JPS6077916A - Manufacture of alloy steel having superior resistance to corrosion and stress corrosion cracking - Google Patents

Manufacture of alloy steel having superior resistance to corrosion and stress corrosion cracking

Info

Publication number
JPS6077916A
JPS6077916A JP18641783A JP18641783A JPS6077916A JP S6077916 A JPS6077916 A JP S6077916A JP 18641783 A JP18641783 A JP 18641783A JP 18641783 A JP18641783 A JP 18641783A JP S6077916 A JPS6077916 A JP S6077916A
Authority
JP
Japan
Prior art keywords
less
resistance
alloy steel
corrosion resistance
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18641783A
Other languages
Japanese (ja)
Other versions
JPS649392B2 (en
Inventor
Junichi Sakai
潤一 酒井
Iwao Matsushima
松島 厳
Masaharu Honda
本田 正春
Yoshiki Kamemura
亀村 佳樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP18641783A priority Critical patent/JPS6077916A/en
Publication of JPS6077916A publication Critical patent/JPS6077916A/en
Publication of JPS649392B2 publication Critical patent/JPS649392B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To provide superior resistance to pitting corrosion and stress corrosion cracking by explaining the interrelation between resistance to pitting corrosion and stress corrosion cracking and composition and the relation between the composition and conditions during heat treatment and by selecting them in specified ranges. CONSTITUTION:The composition of an alloy steel is composed of, by weight, <0.015% C, <1% Si, <1% Mn, <0.01% P, <0.01% S, 60-70% Ni, 22-35% Cr, <10% Mo, <0.01% N, <1% Cu, one or more among <1% Ti, <1% Nb and <0.1% Ca, and the balance Fe with inevitable impurities, and the value of DELTA1 represented by equation I is regulated to >=25. The alloy steel is subjected to soln. heat treatment of semi-soln. heat treatment at a temp. Tf which is in the range of 950-1,250 deg.C and satisfies conditions represented by equations II, III.

Description

【発明の詳細な説明】 本発明は耐食性及び耐応力腐食割れ性に優れた合金鋼の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing alloy steel having excellent corrosion resistance and stress corrosion cracking resistance.

金属材料が使われる腐食環境は、近年その苛酷度が増す
傾向にろシ、例えば、油井、ガス井や地熱井1等ではそ
の注井戸化に伴い井戸底部での高温、高圧化、塩化物の
高濃度化が進み、加えて硫化水素、炭酸ガス等も高濃度
化しつつある0このような腐食環境条件の変化に対応し
、そこで使用される耐食性材料も従来の9%クロムm、
tanクロムfi、48%クロム鋼或は5US304゜
316クラスの鉄鋼材料等から、例えばインコロイ、ハ
ステロイ等で知られる高合金鋼の使用が検討されつつあ
る。ところで、このような苛酷化した腐食環境での高合
金材料の腐食現象は、孔食や応力腐食割れ〔以下rsc
cJと称す)のような局部腐食に代表される。このよう
な局部腐食に及はす合金元素の影響として最も一般的に
知られるものは、8CCに対してはニッケル、孔食に対
して社クロムとモリブデンである。18%程度のクロム
を含有するクロム−ニッケルー鉄系合金の塩化マグネシ
ウム溶液中における耐SCC性は、8チニツケルで最も
劣り、ニッケル添加量の減少或は高ニツケル化によシ向
上することが知られておりSqgrtこニッケル含有量
を45チ以上にすることによシ極めて高い耐SCCが得
られる。また耐孔食性はクロム含有量が増すことによっ
て向上し、約22〜35−以上のクロム含有量によシ耐
孔食性が極めて高くなることが知られている。さらにモ
リブデンは、クロムと同時添加によシその効果を示し、
クロムの1.5倍程度の効力を示す。しかしなから、以
上述べたような各成分元素の影響は、主として着目成分
濃度のみを変動因子としており、成分元素相互の作用に
ついては、従来はとんど検討されておらず、またSCC
性や耐食性を同時に検討した例もほとんどみられない。
The corrosive environment in which metal materials are used has tended to become more severe in recent years. For example, oil wells, gas wells, geothermal wells, etc. are experiencing high temperatures, high pressures, and chloride contamination at the bottom of the wells due to the use of wells. In response to these changes in corrosive environmental conditions, the corrosion-resistant materials used are also changing from the conventional 9% chromium m,
Among the steel materials such as tan chrome fi, 48% chromium steel, and 5 US 304° 316 class steel materials, the use of high alloy steels known as Incoloy, Hastelloy, etc. is being considered. By the way, corrosion phenomena of high alloy materials in such a severe corrosive environment are pitting corrosion and stress corrosion cracking [hereinafter referred to as rsc
This is typified by localized corrosion such as cJ. The most commonly known effects of alloying elements on such localized corrosion are nickel for 8CC, and chromium and molybdenum for pitting corrosion. It is known that the SCC resistance of a chromium-nickel-iron alloy containing about 18% chromium in a magnesium chloride solution is the poorest at 8 nickels, and can be improved by reducing the amount of nickel added or increasing the nickel content. By setting the nickel content to 45 or more, extremely high SCC resistance can be obtained. It is also known that the pitting corrosion resistance is improved by increasing the chromium content, and that the pitting corrosion resistance becomes extremely high when the chromium content is about 22 to 35 or more. Furthermore, molybdenum shows its effect when added simultaneously with chromium.
It is about 1.5 times more effective than chromium. However, the influence of each component element as described above mainly has only the concentration of the component of interest as a variation factor, and the interaction of the component elements has not been studied in the past, and SCC
There are also very few examples where properties and corrosion resistance were considered at the same time.

