JPS6079161A - Combustion diagnostic device of diesel engine - Google Patents

Combustion diagnostic device of diesel engine

Info

Publication number
JPS6079161A
JPS6079161A JP18627383A JP18627383A JPS6079161A JP S6079161 A JPS6079161 A JP S6079161A JP 18627383 A JP18627383 A JP 18627383A JP 18627383 A JP18627383 A JP 18627383A JP S6079161 A JPS6079161 A JP S6079161A
Authority
JP
Japan
Prior art keywords
signal
fuel injection
injection
fuel
end timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18627383A
Other languages
Japanese (ja)
Inventor
Susumu Nagai
将 永井
Kazuhiro Mizushima
水島 一裕
Teruo Nakano
照夫 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bandai Co Ltd
Hitachi Zosen Corp
Original Assignee
Bandai Co Ltd
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bandai Co Ltd, Hitachi Zosen Corp filed Critical Bandai Co Ltd
Priority to JP18627383A priority Critical patent/JPS6079161A/en
Publication of JPS6079161A publication Critical patent/JPS6079161A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M65/00Testing fuel-injection apparatus, e.g. testing injection timing ; Cleaning of fuel-injection apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Of Engines (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To widely improve the workability of diagnosis by using a sensor to detect a prominent and high-level signal for the injection end timing, using a stroboscope to determine the injection end timing during an actual operation, and obtaining whether the diagnosis result is good or bad in a binary signal. CONSTITUTION:A vibration or acoustic sensor 12 is fitted to the head of a fuel injection valve 3, a signal in response to the injection end timing is extracted in a signal processing circuit 32 from its output signals, and this signal is delayed by an optional time to trigger a stroboscope 33. In addition, the output level of a reference voltage generator 18 is set in response to the type of a diagnosed device 26, the standard crank angle information is read out from a standard value memory 35, and a delay time regulator 21 is operated so that the specific cylinder TDC mark 30 can be observed in coincidence with the reference TDC mark 29. When the injection end timing of the diagnosed device is normal, that effect is displayed on a display unit 37 via the output of a comparator 36.

Description

【発明の詳細な説明】 本発明はディーゼル機関の燃焼診断装置に関する。[Detailed description of the invention] The present invention relates to a combustion diagnostic device for a diesel engine.

ディーゼル機関の性能はシリンダ内に噴射される燃料の
燃焼によって支配され、ま九燃焼状態は燃料噴射系の作
動によって支配される。燃料噴射系の作動と燃焼との関
係は、例えば第1図のように表わせる。この441図は
アイドリンク運転時の例で、燃料ポンプから燃料が吐出
されてシリンダ内圧力が燃料弁の開弁圧力に達すると燃
料の噴射が開始されるが、燃料ポンプの吐出から燃料弁
の噴射か開始されるまでには、燃料高圧管の長さく体積
)、燃料弁の開弁圧力に対応した時間遅れ、すなわち噴
射遅れτlかある。更に、燃料に杖着火遅れがあるため
、燃料噴射後にその着火遅れτ2だけ遅れて燃焼か開始
される。従って、シリンダ内で適正な燃焼を実現するた
めには上述の噴射遅れτ11着火着火遅Bを考慮して燃
料ポンプの吐出時期を設定しなければならず、この吐出
時期の設定が不適切であったり、長期使用によって設定
が狂ってくると、燃焼に異常をきたして機関性能の悪化
をもたらすことになる。
The performance of a diesel engine is governed by the combustion of fuel injected into the cylinder, and the combustion state is governed by the operation of the fuel injection system. The relationship between the operation of the fuel injection system and combustion can be expressed, for example, as shown in FIG. This figure 441 is an example of idle-link operation, and when fuel is discharged from the fuel pump and the cylinder pressure reaches the opening pressure of the fuel valve, fuel injection starts, but from the discharge of the fuel pump to the fuel valve opening pressure. Before injection starts, there is a time delay corresponding to the length and volume of the high pressure fuel pipe) and the opening pressure of the fuel valve, that is, an injection delay τl. Furthermore, since the fuel has an ignition delay, combustion starts after the fuel is injected with a delay of the ignition delay τ2. Therefore, in order to achieve proper combustion in the cylinder, the discharge timing of the fuel pump must be set in consideration of the injection delay τ11 and the ignition delay B mentioned above. If the settings become incorrect due to long-term use, combustion abnormalities will occur and engine performance will deteriorate.

