JPS6082107A - Centrifugal gas-liquid separator using porous membrane tube - Google Patents

Centrifugal gas-liquid separator using porous membrane tube

Info

Publication number
JPS6082107A
JPS6082107A JP18833683A JP18833683A JPS6082107A JP S6082107 A JPS6082107 A JP S6082107A JP 18833683 A JP18833683 A JP 18833683A JP 18833683 A JP18833683 A JP 18833683A JP S6082107 A JPS6082107 A JP S6082107A
Authority
JP
Japan
Prior art keywords
gas
liquid
outer cylinder
membrane material
spiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18833683A
Other languages
Japanese (ja)
Other versions
JPH0131921B2 (en
Inventor
Harumichi Ohashi
大橋 治陸
Sadao Mikami
三上 定夫
Keiki Yamane
山根 敬喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Science & Tech Agency
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Science & Tech Agency
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Science & Tech Agency, Agency of Industrial Science and Technology filed Critical Science & Tech Agency
Priority to JP18833683A priority Critical patent/JPS6082107A/en
Publication of JPS6082107A publication Critical patent/JPS6082107A/en
Publication of JPH0131921B2 publication Critical patent/JPH0131921B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To separate and take out gas and liquid from a gas and liquid mixture even in an agravic field by providing a spiral passage whose inner circumferential side is formed of a gas permeable membrane material at the inside of an external cylinder. CONSTITUTION:A gas and liquid mixture is introduced into a spiral tube 2 from a gas and liquid intake port 3, and circulated in the spiral tube 2. A liquid having higher relative density is pushed to an external cylinder 1 side by centrifugal force, and the gas bubbles having lower density are pushed by the reaction thereof to the center line side of the spiral passage. Since the porous membrane material 2 is made of a material which is not wetted with the liquid, the liquid is not passed through the membrane material and only the gas is passed. The gas bubbles are moved from the inside of the porous membrane material 2 on the high-pressure side to the inside 4 of the external cylinder 1 on the low-pressure side through fine pores, and can be taken out from a gas takeout port 5 on the downstream side. The liquid separated from the gas can be taken out from a liquid takeout port 6.

Description

【発明の詳細な説明】 本発明は、宇宙空間などの無重力ないし微小重力や変動
重力場において、気液混合体から気体と液体を多孔質膜
を介して分離抽出するようにした気液分離装置に関する
[Detailed Description of the Invention] The present invention is a gas-liquid separation device that separates and extracts gas and liquid from a gas-liquid mixture through a porous membrane in zero gravity or microgravity or a fluctuating gravity field such as in outer space. Regarding.

一般の化学工業等では液体中に気体を溶解させその気体
を含有した液体を作るプロセスは重要で多くの目的に使
用されている。その一つの代表的なプロセスとして、液
体に気体を直接吹き込む方法がある。この場合液体に吹
き込まれた気体の一部は液体中に拡散溶解し余剰の気体
は泡となり液体中を浮上し液体からその上部に移動する
。こうした方法は地球上のように重力場であれば有功で
ある。しかしながら、宇宙空間の如く重力がない環境で
はこのプロセスをそのまま利用することは出きない、即
ち、液体と気体との比重差の利用が無重力のため適用す
ることができないことがその理由である。しかし、無重
力等の環境においても、気体を液体に溶解させるために
直接液体中に気体を吹き込む必′要性は生じてくる。
In the general chemical industry, the process of dissolving a gas in a liquid to create a liquid containing the gas is important and is used for many purposes. One typical process is to blow gas directly into liquid. In this case, a part of the gas blown into the liquid is diffused and dissolved into the liquid, and the excess gas becomes bubbles, floats in the liquid, and moves from the liquid to the upper part. This method is effective in a gravitational field like on Earth. However, in an environment where there is no gravity such as outer space, this process cannot be used as it is; in other words, the use of the difference in specific gravity between liquid and gas cannot be applied due to the absence of gravity. However, even in environments such as zero gravity, it becomes necessary to blow gas directly into the liquid in order to dissolve the gas in the liquid.

さらに、例えば液体の電気分解による気体の発生、液体
圧力の変動にょる溶存気体の液体中への気泡化等、液体
中に気体(気泡)が生ずる場合、無重力等の環境下にお
いて、いかにして効率的に気液分離を行うかは大きな技
術的課題となっている。
Furthermore, when gas (bubbles) is generated in a liquid, such as when gas is generated due to electrolysis of the liquid or when dissolved gas is bubbled into the liquid due to fluctuations in liquid pressure, how can it be handled in an environment such as zero gravity? Efficient gas-liquid separation is a major technical issue.