すなわち、耐食性高合金の成分設計は、耐SCC性向上
の為にニッケルの添加量を増し、耐孔食性を高めるため
クロムとモリブデンを増す傾向にあるが、各々の合金元
素の添加量は、個別元素の個別現象への効果を基に定め
られており、fiIS CC性と耐孔食性向上のために
ニッケル、クロム、モリブデン等の相互最適バランスを
定量的に考慮した材料は未だ知られておらず、また、実
際の製品製造において、特に溶体化処理条件と耐SCC
性、耐孔食性との関係についても十分な解明がなされて
いないのが現状でめる0 本発明はこのような現状に鑑み創案され良もので、耐S
CC性及び耐孔食性に対する合金元素の相互作用及びこ
れと溶体化(又は準溶体化)処理条件との関係を解明し
、従来の所謂インコロイやハステロイよシも更に優れた
耐孔食性と耐応力腐食割れ性を有する高合金鋼を得るこ
とに成功したものである。
In other words, the compositional design of highly corrosion-resistant alloys tends to increase the amount of nickel added to improve SCC resistance, and to increase chromium and molybdenum to improve pitting corrosion resistance, but the amount of each alloying element added varies individually. It is determined based on the effects of elements on individual phenomena, and there is still no known material that quantitatively considers the mutually optimal balance of nickel, chromium, molybdenum, etc. to improve FIIS CC properties and pitting corrosion resistance. In addition, in actual product manufacturing, especially solution treatment conditions and SCC resistance
At present, the relationship between corrosion resistance and pitting corrosion resistance has not been sufficiently elucidated.
By elucidating the interaction of alloying elements on CC properties and pitting corrosion resistance, and the relationship between this and solution treatment (or quasi-solution treatment) conditions, we have developed a structure that has even better pitting corrosion resistance and stress resistance than the conventional so-called Incoloy and Hastelloy. This was a successful achievement of producing high-alloy steel with corrosion cracking properties.

即ち、本発明においては、C: 0.015 wtチ以
下、Si:1wt$以下、 Mn : 1 wt %以
下、P:0.01wtチ以下、S:0.01wtチ以)
−、Ni:60wt96a〜70wt% 、Cr:22
〜35wt% 。
That is, in the present invention, C: 0.015 wt or less, Si: 1 wt $ or less, Mn: 1 wt % or less, P: 0.01 wt or less, S: 0.01 wt or less).
-, Ni:60wt96a~70wt%, Cr:22
~35wt%.