このようにダイ−セル機関の燃焼は燃料の噴射時期によ
って支配されるから、噴射時期を直接に測定して燃焼状
態を診断することで噴射時期の調整を行うことか望まし
いか、従来では噴射時期を直接に測定する簡便な手段が
ないため、主として実験ヅータを基に噴射遅れ、着火遅
れの時間を予測し、機関停止時の燃料ポンプの吐出時期
、すなわち静的吐出時期または特定クランク角度におけ
るプランジセリフトによって調整する方法がとられてい
る。しかし、このような方法では複雑な構造の燃料ポン
プの一部を分解しなければならず、自動車に搭載された
ディーゼル機関の場合には自動車に搭載されたままの状
態で調整することは極めて困錐である。
In this way, combustion in a Daicel engine is controlled by the fuel injection timing, so whether it is desirable to adjust the injection timing by directly measuring the injection timing and diagnosing the combustion state. Since there is no simple means to directly measure the injection delay and ignition delay times, we mainly estimate the injection delay and ignition delay times based on experimental data. A method of adjustment using cell lift is used. However, this method requires disassembling part of the fuel pump, which has a complex structure, and in the case of a diesel engine installed in a car, it is extremely difficult to adjust it while it is still installed in the car. It is a cone.

また、従来では機関に手を加えることなくしかも機関運
転状態で噴射時期を検出できる優れた方法が知られてい
る。この方法は機関の外部にセンサーを装着して車載の
ままの状態で簡便に測定できるものである。次にこの方
法を燃料噴射系の挙動と共に詳しく説明する。
Furthermore, an excellent method has been known in the past that can detect the injection timing without modifying the engine while the engine is in operation. This method allows a sensor to be attached to the outside of the engine and can be easily measured while still in the vehicle. Next, this method will be explained in detail together with the behavior of the fuel injection system.

ディーゼル機関の燃料噴射系は例えば第2図に示される
ように1燃料ボシプ(1)、高圧管(2)、燃料噴射弁
(3)などの要素から構成される。カム(図示せず)に
よって駆動される燃料ポンプ(1)のプランジャ(4)
か上昇[矢印X方向]を開始すると、プランジャ室(5
)内の燃料油は急速圧縮され、吐出弁(6)を押し上げ
て高圧管(2)を通って燃料噴射弁(3)K到達する。
The fuel injection system of a diesel engine is composed of elements such as a fuel boss (1), a high pressure pipe (2), and a fuel injection valve (3), as shown in FIG. 2, for example. plunger (4) of the fuel pump (1) driven by a cam (not shown)
When the plunger chamber (5
) is rapidly compressed, pushes up the discharge valve (6), passes through the high pressure pipe (2), and reaches the fuel injection valve (3)K.

プランジt)(4)が更に上昇して系内の圧力が上昇し
、その圧力が燃料噴射弁(3)のばね(7)の付勢力に
打ち勝つとニードル(8)が上!+[矢印Y方向]2を
始め、加圧燃料油が噴孔(9)から噴出して燃料噴射が
開始される。そしてプランジャ(4)が更に上昇する間
は燃料噴射か続くが、プランジャ(4)の切欠部αQか
燃料供給孔(ロ)に達すると、系内の燃料油は逆流を始
め、県内の圧力は急速に低下してニードル(8)か降下
し、燃料噴射が終了する。
Plunge t) (4) rises further and the pressure within the system rises, and when this pressure overcomes the biasing force of the spring (7) of the fuel injection valve (3), the needle (8) moves upward! Pressurized fuel oil is ejected from the nozzle hole (9) starting at 2 in + [direction of arrow Y], and fuel injection is started. Fuel injection continues while the plunger (4) further rises, but when it reaches the notch αQ of the plunger (4) or the fuel supply hole (b), the fuel oil in the system begins to flow backwards, and the pressure within the prefecture decreases. The needle (8) drops rapidly and the fuel injection ends.

このような燃料噴射系にあっては、燃料噴射の開始なら
びに燃料噴射終了直前の逆流と共に燃料油の急激な流動
か起ζシ、それに伴って燃料噴射系から振動、音参の信
号が発生している。そしてこの場合、燃料噴射終了直前
の逆流は高い圧力レベルから大気圧力に近いレベルまで
急激に解放されて起こるため、その流速は噴射開始時の
流速に比べて大きく、従って、噴射終了直前の振動、音
響信号のレベルは噴射開始時のものよりも大きい。
In such a fuel injection system, a rapid flow of fuel oil occurs along with a backflow just before the start of fuel injection and the end of fuel injection, and vibration and noise signals are generated from the fuel injection system. ing. In this case, the backflow just before the end of fuel injection occurs when the pressure level is suddenly released from a high pressure level to a level close to atmospheric pressure, so the flow velocity is larger than the flow velocity at the start of injection. The level of the acoustic signal is greater than at the start of injection.