ところで、液非透過性かつ気体透過性の膜を用いて気液
分離を行うことは、一般に一つの気液分M法であるが、
無重力下では様々な問題が生じ、地」二における一般的
方法は、そのままでは適用できない、4.腎に、宇宙空
間などの無重力状態においては気体と液体の間に比重が
働かないため、気液混合体中に気泡が発生しても、その
気泡は、多孔′A膜材の方向へ吸引されることなく、気
液混合体中に残留したままで、液体中から効率的に分離
抽出することができない。
By the way, performing gas-liquid separation using a liquid-impermeable and gas-permeable membrane is generally one type of gas-liquid separation M method.
4. Under zero gravity, various problems arise, and the general methods used on Earth cannot be applied as they are.4. In the kidney, in weightless conditions such as outer space, there is no specific gravity between gas and liquid, so even if bubbles occur in the gas-liquid mixture, the bubbles are sucked toward the porous A membrane material. It remains in the gas-liquid mixture and cannot be efficiently separated and extracted from the liquid.

本発明は、このような技術的課題を解決せんとするもの
であり、無重力場ないし微小重力場や変動重力場等にお
いても、気液混合体から気体と液体を分離して取り出せ
るようにした気液分離装置を提供することを目的とする
The present invention aims to solve such technical problems, and provides a gas and liquid mixture that can be separated and extracted from a gas-liquid mixture even in a zero gravity field, a microgravity field, a fluctuating gravity field, etc. The purpose is to provide a liquid separation device.

そのために本発明の気液分離装置は、外筒内部に気液混
合気体を螺旋状に流す螺旋流路を形成し、この流路の気
液混合気体に対して少なくとも内周側の螺旋流路壁を液
非透過性かつ気体透過性の多孔質膜材で形成し、多孔質
膜材の細孔を通じて遠心力で気体を低圧側の多孔質膜材
の近傍へ移動させ、該膜を透過させて気体を液体から分
離して取り出すようにしたものである。
For this purpose, the gas-liquid separator of the present invention forms a spiral flow path in which the gas-liquid mixed gas flows in a spiral shape inside the outer cylinder, and at least the spiral flow path on the inner circumferential side for the gas-liquid mixed gas of this flow path. The wall is formed of a porous membrane material that is impermeable to liquid and permeable to gas, and gas is moved to the vicinity of the porous membrane material on the low pressure side by centrifugal force through the pores of the porous membrane material, and is allowed to pass through the membrane. The gas is separated from the liquid and extracted.

ポンプなどにより外筒内部に圧送された気体混合体は、
t+!旋流路を流れながら、その中の相対質量(相対密
度)の大きな液体を半径方向外方(外周側)へ移動させ
、相対質量の小さな気体(気泡)を半径方向内方(内周
側)へ移動させる。
The gas mixture that is pumped into the outer cylinder by a pump etc.
T+! While flowing through the swirl channel, the liquid with a large relative mass (relative density) is moved radially outward (outer circumferential side), and the gas (bubbles) with a small relative mass is moved radially inward (inner circumferential side). Move to.

内周側(低圧側)に引き寄せられた気体は、内側流路壁
に当接しつつ、次第に多孔質膜材の細孔に浸透し、中心
側(螺旋中心軸側)の気体流路に導かれる。この気体流
路を経て気体は外筒に設けた気体取出口から取り出され
る。
The gas drawn to the inner circumferential side (low-pressure side) comes into contact with the inner channel wall, gradually penetrates the pores of the porous membrane material, and is guided to the gas channel on the center side (the central spiral axis side). . Gas is taken out from a gas outlet provided in the outer cylinder through this gas flow path.

一方、外周側(高圧側)に偏向された液体は、ポンプの
圧力により螺旋流路を流れつつ、そのまま外筒に設けた
液体取出口から取り出される。
On the other hand, the liquid deflected toward the outer circumferential side (high pressure side) flows through the spiral flow path due to the pressure of the pump and is directly taken out from the liquid outlet provided in the outer cylinder.