M□ : 10 wt %以下、N:0.01wt%以
下、 Cu: 1 wt q6以下、及び1 wtチ以
下のTi、1wtチ以下のNb 、 0.1 wtチ以
下のCaを1種又は2種以上含有し、残部鉄及び不可避
不純1勿力≧らなる組成であって、 Δ、= (Cr+ 1.5Mo+o、s’rt +0.
5Cu−ioo・c)でめられるΔ1 の値が25t%
)以上である組成を有する合金銅を、950〜1250
’Oの温度1屯囲であって且つ1式の条件を満たす温度
Tfにて溶体化又は準溶体化処理するようにしたもので
ある。
M□: 10 wt% or less, N: 0.01 wt% or less, Cu: 1 wt q6 or less, and 1 or 2 types of Ti, 1 wt or less, Nb, 1 wt or less, and Ca, 0.1 wt or less. Δ,=(Cr+ 1.5Mo+o, s'rt+0.
The value of Δ1 determined by 5Cu-ioo・c) is 25t%
) or more, a copper alloy having a composition of 950 to 1250
Solution treatment or semi-solution treatment is carried out at a temperature Tf that is within the temperature range of '0 and satisfies the conditions of equation 1.

Δ、=N1 [((Cr+1.5Mo−20)”/12
1−35C−27N+ 141 Tf≦60Δ、−550 以下本発明の成分組成及び熱処理条件の限定理由を詳細
に説明する0 本発明の成分組成の限定理由は以下の通シである。
Δ,=N1 [((Cr+1.5Mo-20)”/12
1-35C-27N+ 141 Tf≦60Δ, -550 The reasons for limiting the component composition and heat treatment conditions of the present invention will be explained in detail below. The reasons for limiting the component composition of the present invention are as follows.

Coは粒内型SCCの抑制に対し°C有効との説もある
が、炭素含有量が高くなると粒界型800を起こし易く
なり、特に炭素固溶度か減少する高Ni合金でそのお−
f:f′Lか大きくなる。′また炭化物の析出物は孔食
の起点になり易いという問題があり、このよりなこと〃
為らCはその上限か0.015 wt %以下しこ制限
されるO 8t は脱酸成分として必要であるが、熱間加工性を劣
化させる成分であり、このような問題を生じさせないた
めその上限が1%と定められる。
There is a theory that Co is effective in suppressing intragranular type SCC, but as the carbon content increases, grain boundary type 800 tends to occur, especially in high Ni alloys where carbon solid solubility decreases.
f: f'L becomes larger. 'Also, there is a problem that carbide precipitates can easily become the starting point for pitting corrosion, so this
Therefore, C is strictly limited to 0.015 wt % or less.O 8t is necessary as a deoxidizing component, but it is a component that deteriorates hot workability, so it is not recommended to avoid such problems. The upper limit is set at 1%.

Mnはstと同様脱酸作用かある。このMnは耐SCC
性にはほとんど影響を与えない力ぶ、1チを超えるとマ
ンガン硫化物等の析出物〃工孔食の起点とな9易く、従
ってその上限が1チと定められる。
Like st, Mn has a deoxidizing effect. This Mn is SCC resistant
If the force exceeds 1 inch, precipitates such as manganese sulfide tend to become a starting point for pitting corrosion, so the upper limit is set at 1 inch.

不可避不純物としてのPはSCC感受性を高める作用が
あるため極力低減させる必要がめシ、このためその上限
が0.01 wt%と定められる。
Since P as an unavoidable impurity has the effect of increasing SCC sensitivity, it is necessary to reduce it as much as possible, and therefore its upper limit is set at 0.01 wt%.

不可避不純物としてのS(τは熱間加工往管劣化させる
作用があり、マンガン硫化物等を作って耐孔食性を悪化
するので、その上限がo、oiwtq6 ど定められる
S (τ) as an unavoidable impurity has the effect of deteriorating the hot working pipe and creates manganese sulfide etc., which deteriorates the pitting corrosion resistance, so its upper limit is set as o, oiwtq6, etc.