そこで、燃料噴射系を構成する部材の外部にセンサーを
装着し、仁のセンサー検出信号を増幅した信号をカット
オフ周波数が20KHz以上の適当なハイ・バス・フィ
ルタまたは20KHz以上の帯域内に含まれる適当なバ
シド・バス・フィルタを用いて処理すると、第8図のよ
うな特徴的なパターンの信4jが得られる。この第8図
はセンサーを燃料噴射弁(3)の頭部および燃料ポンプ
(1)の出口管接手部に装着して得られた信号例を示し
、更に燃料噴射系の作動を代表する燃料噴射弁(3)の
ニードルリフトの実測例か併記されている。この第8図
の燃料噴射路り時期(6)と両信号のピーク発生時期@
0の機関回転数の変化に対する相関を調べると第4図の
ようになる。燃料噴射弁(3)の頭部に装着し九センサ
ーによる信号のピーク発生時期紘燃料噴射終りとよい相
関を示しており、この鋭いピーク信号が燃料噴射終了直
前の急激な逆流による信号でおることがわかる。また、
この鋭い信号は機関回転数のどの領域においても顕著に
確実に発生しているζ、とがわかる。
Therefore, a sensor is attached to the outside of the components that make up the fuel injection system, and the signal obtained by amplifying the sensor detection signal is filtered through an appropriate high bass filter with a cutoff frequency of 20 KHz or higher, or a signal that is included in a band of 20 KHz or higher. When processed using an appropriate Basid bus filter, a signal 4j with a characteristic pattern as shown in FIG. 8 is obtained. Fig. 8 shows an example of a signal obtained by attaching a sensor to the head of the fuel injection valve (3) and the outlet pipe joint of the fuel pump (1), and also shows the fuel injection signal representative of the operation of the fuel injection system. An actual measurement example of the needle lift of valve (3) is also shown. The fuel injection timing (6) in Fig. 8 and the peak occurrence timing of both signals @
If we examine the correlation with respect to the change in the engine speed at 0, we will see the results shown in Figure 4. The timing of peak occurrence of the signal from the nine sensors attached to the head of the fuel injector (3) shows a good correlation with the end of fuel injection, and this sharp peak signal is a signal due to the sudden backflow just before the end of fuel injection. I understand. Also,
It can be seen that this sharp signal ζ occurs significantly and reliably in any range of engine speed.

以上より、燃料噴射弁(3)の頭部から得られる噴射路
りの信号を診断に用いるのが最も適当と考えられる。代
表的な4機種Ml−M4に対して上記のようにして噴射
路りをめた例を第6図に示すが、機関回転数の上昇と共
に噴射路9時期か変化しておシ、機種毎の特性を把握す
ることかできる。更に、この第6図には別に測定された
各機種Ml−M4の燃料ポンプの吐出時期が併記されて
いるか、これらの機関にはオートタイマー(自動進角装
置)を持っているため、回転数の上昇と共に吐出時期か
早くなっており、オートタイマーの作動特性をよく把握
することかできる。このような吐出時期の特性に対応し
て上述の噴射路9が得られ、噴射路りを検出することに
よってオートタイマーの作動による噴射特性をよく把握
することかできる。
From the above, it is considered most appropriate to use the injection path signal obtained from the head of the fuel injection valve (3) for diagnosis. Figure 6 shows an example of setting the injection path as described above for four representative models, Ml-M4. It is possible to understand the characteristics of Furthermore, this Figure 6 also shows the discharge timing of the fuel pump for each model Ml-M4, which was measured separately, or because these engines have an auto-timer (automatic advance device), the rotation speed As the value increases, the discharge timing becomes earlier, and we can clearly understand the operating characteristics of the automatic timer. The above-mentioned injection path 9 is obtained in accordance with such characteristics of the discharge timing, and by detecting the injection path, the injection characteristics due to the operation of the auto-timer can be well understood.

更に、吐出時期と噴射路りとの相関を予じめめておくこ
とにより、噴射路りの特性からオートタイマーの作動特
性をめることも可能である。また、先にも述べたように
機関シリンタ内の適正な燃焼状態は適正な噴射時期(噴
射路り)によって得られるから、噴射時期の適否を診断
すること罠よってシリンタ内燃焼状患の良否を直接に診
断できる。勿論、先に述べた吐出時期の検出によっても
燃焼状態の適否を診断することは可能であるが、機関の
運転状台にて動的に吐出時期をめることは容易でなく、
またこの場合、噴射遅れ、着火遅れなどの因子の影響を
考慮しての間接的な診断になる。これに対して前述の噴
射路りの検出による診断は直接的であり、かつ噴射路り
の信号は種々の運転条件においても確実に、しかも顕著
に現われ、その検出も容易であるため、燃焼状態の診断
−を噴射路りの検出によって実行するのが望ましく、実
用的である。
Furthermore, by establishing the correlation between the discharge timing and the injection path in advance, it is possible to determine the operating characteristics of the auto-timer from the characteristics of the injection path. In addition, as mentioned earlier, the proper combustion state in the engine cylinder can be obtained by proper injection timing (injection path), so by diagnosing the appropriateness of the injection timing, it is possible to determine whether the combustion condition in the cylinder is good or not. Can be diagnosed directly. Of course, it is possible to diagnose the suitability of the combustion state by detecting the discharge timing as described above, but it is not easy to dynamically set the discharge timing from the engine operating state.
Furthermore, in this case, the diagnosis is indirect, taking into consideration the influence of factors such as injection delay and ignition delay. On the other hand, the above-mentioned diagnosis by detecting the injection path is direct, and the signal of the injection path appears reliably and significantly under various operating conditions, and is easy to detect. It is desirable and practical to perform the diagnosis by detecting the injection path.