このようにして、本発明によれば、液非透過性かつ気体
透過性の多孔質膜材の内側または外側において気液混合
体の流れを螺旋遅動にし、そのときの遠心力の作用で旋
回運動の中心側に気体を、この中心方向と反対側に液体
をそれぞれ偏向させることにより、気体(気泡)を積極
的に多孔質膜材の近くへ移動させて膜に接触させ、その
細孔を通じて気体を確実に分離抽出するようにした。
In this way, according to the present invention, the flow of the gas-liquid mixture is slowed down in a spiral manner inside or outside the liquid-impermeable and gas-permeable porous membrane material, and the gas-liquid mixture is rotated by the action of the centrifugal force at that time. By deflecting the gas toward the center of motion and the liquid toward the opposite direction, the gas (bubbles) is actively moved close to the porous membrane material and comes into contact with the membrane, allowing it to flow through its pores. The gas was separated and extracted reliably.

したがって、無重力場ならば、本来的に液体中の気体は
未拡散状1ルになるが、遠心力の働きで、液体中に含ま
れる気体を連続的に取り出すことができるのである。気
液混合体流路は、筒状体内における螺旋流路自体として
、或いは、螺旋状に配した管状体内の流れとして、或い
は、筒状体周壁部に配した溝、ガイド壁等による強制流
路等として形成できる。
Therefore, in a zero-gravity field, the gas in the liquid is essentially in an undiffused state, but due to centrifugal force, the gas contained in the liquid can be continuously extracted. The gas-liquid mixture flow path may be a spiral flow path itself within the cylindrical body, a flow inside the tubular body arranged in a spiral shape, or a forced flow path formed by a groove, a guide wall, etc. arranged on the circumferential wall of the cylindrical body. etc.

以下、本発明の実施例を図面にもとづいて説明する。Embodiments of the present invention will be described below based on the drawings.

第1図は、無重力下における多孔質膜による気泡分離の
概念的説明のための図である。外筒1の内部に多孔質膜
材からなるチューブ2を配設し、このチューブ2内に、
気液混合体を送り込み、この中の気体を多孔質膜材(チ
ューブ)2を通じて外部に取り出すようにすると仮定す
る。その場合、図の矢印Aで示すように、気液取入口3
からチューブ2内に導かれた気液混合体の中の気泡(気
体)gは、多孔質膜材2の細孔を通じて膜の外部4に抽
出され、ここがら外筒lに設けた気体取出口5を経て矢
印Bのように取り出される。他方の液体りは矢印Cに示
すように、チューブ2下流の液体取出口6から抽出され
る。
FIG. 1 is a diagram for conceptually explaining bubble separation using a porous membrane under zero gravity. A tube 2 made of a porous membrane material is arranged inside the outer cylinder 1, and inside this tube 2,
Assume that a gas-liquid mixture is fed and the gas therein is extracted to the outside through a porous membrane material (tube) 2. In that case, as shown by arrow A in the figure, the air-liquid intake port 3
Bubbles (gas) g in the gas-liquid mixture led into the tube 2 are extracted to the outside 4 of the membrane through the pores of the porous membrane material 2, and from there the gas outlet provided in the outer tube l is extracted. 5 and is taken out as shown by arrow B. The other liquid is extracted from the liquid outlet 6 downstream of the tube 2, as shown by arrow C.

しかしながら、無重力下では気体と液体の間に比重差に
よる相対運動が生じず、液体中心部の気泡はいつまでも
その位置に留まり、膜の近傍へ気泡を移動させることは
困難である。
However, under zero gravity, no relative movement occurs between the gas and the liquid due to the difference in specific gravity, and the bubbles in the center of the liquid remain in that position forever, making it difficult to move the bubbles to the vicinity of the membrane.

これに対し本発明は、螺旋流路により生ずる遠心力を利
用して、気泡の膜表面への移動を促進する。
In contrast, the present invention utilizes the centrifugal force generated by the spiral channel to promote the movement of air bubbles to the membrane surface.

第2図(A)(B)は本発明の第1実施例をあられす。FIGS. 2A and 2B show a first embodiment of the present invention.

円筒状の外筒lには、気液混合体を導び〈気液取入口3
が設けられ、外筒l内部に気液取入口3と接続する螺旋
状のチューブ2が配設される。チューブ2の材質は例え
ば液体が水の場合疎水性の多孔質膜材(テフロン等)か
ら成る。
A gas-liquid mixture is introduced into the cylindrical outer cylinder l (gas-liquid intake port 3).
is provided, and a spiral tube 2 connected to the gas-liquid intake port 3 is disposed inside the outer cylinder l. The material of the tube 2 is, for example, a hydrophobic porous membrane material (such as Teflon) when the liquid is water.