Ni は1iitscc性を向上させるのに有効な元素
であり、20wtチ以上の含有量でその効果が顕著にな
るが、c、Bを増すと耐SCC性は低下するので、十分
な耐食性を満足するcr 量に対して優iした耐SCC
性を示すようにするには少なくとも60 wt% を超
えて含有せしめることが必要であり、その下限が6゜w
t% 超と定められる。また、他の成分、特1ccr量
との関係で、7 Owtチが上限となる。
Ni is an effective element for improving 1iitscc property, and its effect becomes noticeable when the content is 20 wt or more, but as c and B increase, SCC resistance decreases, so it is necessary to satisfy sufficient corrosion resistance. Excellent SCC resistance compared to cr amount
In order to exhibit properties, it is necessary to contain at least 60 wt%, and the lower limit is 6°w.
It is defined as exceeding t%. Also, depending on the relationship with other components, especially the amount of 1ccr, the upper limit is 7 Owt.

Cr は高合金鋼のt1食性、特に不働態皮膜の強化に
よる耐食性向上に有効な元素である〇十分な耐食性を得
るためにi”t22wt% 以上の含有量が必要である
が、その含有量が35wt % を超えると熱間加工性
の劣化が避は難く、このためその含有@Qま22〜a 
s wt %と定められる。
Cr is an element that is effective in improving the t1 corrosion resistance of high alloy steel, especially in improving the corrosion resistance by strengthening the passive film. In order to obtain sufficient corrosion resistance, a content of i”t22wt% or more is required, but the content If it exceeds 35 wt %, deterioration of hot workability is inevitable, and therefore its content @Qma22~a
s wt %.

Mo &″l:不働態皮膜の強化に対してCrの1.5
倍程度の効果があるが、その含有量が10wtチを超え
ると熱間工程時に耐食性を劣化させるσ相を容易に生成
するようになり、このためその上限か10wt% と定
められる。
Mo&″l: 1.5 of Cr for strengthening the passive film
It is about twice as effective, but if its content exceeds 10 wt%, it will easily generate a σ phase that deteriorates corrosion resistance during hot processing, so the upper limit is set at 10 wt%.

Nは耐孔食性を向上させるが、本発明鋼では窒素成分が
なくても十分な耐孔食性がある。
Although N improves pitting corrosion resistance, the steel of the present invention has sufficient pitting corrosion resistance even without a nitrogen component.

逆にNは0.01 wt%を超えると耐SCC性に急影
響を与えるものであり、このためその上限が0.01w
tチと定められる。
On the other hand, when N exceeds 0.01 wt%, it has a sudden effect on SCC resistance, and for this reason, the upper limit is set at 0.01 wt%.
It is defined as tchi.

Cu は利料の耐食性を向上させるのに役立つが、1 
wt%を超えると熱間加工性の劣化を招き、このため1
 wt %が上限と定められる。
Cu helps to improve corrosion resistance of interest, but 1
Exceeding wt% leads to deterioration of hot workability, and therefore 1
wt % is set as the upper limit.

Ca 、 Ti 、 Nl)の各成分は熱間加工性を向
上させる作用がらり、さらにTlとNbは炭素を固定し
、結果的に粒界SCCを抑制する効果をもつ。各々の成
分がこのような効果を発揮するのに、Caは0.1wt
’%以下、Ti及びNl)はそれぞれl wt係以下で
あ肛は十分であシ、この上限を超えて含有せしめてもそ
れ以上の効果は期待で@ない。これらの成分は、その1
種又は2種以上が含有せしめられる。
Each component (Ca, Ti, Nl) has the effect of improving hot workability, and furthermore, Tl and Nb have the effect of fixing carbon and, as a result, suppressing grain boundary SCC. Although each component exerts such an effect, Ca is 0.1wt.
%, Ti and Nl) are each below the lwt ratio, which is sufficient, and even if the content exceeds this upper limit, no further effect is expected. These ingredients are part 1
A species or two or more species may be contained.