第6図はNolシリンタの燃料噴射弁(3)の頭部に装
着したセンサー(2)の出力信号から噴射路りを検出す
る検出装置の具体的な構成を示す。
FIG. 6 shows a specific configuration of a detection device that detects the injection path from the output signal of the sensor (2) attached to the head of the fuel injection valve (3) of the Nol cylinder.

センサー(2)の出力信号は増幅器(至)によって増幅
され、フィルタQ4によって信号の特徴が抽出される。
The output signal of the sensor (2) is amplified by an amplifier (to) and the characteristics of the signal are extracted by a filter Q4.

その信号は更に増幅器(ト)により増幅された後、絶対
値回路Q・および包絡線検波回路<17)によって処理
されて前述の第8図のような信号が得られる。
The signal is further amplified by an amplifier (g) and then processed by an absolute value circuit Q. and an envelope detection circuit <17) to obtain a signal as shown in FIG. 8 described above.

この信号の急峻な立ち上がりか噴射路り時期Bを表わし
ており、この時期Bを検出するためにこの検出装置は次
のように構成されている。
The steep rise of this signal represents the injection path timing B, and in order to detect this timing B, this detection device is constructed as follows.

包絡線検波回路(ロ)の出力信号は基準電圧発生器(至
)出力の一定電圧とコンパレータa・で比較されて、こ
のコンパレータa晦の出力信号で単安定マルチ式イブレ
ータ(ホ)をトリガーして、単安定マルチバイブレータ
(ホ)出力に噴射路りの立ち上かり信号だけを検出して
いる。この単安定マルチバイブレータ(ホ)出力の2値
化信号は、遅延量か遅延時間調整器?)によって可変で
きる遅延回路翰を介してストロボ駆動回路(2)にトリ
ガー信号として印加され、ストロボ駆動回路に)は噴射
路りの立ち上がりのタイミンクに放電管(財)を発光さ
せる。に)はセンサー(2)が装着された被診断機関に
)のクランク軸に)に直結された回転体で、矢印(ホ)
はその回転方向を表わし、特定シリンダ(ここではNo
tシリ−)夕)が所定角度の例えば上死点(クランク角
度0°)に来た時に固定側の基準TDCマーク翰に一致
するように特定シリンJ TDCマーク(至)が予め付
けられておシ、この特定シリンJ TDCマーク(至)
と基準TDCマーク翰とを前記放電管■の照射光00で
照射して読み取ると、遅延回路に)の遅延量か零の場合
に特定シリンタTDCマーク(2)は基準TDCマーク
翰を通過した実線位置に観察される。そして、遅延時間
調整器(ホ)を操作して遅延回路四の遅延時間を増加さ
せて行くき、次第に基準TDCマーク(2)と特定シリ
ンタTDCマーク員とのずれ量か減少して読み取れ、被
診断機関の1サイクルの所要時間をT1噴射終り時期の
Nolシリンタ上死点からの遅れ時間をtとすると、遅
延回路磐で(T−t)だけ遅延させた時に仮想線で示す
ように特定シリンJ TDCマーク曽が基準TDCマー
ク翰に一致し・て読み取れる。すなわち、照射光0])
で照射して特定シリンJ TDCマーク(至)か基準T
DCマークに)に一致して読み取れた時の遅延時間調整
器q心の操作量からNolシリンタの上死点からクラン
ク角度で何度のところで噴射路り時期になったかを読み
取ることができる。しかし、従来では遅延時間調整器3
つから読み取った測定クランク角度と被診断装置の機種
によって既知の噴射路り時期の標準クランク角度とを測
定者自身か比べて被診断装置の噴射路り時期の良否を判
定しているため、診断チェックの作業性の向上ならびに
判定の信頼性を一定に保つことはできないのか現状であ
る。
The output signal of the envelope detection circuit (b) is compared with the constant voltage output from the reference voltage generator (to) by a comparator a, and the output signal of this comparator a triggers a monostable multi-type ibrator (e). Therefore, only the rising signal of the injection path is detected in the output of the monostable multivibrator (e). Is the binary signal of this monostable multivibrator (E) output a delay amount or a delay time adjuster? ) is applied as a trigger signal to the strobe drive circuit (2) through a variable delay circuit, and the strobe drive circuit () causes the discharge tube to emit light at the timing of the rise of the injection path. 2) is a rotating body directly connected to the crankshaft of the engine to be diagnosed in which the sensor (2) is installed.
represents the rotation direction, and the specific cylinder (here No.
A specific cylinder J TDC mark (To) is attached in advance so that it matches the reference TDC mark on the fixed side when the T series (T) reaches a predetermined angle, for example, top dead center (crank angle 0°). This particular cylinder J TDC mark (to)
When the reference TDC mark (2) and the reference TDC mark (2) are irradiated with the irradiation light 00 of the discharge tube (2) and read, if the delay amount (in the delay circuit) is zero, the specific cylinder TDC mark (2) will be a solid line passing through the reference TDC mark (2). observed in position. Then, as the delay time adjuster (E) is operated to increase the delay time of the delay circuit 4, the amount of deviation between the reference TDC mark (2) and the specific cylinder TDC mark gradually decreases and the target can be read. If the time required for one cycle of the diagnostic engine is the delay time from the top dead center of the Nol cylinder at the T1 injection end timing, t, then when the delay circuit block is delayed by (T-t), the specific cylinder will change as shown by the virtual line. The J TDC mark matches the standard TDC mark and can be read. That is, irradiation light 0])
Irradiate with specific cylinder J TDC mark (to) or reference T
It is possible to read at what crank angle from the top dead center of the Nol cylinder the injection point has come from the operation amount of the delay time adjuster q when it is read in accordance with the DC mark). However, in the past, the delay time adjuster 3
The measuring person compares the measured crank angle read from the source with the standard crank angle of the known injection timing depending on the model of the device being diagnosed to determine whether the injection timing of the device being diagnosed is good or not. The current situation is that it is not possible to improve the workability of checks and maintain a constant reliability of judgments.