このチューブ2のt流側は、外筒lに設けた液体取出口
6に接続する。外筒lの外周部には、多孔質膜材(チュ
ーブ)2の細孔(例えばの直径をもつ)ないし細隙7を
通過した気体を取り出す気体取出口5が設けられ、この
気体取出口5に例えば気体ポンプを接続し、このポンプ
で気体を吸引するようになっている。
The t-flow side of this tube 2 is connected to a liquid outlet 6 provided in the outer cylinder l. A gas outlet 5 is provided on the outer periphery of the outer cylinder 1 to take out the gas that has passed through the pores (having a certain diameter) or slits 7 of the porous membrane material (tube) 2. For example, a gas pump is connected to the pump, and the gas is sucked by this pump.

IA示しないポンプにより、気液取入口3から螺旋チュ
ーブ2に気液混合体を導入し、気液混合体を螺旋チュー
ブ2内で循環させる。
A gas-liquid mixture is introduced into the spiral tube 2 from the gas-liquid intake port 3 by a pump not shown in IA, and the gas-liquid mixture is circulated within the spiral tube 2.

すると、気液取入1」3付近では!α体中に均一に散在
していた気泡gが、多孔質膜材2の内部にくると、第2
図(B)のように遠心力の働きで相対密度の大きな液体
 を外筒l側に押j7やり、その反作用で小密度の気泡
gを!l!!旋流路の中心軸線m側に偏在させる。
Then, around the air/liquid intake 1"3! When the bubbles g that were uniformly scattered in the α body come inside the porous membrane material 2, the second
As shown in Figure (B), the centrifugal force pushes the liquid with a high relative density towards the outer cylinder l, and the reaction produces air bubbles g with a small density! l! ! It is unevenly distributed on the central axis m side of the swirl flow path.

この場合の多孔質膜材2は、例えば水(液体)に対して
のテフロンのように、液体 に対して濡れを防出する材
料でつくられているため、液体は通過させないが、気体
gは通過させる。なお。
The porous membrane material 2 in this case is made of a material that prevents liquid from getting wet, such as Teflon for water (liquid), so it does not allow liquid to pass through it, but it does not allow gas to pass through. Let it pass. In addition.

油その他所定の液体の場合には、これらの1余体に対し
て親和性のない膜材を選択する。
In the case of oil or other predetermined liquids, a membrane material that has no affinity for one or more of these bodies is selected.

したがって、多孔Wffi材2の内部で中心軸線m側に
偏った気泡gは、高圧側の多孔質膜材2内がら細孔7を
経て低圧側の外筒1の内部4へと移動し、そのド流の気
体取出口5から満遍無く取り出すことができる。他方、
多孔質膜材2の外筒l側に押しやられた液体 は、ポン
プの圧力により、下流側の液体取出口6がら気泡gを除
去した状態で取り出すことができる。
Therefore, the air bubbles g biased toward the central axis m side inside the porous Wffi material 2 move through the pores 7 inside the porous membrane material 2 on the high pressure side to the inside 4 of the outer cylinder 1 on the low pressure side, and The gas can be evenly taken out from the gas outlet 5 of the flow. On the other hand,
The liquid pushed toward the outer cylinder l side of the porous membrane material 2 can be extracted from the downstream liquid outlet 6 with air bubbles g removed by the pressure of the pump.

このようにして、本実施例によれば、遠心力により低密
度の気泡gを多孔質膜材2に積極的に接触させて、高富
度の液体 と切り離して細孔7を経て取り出すようにし
たので、気泡gと多孔質膜材2の接触率が高くなり、そ
れだけ気液混合体流量が同じであれば、気液分離効率を
確実に向上させることができる。
In this way, according to this embodiment, the low-density air bubbles g are brought into active contact with the porous membrane material 2 by centrifugal force, separated from the high-rich liquid, and taken out through the pores 7. Therefore, the contact rate between the bubbles g and the porous membrane material 2 increases, and if the flow rate of the gas-liquid mixture remains the same, the gas-liquid separation efficiency can be reliably improved.