本発明では、以上のような成分元素の組成条件に、さら
に成分元話間での次のような条件を満足させる必要がる
シ、このような成分元素相互の関係を満足させることに
よつτ、本発明が目的とする優れた耐孔食性が得られる
Oすなわち、本発明では、 Δ1 ” [Cr+1.5Mo+0.8Ti +0.5
Cu−100・C]の式で定義されるΔ、値が25以上
となるよう各成分値が調整される必要がある。第1図は
厳しい腐食環境下での耐孔食性に関し、Δ。
In the present invention, it is necessary to satisfy the composition conditions of the component elements as described above, as well as the following conditions between the component sources, and by satisfying the mutual relationships between the component elements. τ, O at which the excellent pitting corrosion resistance aimed at by the present invention can be obtained; that is, in the present invention,
It is necessary to adjust each component value so that the value of Δ defined by the formula [Cu-100·C] is 25 or more. Figure 1 shows pitting corrosion resistance under severe corrosive environments.

値と孔食速度との関係を調べたものであり、Cr 、 
Ni 、 M□等の含有量を変化させた合金について1
0チ塩化第二鉄系の孔食実験を行つた結果を示したもの
である。同図から明らかなように、上記本発明の採用す
る成分組成にあってもΔ、〉25の範囲では耐孔食性が
大きく劣シ、耐孔食性を十分満足させるには成分元素の
相互的な関係を満たすことが不可欠であることか判る。
The relationship between the value and the pitting corrosion rate was investigated, and the relationship between the value of Cr,
Regarding alloys with varying contents of Ni, M□, etc. 1
This figure shows the results of a pitting corrosion experiment using ferric chloride. As is clear from the figure, even with the component composition adopted by the present invention, the pitting corrosion resistance is greatly inferior in the range of Δ, >25, and in order to fully satisfy the pitting corrosion resistance, the mutual It turns out that fulfilling the relationship is essential.

本発明では上記した成分条件の鋼を溶製した後、熱間圧
延以降の工程で所謂溶体化処理又は準溶体化処理が行わ
れる。ここで準溶体化処理とは、完全とはいかない壕で
も組織中では、まず、か力)る熱処理を950〜125
0°0の温度範囲で行うことが条件とされる。ここで熱
処理温度が9500未満では金属組成の均一化が必要と
される程[まで得られないため十分な耐SCC性が期待
できず、また、1250 ’0 を超えた熱処理も制s
 c c性の低下をもたらすため好ましくない。成分組
成によって差はあるが、一般的にはこのような950〜
1250°0の温度範囲中、高温側での熱処理が溶体化
処理、低温側での熱処理が卑情体化処理となる。本発明
の熱処理は、このような温度範囲において更に1式の条
件を満たす温度Tfで行うことが条件とされる。
In the present invention, after the steel having the above-mentioned compositional conditions is melted, so-called solution treatment or semi-solution treatment is performed in the steps after hot rolling. Here, quasi-solution treatment means that even if the trenches are not complete, the tissue is first subjected to heat treatment at a temperature of 950 to 125 degrees.
The condition is that it is carried out in a temperature range of 0°0. If the heat treatment temperature is less than 9500, the required uniformity of the metal composition cannot be obtained, so sufficient SCC resistance cannot be expected;
cc This is not preferable because it causes a decrease in c properties. Although there are differences depending on the component composition, generally 950 ~
In the temperature range of 1250°0, heat treatment on the high temperature side is solution treatment, and heat treatment on the low temperature side is vulgarization treatment. The heat treatment of the present invention is conditioned to be performed at a temperature Tf that further satisfies the condition of the first equation within such a temperature range.