そこで本発明は完成した製品に特別な加工を施こさずに
振動センサまたは音響センサを介して噴射路り時期に対
応する顕著な高レベルの信号を検出して実運転時の噴射
路り時期をストロボスコープを用いて直接にめる場合に
、測定者か診断を下さすとも診断結果の良否の2値化信
号を得ることかできるダイ−セル機関における燃焼診断
装置を提供することを目的とする。
Therefore, the present invention detects a remarkable high-level signal corresponding to the injection timing during actual operation by detecting a remarkable high-level signal corresponding to the injection timing using a vibration sensor or an acoustic sensor without performing any special processing on the finished product. An object of the present invention is to provide a combustion diagnostic device for a Dai-cell engine that can obtain a binary signal indicating whether the diagnosis result is good or bad when directly observed using a stroboscope, even if the measurement person makes a diagnosis. .

本発明のディーゼル機関における燃焼診断装置は、被診
断装置の燃料噴射弁外部に装着される振動もしくは音響
検出t′J”j−と、このセンサーの出力信号から燃料
噴射路シ時期に対応した信号を抽出してこの抽出信号を
基準レベルでフンバレートして燃料噴射路り時期を検出
すると共にこの検出信号を任意の時間だけ遅延して出力
する信号処理回路と、この信号処理回路の出力信号をト
リガー信号とするストロボスコープと、信号処理回路の
前記任意の時間に対応する測定信号と被診断装置の機種
によって決まる既知の標準値とを入力として両者の一致
を検出する比較器とを設け、前記ストロボスコープによ
って被診断装置の基準IDCマークと特定シリン4 T
DCマークとを照射して基準TDCマークと特定シリ:
7りTDCマークとの一致読み取り時の前記測定信号を
比較器で標準値と比較して良否を判定するよう構成した
ことを特徴とする。
The combustion diagnosis device for a diesel engine of the present invention detects vibration or sound detection t'J"j- mounted on the outside of the fuel injection valve of the device to be diagnosed, and a signal corresponding to the timing of the fuel injection path from the output signal of this sensor. a signal processing circuit that detects the fuel injection timing by extracting this extracted signal at a reference level and outputting this detection signal after delaying it by an arbitrary amount of time, and triggering the output signal of this signal processing circuit. A stroboscope that outputs a signal, and a comparator that inputs a measurement signal corresponding to the arbitrary time of the signal processing circuit and a known standard value determined by the model of the device to be diagnosed and detects a match between the two is provided. The reference IDC mark and specific cylinder 4T of the device to be diagnosed by the scope
Irradiate the DC mark with the reference TDC mark and specific series:
The present invention is characterized in that the measurement signal at the time of reading a match with the TDC mark is compared with a standard value by a comparator to determine whether it is good or bad.