また、多孔質膜材からなるチューブ2は螺旋状に配設し
たふんだけ、第1図のように単に二重構造にしたものに
比べて長くとることができ、それに伴い同じ気液分離効
率に設定するのであれば。
In addition, the tube 2 made of porous membrane material can be made longer than a tube with a simple double structure as shown in Fig. 1 because it is arranged in a spiral manner. If you want to set it.

装置全体をコンパクト化できる。The entire device can be made more compact.

さらに、この実施例では、外筒lの内部に多孔質膜材2
を螺旋状に巻設するだけで、簡単な構成でありながら、
無重力場あるいは変動重力場においても、気液混合体か
ら確実に気体と液体を分離抽出することができるのであ
る。なお、この実施例においてチューブ断面は必ずしも
円形でなくてもよい。
Furthermore, in this embodiment, a porous membrane material 2 is provided inside the outer cylinder l.
Although it has a simple structure, just by winding it in a spiral,
Even in a zero gravity field or a fluctuating gravity field, gas and liquid can be reliably separated and extracted from a gas-liquid mixture. Note that in this embodiment, the tube cross section does not necessarily have to be circular.

第3図(A)(B)は、本発明の第2実施例をあられす
。円筒状の外筒1の一端外周面には、外%f41の内部
4に気液混合体を導入する気液取入口3が中心軸線mか
ら偏心した位置に設けられ、同じく外筒lの他端外周面
には、気液混合体中の液体 を取り出す液体取出口6が
設けられる。
FIGS. 3A and 3B show a second embodiment of the present invention. On the outer peripheral surface of one end of the cylindrical outer cylinder 1, a gas-liquid intake port 3 for introducing a gas-liquid mixture into the interior 4 of the outer cylinder 1 is provided at a position eccentric from the central axis m. A liquid outlet 6 for taking out the liquid in the gas-liquid mixture is provided on the outer peripheral surface of the end.

そして、外筒lの内周壁8は、気液取入13例の円筒部
8aと、この円筒部8aから液体取出口6の方向にいく
に従い次第に小径になる円錐部8bとからなる。外tf
Filの気液取入「13側の一端には、気体gを取り出
す気体取出口5が形成され、この気体取出口5から外筒
lの内部4の中心軸線mに沿って多孔質膜材からなる直
線状のチューブ2が挿入される。このチューブ2は、第
1実施例のものと同様に、細孔7を通じて気体gのみを
流過される神木性の多孔質膜材でできている。
The inner circumferential wall 8 of the outer cylinder 1 consists of a cylindrical portion 8a for gas and liquid intake, and a conical portion 8b whose diameter gradually becomes smaller as it goes from the cylindrical portion 8a toward the liquid outlet 6. outside tf
A gas outlet 5 for taking out the gas g is formed at one end of the gas/liquid intake 13 side of the film, and from the gas outlet 5, the gas is drawn from the porous membrane material along the central axis m of the interior 4 of the outer cylinder l. A straight tube 2 is inserted.This tube 2 is made of a porous membrane material of sacred wood through which only the gas g can flow through the pores 7, as in the first embodiment.

気液取入1コ3から外筒lの内部4に導入された気液混
合体は、チューブ2の周りを旋回しながら円筒部8aか
ら円錐部8bの方向に螺旋状に移動する。このときの遠
心力により、高密度の液体は内周壁8側に押しやられる
一方、低密度の気体(気泡)gは、内側の多孔質膜材2
に接触しく第3図(B)参照)、ざらに細孔7を通って
低圧側のチューブ2の内部9に抜は出て、そのあと気体
取出口5から取り出される。
The gas-liquid mixture introduced into the interior 4 of the outer cylinder 1 from the gas-liquid intake 1 3 moves spirally from the cylindrical portion 8 a to the conical portion 8 b while swirling around the tube 2 . Due to the centrifugal force at this time, the high-density liquid is pushed toward the inner peripheral wall 8, while the low-density gas (bubbles) g is pushed to the inner porous membrane material 2.
(see FIG. 3B), the gas flows roughly through the pores 7 into the interior 9 of the tube 2 on the low pressure side, and is then taken out from the gas outlet 5.

とくに、気液混合体の旋回流は、円筒部8aから円錐部
8bにいくに従い、次第に流速を速め、大きな遠心力に
より気体gと液体 とに確実に分離させることができる
In particular, the swirling flow of the gas-liquid mixture gradually increases in flow velocity from the cylindrical portion 8a to the conical portion 8b, and can be reliably separated into gas g and liquid by a large centrifugal force.