Δ*=Ni [:(CCr+1.5Mo−20)”/1
21−35C−27N+14] Tf≦60Δ、−550 温度Tfは成分元素相互の含有量に関係してめられるΔ
1@((K基づき決定されるもので、このように成分元
素の相互的な関係から決定される温度で溶体化処理又は
卑情体化処理を行うことにより、本発明の目的とする優
扛た耐SCC性が得られる。第2図は厳しい腐食環境下
においてΔ、値と熱処理温度Tfとの関係から耐SCC
性を調べたものであり、具体的には、塩化マグネシウム
よ)腐食性が厳しい塩化亜鉛溶液中でsCc試験を行い
600時間の割れの有無で耐SCC性を判定したもので
ある。同図からも明らかなよ’)K、950〜1250
°0の温度範囲であっても、Δ、値との関係からTf>
60Δ、 −550の範囲では耐応力腐食割れ性が劣り
、耐応カ腐食割れ性を十分満足させるには成分元素相互
の関係でめられるΔ、の値に基づいた温度て熱処理する
ことが不可欠であることが判る。なお、図中破線で示す
ように、本発明では実質的にΔ。
Δ*=Ni[:(CCr+1.5Mo-20)”/1
21-35C-27N+14] Tf≦60Δ, -550 Temperature Tf is Δ determined in relation to the content of each component element.
1@((It is determined based on Figure 2 shows the SCC resistance in a severe corrosive environment based on the relationship between the value of Δ and the heat treatment temperature Tf.
Specifically, an sCc test was conducted in a zinc chloride solution, which is highly corrosive (like magnesium chloride), and the SCC resistance was determined based on the presence or absence of cracking after 600 hours. It is clear from the same figure') K, 950-1250
Even in the temperature range of °0, Tf>
Stress corrosion cracking resistance is poor in the range of 60Δ, -550, and in order to fully satisfy stress corrosion cracking resistance, it is essential to heat treat at a temperature based on the value of Δ determined by the relationship between the component elements. It turns out that there is something. In addition, as shown by the broken line in the figure, in the present invention, substantially Δ.

の値が少なくとも25以上であることが必要とされる。It is required that the value of is at least 25 or more.

上記した溶体化処理又は卑情体化処理は、熱間加工以降
の種々の段階で行うことができ、例えは、■熱間圧延−
冷間圧延−溶体化処理又は卑情体化処理、■熱間圧延−
溶体化処理又は卑情体化処理−冷間圧延、等の各工程を
採ることができる。また溶体化処理後、固溶Cを過飽和
の状態から飽和状態にして組織の安定化を図るための熱
処理、所謂安定化処理を行うことができ、この場合には
、例えは、■熱間圧延−溶体化処理−冷間圧延一安定化
処理、■熱間圧延−溶体化処理−安定化処理一冷間圧延
、■熱間圧延−冷間圧延−溶体化処理一冷1)1圧延−
安定化処理、等の各工程を採ることができる。ここで上
記卑情体化処理は、組織中のカーバイドの溶解をある程
度進行せしめ、これによって成分元素の均一化(ミクロ
的な成分音度の均−比を含む)が図られるようにした熱
処理であることは前述した通シであり、このようにして
得られる組織は溶体化処理−安定化処理を経て均一化、
安定化された組織に近いものとなる。なお、上記した■
、■で示すような工程では、溶体化処理と安定化処理の
工程間で冷間圧延が行わ!L1この冷間圧延によってN
 b C* T I C%の析出が促進されるため、よ
り安定化した組織を得ることができる。
The above-mentioned solution treatment or vulcanization treatment can be carried out at various stages after hot working. For example,
Cold rolling - solution treatment or obscene treatment, ■ hot rolling -
Processes such as solution treatment or obscene treatment-cold rolling can be employed. In addition, after the solution treatment, heat treatment to stabilize the structure by changing the solid solution C from a supersaturated state to a saturated state, a so-called stabilization treatment, can be performed.In this case, for example, hot rolling - Solution treatment - cold rolling - stabilization treatment, ■ hot rolling - solution treatment - stabilization treatment - cold rolling, ■ hot rolling - cold rolling - solution treatment - cooling 1) 1 rolling -
Various steps such as stabilization treatment, etc. can be taken. Here, the above-mentioned heat treatment is a heat treatment that progresses the dissolution of carbide in the structure to a certain extent, thereby making the component elements uniform (including the average ratio of the microscopic component tones). As mentioned above, the tissue obtained in this way is homogenized through solution treatment and stabilization treatment.
It becomes close to a stabilized organization. In addition, the above
, In the process shown by ■, cold rolling is performed between the solution treatment and stabilization treatment! L1 Through this cold rolling, N
b Since the precipitation of C* T I C% is promoted, a more stabilized structure can be obtained.