以下、本発明の一実施例を第7図に基づいて説明する。Hereinafter, one embodiment of the present invention will be described based on FIG. 7.

なお、wJG図と同様の作用を成すものには同一符号を
付けてその説明を省く。に)は特定シリンダの燃料噴射
弁(3)の頭部に装着されたセンサー(6)の検出信号
から噴射終り時期に応じた信号を抽出すると共にこの信
号を任意の時間だけ遅延して出力する信号処理回路、(
至)はこの信号処理回路に)の出力信号をトリガー信号
とするストロボスコーづ、−社時間一角度変換器で、被
診断装置(ホ)の回転数情報り、と前記遅延時間調整器
eAすから遅延回路に)への遅延時間指定情報Dtとを
入力として遅延回路@による遅延時開tをクランク角度
情報Dsに変換する。(ロ)はクランク角度情報Dsを
クランク角度としてデジタル表示する角度表示器、(至
)は各機種のディーゼルエンジンの噴射終り時期が基準
TDCマーク員とのクランク角度差で書き込まれた標準
値メtす、c!4は被診断装置(ホ)の機種に応じて標
準値メモリ(至)から読み出された標準クランク角度情
報DRと測定によって得られた前記クランク角度情報D
sとを比較する比較器で、一致を検出して出力の論理レ
ベルか反転する。@は診断結果表示器で、比較器(至)
の論理レベルの反転を検出して「正常」の旨の表示を行
う。
Note that the same reference numerals are given to those having the same functions as those in the wJG diagram, and the explanation thereof will be omitted. 2) extracts a signal corresponding to the end of injection from the detection signal of the sensor (6) attached to the head of the fuel injection valve (3) of a specific cylinder, and outputs this signal after delaying it by an arbitrary amount of time. Signal processing circuit, (
(to) is a strobe scope that uses the output signal of () as a trigger signal, and a time-to-angle converter that provides rotation speed information of the device to be diagnosed (e), and the delay time adjuster (eA). The delay time designation information Dt from the delay circuit to the delay circuit is inputted, and the delay time opening t by the delay circuit @ is converted into crank angle information Ds. (b) is an angle display that digitally displays crank angle information Ds as a crank angle, and (to) is a standard value meter in which the end of injection timing of each model of diesel engine is written as the crank angle difference from the standard TDC mark member. S-c! 4 is the standard crank angle information DR read out from the standard value memory (to) according to the model of the device to be diagnosed (e) and the crank angle information D obtained by measurement.
A comparator that compares s with s detects a match and inverts the logic level of the output. @ is the diagnosis result display and the comparator (to)
Detects the reversal of the logic level and displays "normal".

このように構成したため、被診断装置(1)の機種に応
じて、基準電圧発生器に)の出力レベルを設定すると共
に標準値メ七り(至)から標準クランク角度情報(DR
)を読み出し、また遅延時間調整器Qカを操作して特定
シリンJ TDCマーク(1)が基準TDCマーク翰に
一致して観察できるようにした場合、被診断装置(ホ)
の噴射路シ時期が正常であれば比較器(至)で一致か検
出されて、診断結果表示器(ロ)に「正常」の旨の表示
か行われる。従って、測定者は被診断装置の機種に応じ
て基準電圧発生器(ト)の出力レベルと標準クランク角
度情報(DR)とを指定して遅延時間調整器に)を調整
するだけで良否の診断結果か得られ1、(測定者自身か
測定値の検討を実行することを必要としないものである
With this configuration, depending on the model of the device to be diagnosed (1), the output level of the reference voltage generator () can be set, and the standard crank angle information (DR) can be set from the standard value menu (to).
) and operate the delay time adjuster Q so that the specific cylinder J TDC mark (1) matches the standard TDC mark and can be observed, the device to be diagnosed (E)
If the injection path timing is normal, a match is detected by the comparator (to), and "normal" is displayed on the diagnostic result display (b). Therefore, the tester can diagnose pass/fail by simply specifying the output level of the reference voltage generator (G) and standard crank angle information (DR) according to the model of the device to be diagnosed and adjusting the delay time adjuster. The results are obtained (1) and do not require the operator to carry out an examination of the measurements himself.

なお、上記実施例における標準クランク角度情報DRを
許容誤差な舎んだ情報とすることによって、よシ実際的
な診断を実行できるものである。
In addition, by setting the standard crank angle information DR in the above embodiment to information with a certain tolerance, more practical diagnosis can be performed.