第4図(A)(B)は本発明の第3実施例をあられす、
外筒lの内周壁には、螺旋状の溝部10が刻設され、螺
旋溝lOの内側に直線状の多孔質+I!I!材からなる
チューブ2が配設される。気液取入■3から導入された
気液混合体は、チューブ2の外周と螺旋溝lOで囲まれ
た螺旋流路を図で右方向に流れていき、そのうち液体 
は液体取出口6から取り出されると共に、気体gはチュ
ーブ2内の細孔7を通じて気体取出口5から取り出され
る。気液取入口3および液体取出口6はそれぞれ外筒l
の外周にて接線方向に開口する。溝はその他螺旋状フィ
ンによって形成してもよく、また膜との間は閉塞ないし
可及的微少間隙とすることが々fましい。
FIGS. 4A and 4B show a third embodiment of the present invention.
A spiral groove 10 is carved in the inner circumferential wall of the outer cylinder l, and a linear porous +I! is formed inside the spiral groove lO. I! A tube 2 made of material is provided. The gas-liquid mixture introduced from the gas-liquid intake ■3 flows to the right in the figure through the spiral channel surrounded by the outer periphery of the tube 2 and the spiral groove lO.
is taken out from the liquid outlet 6, and gas g is taken out from the gas outlet 5 through the pore 7 in the tube 2. The gas-liquid inlet 3 and the liquid outlet 6 are each connected to the outer cylinder l.
It opens in the tangential direction at the outer periphery of. The groove may also be formed by a spiral fin, and the gap between the groove and the membrane is preferably closed or as small as possible.

この実施例においても、気液混合体が自から螺旋状の旋
回運動をすることにより、その遠心力で積極的な分離作
用がはたらく。この場合にも、螺旋流路を円錐状に形成
することができ、また流路断面形状、断面積等を適宜変
更できる。
In this embodiment as well, the centrifugal force of the gas-liquid mixture produces a positive separation effect due to its own spiral movement. In this case as well, the spiral flow path can be formed into a conical shape, and the cross-sectional shape, cross-sectional area, etc. of the flow path can be changed as appropriate.

以上のように、本発明によれば、外筒内部に気液混合体
を螺旋状に流す螺旋流路を形成し、この流路の少なくと
も内周側に気体のみを通過させる多孔質膜材からなる流
路壁を設け、この流路壁を挟んで両側から気体と液体を
遠心力で確実に分離抽出するように構成したので、無重
力場ないし微小重力場や変動重力場においても、気液分
離を完全に行なうことができる。したがって本発明の装
置を用いることにより、例えば電気分解により溶液中に
発生した気体をスムーズに取り出すことができるのであ
る。
As described above, according to the present invention, a spiral flow path through which a gas-liquid mixture flows spirally is formed inside the outer cylinder, and a porous membrane material through which only gas passes is formed at least on the inner peripheral side of the flow path. The structure is such that gas and liquid can be reliably separated and extracted from both sides of the channel wall using centrifugal force, so even in zero gravity, microgravity, or fluctuating gravity fields, gas-liquid separation is possible. can be done completely. Therefore, by using the apparatus of the present invention, it is possible to smoothly extract gas generated in a solution by, for example, electrolysis.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は気液分離の概念説明図である。第2図(A)は
本発明の第1実施例をあられす断面図、第2図(B)は
その要部拡大断面図、第3図(A)は第2実施例をあら
れす断面図、第3図(B)はその要部拡大断面図、第3
図(C)は第3図(A)のA方向矢視図、第4図(A)
は第3実施例をあられす断面図、第4図(B)はその要
部拡大断面図である。 1 、、 、 、 、 、外筒 2、、、、、多孔質膜材(チューブ) 3、、、、、気液取入口 5、、、、、気体取出口 6、、、、、液体取出口 ア、、、、、細孔 8、、、、、外筒内周壁 10、、、@旋溝(溝部) 出願人 科学技術庁長官官房会計課長 代理人 ’tt理士 加藤朝道 第1図 第2図 (A)
FIG. 1 is a conceptual diagram of gas-liquid separation. FIG. 2(A) is a cross-sectional view of the first embodiment of the present invention, FIG. 2(B) is an enlarged cross-sectional view of the main part, and FIG. 3(A) is a cross-sectional view of the second embodiment. , Fig. 3(B) is an enlarged sectional view of the main part.
Figure (C) is a view in the direction of arrow A in Figure 3 (A), Figure 4 (A)
is a sectional view showing the third embodiment, and FIG. 4(B) is an enlarged sectional view of the main part thereof. 1. Outer tube 2. Porous membrane material (tube) 3. Gas and liquid intake port 5. Gas outlet port 6. Liquid outlet port. A, Pore 8, Outer cylinder inner circumferential wall 10, @ Whirling groove (Groove) Applicant: Agency for Science and Technology Agency, Director-General's Secretariat, Accounting Division Director, Asamichi Kato, Physician, Figure 1, Figure 2 Diagram (A)

