growth equipment