以上説明のように本発明のりイーゼル機関の燃焼診断装
置によると、測定結果を比較器において標準値と比較し
て良否の判定結果を表わす2値化信号としているため、
従来のように測定者自身か測定値の検討を実施せずとも
噴射終り時期の良否を診断でき、診断の作業性が大幅に
向上し、また診断の信頼性を一定に維持することができ
るものである。
As explained above, according to the easel engine combustion diagnostic device of the present invention, the measurement result is compared with the standard value in the comparator to generate a binary signal representing the judgment result of pass/fail.
It is possible to diagnose the quality of the end of injection timing without having to examine the measured values by the operator himself as in the past, greatly improving the workability of diagnosis, and maintaining the reliability of diagnosis at a constant level. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はダイーゼル機関の燃料噴射系の作動と燃焼との
関係図、IP52図は燃料噴射系の概略断面図、第8図
はセンサー検出信号と燃料噴射弁のニードルリフトとの
関係図、第4図はピーク発生時期と噴射終り時期との機
関回転数に対する関係図、第5図はgs4図の具体的な
実験例の測定結果特性図、第6図蝶従米の診断装置の構
成図、第7図は本発明の診断装置の一実施例の構成図で
ある。 (1)・・・燃料ポンプ、(2)・・・高圧管、(3)
・・・燃料噴射弁、(4)・・・プランジャ、(5)・
・・プランジャ室、(6)・・・吐出弁、(7)・・・
ばね、(8)・・・ニードル、(9)・・・噴孔、a呻
・・・切欠部、aυ・・・燃料供給孔、(2)・・・セ
ンサー、(至)(ト)・・・増幅器、α→・・・フィル
タ、Q呻・・−絶対値回路、αη・・・包絡線検波回路
、(至)・・・基準電圧発生器、(至)・・・コンパレ
ータ、に)・・・単安定マルチバイブレータ、なり・・
・遅延時間調整器、に)・・・遅延回路、(2)・・・
ストロボ駆動回路、(ハ)・・・放電管、Qの・・・ク
ランク軸、翰・・・基準TDCマーク、(至)・・・特
定シリンn TDCマーク、6])・・・照射光、に)
・・・信号処理回路、に)・・・ストロボスコープ、(
至)・・・標準値メ七り、(至)・・・比較器、(ロ)
・・・診断結果表示器、(至)ランク角度情報 代理人 森 木 義 弘 彎− vcuv、o1p4t、<t−it
Figure 1 is a diagram of the relationship between the operation and combustion of the fuel injection system of a diesel engine, the IP52 diagram is a schematic sectional view of the fuel injection system, Figure 8 is a diagram of the relationship between sensor detection signals and the needle lift of the fuel injection valve, and Figure 8 is a diagram of the relationship between the sensor detection signal and the needle lift of the fuel injection valve. Figure 4 is a diagram of the relationship between the peak occurrence time and the end of injection time and the engine speed, Figure 5 is a characteristic diagram of the measurement results of a specific experimental example of the GS4 diagram, Figure 6 is a diagram of the configuration of the diagnostic device for the control FIG. 7 is a configuration diagram of an embodiment of the diagnostic device of the present invention. (1)...Fuel pump, (2)...High pressure pipe, (3)
... Fuel injection valve, (4) ... Plunger, (5).
...Plunger chamber, (6)...Discharge valve, (7)...
Spring, (8)... Needle, (9)... Nozzle hole, a groan... Notch, aυ... Fuel supply hole, (2)... Sensor, (to) (g).・・Amplifier, α → ・・Filter, Q・・Absolute value circuit, αη・・Envelope detection circuit, (To) ・・Reference voltage generator, (To)・・Comparator, etc.) ... Monostable multivibrator,...
・Delay time adjuster, (2)...Delay circuit, (2)...
Strobe drive circuit, (c)...discharge tube, Q's...crankshaft, blade...reference TDC mark, (to)...specific cylinder n TDC mark, 6])...irradiation light, )
...signal processing circuit,) ...stroboscope, (
To)...Standard value, (To)...Comparator, (B)
...Diagnosis result display, (to) rank angle information agent Hiroaki Moriki - vcuv, o1p4t, <t-it

Claims (1)