Claims (7)

【特許請求の範囲】[Claims] (1)外筒内部に気液混合体を流動させる気液混合体流
路を螺旋状に形成し、該螺旋状流路の少なくとも内周側
の壁を液算透過性かつ気体透過性の多孔質膜材で構成し
たことを特徴とする気液分離装置。
(1) A gas-liquid mixture flow path for flowing a gas-liquid mixture inside the outer cylinder is formed in a spiral shape, and at least the inner circumferential wall of the spiral flow path is formed with liquid-permeable and gas-permeable porous holes. A gas-liquid separation device characterized in that it is constructed of a quality membrane material.
(2)螺旋流路は、多孔質膜材からなるチューブにより
構成される特許請求の範囲第1項記載の装置。
(2) The device according to claim 1, wherein the spiral flow path is constituted by a tube made of a porous membrane material.
(3)!lI!g旋流路は、外筒の一端外周部で外筒の
接線方向に気液混合体を流入させる気液取入口と流入し
た気液混合体を外筒の中心軸線に沿って螺旋状に流す外
筒内周壁と、外筒の気液取入口と反対の他端外周部から
液体を流出させる液体取出口を有する外筒内における螺
旋状流れとして形成される特許請求の範囲第1項記載の
装置。
(3)! lI! g The swirl flow path has a gas-liquid intake port that allows the gas-liquid mixture to flow in the tangential direction of the outer cylinder at the outer periphery of one end of the outer cylinder, and a spiral flow path that allows the inflowing gas-liquid mixture to flow spirally along the central axis of the outer cylinder. Claim 1, which is formed as a spiral flow in an outer cylinder having an inner circumferential wall of the outer cylinder and a liquid outlet for causing the liquid to flow out from the outer circumferential portion of the other end opposite to the gas-liquid inlet of the outer cylinder. Device.
(4)外筒は円筒状である特許請求の範囲第1項〜N′
S3項の−に記載の装置。
(4) The outer cylinder is cylindrical.Claims 1 to N'
The device according to item S3-.
(5)外商内周壁は気液取入[コから液体取出口の方向
にいくに従い小径に形成される特許請求の範囲第1項〜
第3項の−に記載の装置。
(5) The inner circumferential wall is formed to have a smaller diameter as it goes from the gas/liquid intake port to the liquid outlet.
The device according to item 3-.
(6)@旋流路の内周壁は、外筒中心軸線に沿って配設
した多孔質膜材から成るチューブである特許請求の範囲
第1.3〜5頓の−に記載の装置。
(6) The device according to any one of claims 1.3 to 5, wherein the inner circumferential wall of the swirl flow path is a tube made of a porous membrane material arranged along the central axis of the outer cylinder.
(7)外筒内周壁は気液混合体を螺旋状に流す螺旋溝を
もつ特許請求の範囲第1.3〜6の−に記載の装置。
(7) The device according to any one of claims 1.3 to 6, wherein the inner circumferential wall of the outer cylinder has a spiral groove through which the gas-liquid mixture flows in a spiral manner.
JP18833683A 1983-10-11 1983-10-11 Centrifugal gas-liquid separator using porous membrane tube Granted JPS6082107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18833683A JPS6082107A (en) 1983-10-11 1983-10-11 Centrifugal gas-liquid separator using porous membrane tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18833683A JPS6082107A (en) 1983-10-11 1983-10-11 Centrifugal gas-liquid separator using porous membrane tube

Publications (2)

Publication Number Publication Date
JPS6082107A true JPS6082107A (en) 1985-05-10
JPH0131921B2 JPH0131921B2 (en) 1989-06-28