【特許請求の範囲】[Claims] 1、被診断装置の燃料噴射弁外部に装着される振動もし
くは音響検出tンサー七、このセンサーの出力信号から
燃料噴射路り時期に対応した信号を抽出してこの抽出信
号を基準しベルでコンパレートして燃料噴射路り時期を
検出すると共にこの検出信号を任意の時間だけ遅延して
出力する信号処理回路と、この信号処理回路の出力信号
をトリカー信号とするストロボスコープと、信号処理回
路の前記任意の時間に対応する信号と被診断装置の機種
によって決まる既知の標準値とを入力として両者の一致
を検出する比較器とを設け、この比較器の出力信号を被
診断装置の良否判定信号とし九ディーゼル機関の燃焼診
断装置。
1. Vibration or sound detection sensor 7 installed on the outside of the fuel injection valve of the device to be diagnosed, extracts a signal corresponding to the fuel injection timing from the output signal of this sensor, and uses this extracted signal as a reference to perform a comparator with a bell. A signal processing circuit that detects the fuel injection timing at a certain rate and outputs this detection signal after delaying it by an arbitrary amount of time, a stroboscope that uses the output signal of this signal processing circuit as a trigger signal, and a signal processing circuit that A comparator is provided which inputs the signal corresponding to the arbitrary time and a known standard value determined by the model of the device to be diagnosed and detects a match between the two, and uses the output signal of this comparator as a signal for determining the quality of the device to be diagnosed. Combustion diagnostic device for Toshi-9 diesel engine.
JP18627383A 1983-10-04 1983-10-04 Combustion diagnostic device of diesel engine Pending JPS6079161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18627383A JPS6079161A (en) 1983-10-04 1983-10-04 Combustion diagnostic device of diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18627383A JPS6079161A (en) 1983-10-04 1983-10-04 Combustion diagnostic device of diesel engine

Publications (1)

Publication Number Publication Date
JPS6079161A true JPS6079161A (en) 1985-05-04

Family

ID=16185407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18627383A Pending JPS6079161A (en) 1983-10-04 1983-10-04 Combustion diagnostic device of diesel engine

Country Status (1)

Country Link
JP (1) JPS6079161A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1703122A1 (en) * 2005-02-05 2006-09-20 L'orange Gmbh Method and apparatus for capturing with an acoustic sensor the injection process of an internal combustion engine
WO2009040251A1 (en) * 2007-09-25 2009-04-02 Robert Bosch Gmbh Method for operating an internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190474A (en) * 1983-04-11 1984-10-29 Nissan Motor Co Ltd Detecting device of fuel injection timing in diesel engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190474A (en) * 1983-04-11 1984-10-29 Nissan Motor Co Ltd Detecting device of fuel injection timing in diesel engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1703122A1 (en) * 2005-02-05 2006-09-20 L'orange Gmbh Method and apparatus for capturing with an acoustic sensor the injection process of an internal combustion engine
WO2009040251A1 (en) * 2007-09-25 2009-04-02 Robert Bosch Gmbh Method for operating an internal combustion engine

Similar Documents

Publication Publication Date Title
JP2721604B2 (en) Combustion condition diagnostic device
JP4165751B2 (en) Knock detection device for internal combustion engine
JP3084060B2 (en) Method and apparatus for measuring internal pressure fluctuations in a cylinder of a piston engine
Chiavola et al. Combustion characterization in diesel engine via block vibration analysis
KR20090027210A (en) Method and device for monitoring an exhaust-gas turbocharger
EP0998664B1 (en) Method and device for determing gas pressure and temperature in an hollow space
US7295916B2 (en) Method and device for detecting knocking
US4102181A (en) Procedure for determining the starting point of fuel injection especially for running internal-combustion engines
JPS5819532A (en) Method and device for detecting misfire of reciprocating engine
GB2089986A (en) Detecting fuel injector opening
JPS6079161A (en) Combustion diagnostic device of diesel engine
JP4155807B2 (en) Knock detection device
US4133205A (en) Identification of engine cylinder having fault
US4045687A (en) Circuit arrangement for evaluating the electrical output signals of a detector for thickness changes in a fuel injection line
US9970373B1 (en) Method and system for detecting and eliminating knocking
GB1167292A (en) Apparatus for, and Method of, Indicating or Analyzing the Condition of an Internal Combustion Engine
JP2001021455A (en) Engine-diagnosing apparatus
JPS6124543B2 (en)
Azzopardi et al. Measurement of knock and its analysis on turbocharged 600cc formula SAE boost pressure control and sensor signal conditioning
RU194297U1 (en) Device for assessing the technical condition of the cylinder-piston group of an internal combustion engine
RU223207U1 (en) DEVICE FOR CONTINUOUS ASSESSMENT OF THE TECHNICAL CONDITION OF THE CYLINDER PISTON GROUP OF INTERNAL COMBUSTION ENGINE
JP3131892B2 (en) Self-diagnosis device in knocking detection device of internal combustion engine
Arnone et al. Engine block vibration measures for time detection of diesel combustion phases
JPS6348298B2 (en)
SU1084644A1 (en) Method of evaluating technological condition of internal combustion engine carburettor