Family

ID=16221827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18833683A Granted JPS6082107A (en) 1983-10-11 1983-10-11 Centrifugal gas-liquid separator using porous membrane tube

Country Status (1)

Country Link
JP (1) JPS6082107A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63103786U (en) * 1986-12-22 1988-07-05
EP0374942A2 (en) * 1988-12-23 1990-06-27 Hitachi, Ltd. Gas-liquid separation method for electroconductive gas-liquid two phase flows and the device therefor
US7077885B2 (en) * 2001-09-20 2006-07-18 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Gas/liquid phase separator and the fuel cell-based power production unit equipped with one such separator
EP2806204A1 (en) * 2013-05-22 2014-11-26 Astrium GmbH Tank for the separation of liquids in orbit
US9108144B2 (en) 2013-05-21 2015-08-18 Astrium Gmbh Tank for separating liquid from gas under weightless conditions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5561404U (en) * 1978-10-20 1980-04-26
JPS55121806A (en) * 1979-03-13 1980-09-19 Jeol Ltd Deaerator
JPS57165007A (en) * 1981-04-06 1982-10-09 Eruma Kogaku Kk Method and apparatus for degassing dissolved gas in liquid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5561404U (en) * 1978-10-20 1980-04-26
JPS55121806A (en) * 1979-03-13 1980-09-19 Jeol Ltd Deaerator
JPS57165007A (en) * 1981-04-06 1982-10-09 Eruma Kogaku Kk Method and apparatus for degassing dissolved gas in liquid

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63103786U (en) * 1986-12-22 1988-07-05
JPH0425273Y2 (en) * 1986-12-22 1992-06-16
EP0374942A2 (en) * 1988-12-23 1990-06-27 Hitachi, Ltd. Gas-liquid separation method for electroconductive gas-liquid two phase flows and the device therefor
US7077885B2 (en) * 2001-09-20 2006-07-18 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Gas/liquid phase separator and the fuel cell-based power production unit equipped with one such separator
US9108144B2 (en) 2013-05-21 2015-08-18 Astrium Gmbh Tank for separating liquid from gas under weightless conditions
EP2806204A1 (en) * 2013-05-22 2014-11-26 Astrium GmbH Tank for the separation of liquids in orbit

Also Published As

Publication number Publication date
JPH0131921B2 (en) 1989-06-28

Similar Documents

Publication Publication Date Title
JPS5916106Y2 (en) self-contained mixing equipment
US8267381B2 (en) Apparatus and method of dissolving a gas into a liquid
SU797549A3 (en) Device for stirring liquid with liquids or gases
KR920004041A (en) Gas Spray Centrifugal Devices
CA2561539C (en) Apparatus and method for efficient particle to gas bubble attachment in a slurry
DE3161988D1 (en) Device for mixing carbonated liquids and solid particles with turbulance
JP2005103541A (en) Method and apparatus for separating and leading out air bubbles from liquid
EP0086736A3 (en) Process and device for the separation of solid and/or liquid particles from gases or of solids from liquids and for the separation of gases or liquids of differing densities
DE59504014D1 (en) FUMING / FLOTATION REACTOR WITH ARRANGEMENTS FOR SEPARATING SOLIDS FROM LIQUIDS
JPS6082107A (en) Centrifugal gas-liquid separator using porous membrane tube
US5023021A (en) Cartridge venturi
FI940835A0 (en) Interruption inhibition of paper surface layering and venting apparatus & process
US6514322B2 (en) System for separating an entrained immiscible liquid component from a wet gas stream
JP4174576B2 (en) A mixing device that mixes two or more liquids or a fluid composed of liquid and gas into a solution
KR20060011961A (en) Pleated construction for effecting gas transfer membrane
JP2021004899A (en) Microfluid device
US4097375A (en) Hydrocyclone separator
CN218890477U (en) Spiral-flow type bubble generating device
JPH03193105A (en) Defoaming
GB2409990A (en) A system for separating an entrained immiscible liquid from a wet gas stream
WO2000001472A1 (en) Means for improving transport from hollow fiber membranes and membrane molecules
SU1237256A1 (en) Hydrocyclone for separating silt mixture
KR100503679B1 (en) Air diffuser with two acoustic resonators
JPH0639838Y2 (en) Cylindrical horizontal aeration tank
JPH0490458A (en) Gas-liquid separator