〔実施例〕〔Example〕

第1表に本発明1Q4(C−1〜C〜7)及び比較鋼(
D−1〜D−8)の化学成分を示す。これらはいずれも
通常のステンレス鋼の製造ラインで製造されたもので、
熱間圧延−焼鈍−冷間圧延後、950〜1250 ’O
の温度範囲で10〜30分間加熱して急冷する溶体化処
理又は卑情体化処理を行った。なお、いくつかの条件で
は上記焼鈍工4−°過に相当する段階で溶体化処理又は
準溶体化処理を行い、冷間圧延後の熱処理を省略した。
Table 1 shows the present invention 1Q4 (C-1 to C-7) and comparative steel (
The chemical components of D-1 to D-8) are shown below. All of these are manufactured on regular stainless steel production lines.
After hot rolling-annealing-cold rolling, 950-1250'O
Solution treatment or obscene treatment was performed by heating in a temperature range of 10 to 30 minutes and rapidly cooling. Note that under some conditions, solution treatment or quasi-solution treatment was performed at a stage corresponding to the 4-degree annealing step, and the heat treatment after cold rolling was omitted.

工程上における熱処理の位(ト^或は当該熱処理におけ
る保持時間は結果に影響を与えないので、それらの項目
は省略した。各供試脩の耐孔食性及び14SCC性に関
する試験結果を第1表に併せて示した。
The degree of heat treatment during the process or the holding time during the heat treatment do not affect the results, so these items are omitted.Table 1 shows the test results regarding pitting corrosion resistance and 14SCC property of each sample. It is also shown in .

同表からも明らかなように、本発明鋼 は削孔食性と耐SCC性を同時に滴定 させた優れた性質を有しているのに対 し、比較鋼では針孔食性と耐SCC性 のいずiしか一方、又は双方に悪影響を生じていること
が判る。
As is clear from the same table, the steel of the present invention has excellent properties with both pitting corrosion resistance and SCC resistance titrated at the same time, whereas the comparative steel has both needle pitting corrosion resistance and SCC resistance. It can be seen that only i has an adverse effect on one or both.

以上述べたように本発明によれば、削孔食性及び耐応力
腐食割れ性と成分組成及びそれらの相互関係、さらには
かかる成分条件と熱処理条件との関係を解明し、それら
を特定の範囲に選定することにより、従来にない優れた
耐孔食性と耐SCC性の合金鋼の製造を可能ならしめた
ものであって、この種合金鋼に関する工業的な効果の大
きい発明である。
As described above, according to the present invention, we have clarified the drilling corrosion resistance, stress corrosion cracking resistance, component composition, and their mutual relationship, as well as the relationship between such component conditions and heat treatment conditions, and adjusted them within a specific range. This selection makes it possible to manufacture alloy steel with unprecedented pitting corrosion resistance and SCC resistance, and this invention has great industrial effects regarding this type of alloy steel.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はΔ、値と孔食速度(耐孔食性)との関係を示す
毛のである。第2図はΔ。 値と溶体化処理(又は卑情体化処理)との関係を示すも
のである。 U秘 手続補正書 昭和5g年!2月6 」] 特fFIi長官 若 イリ 、111 ノN 殿(特鎮
1審査官 殿) 1 事1′1の表示 昭和凭 年 rコ iif 願第2&611./7 シ
J2兄明の6杓; #食a陸び′簡1メし力l穐1町側、)しlILつイ復
わ「□イ針4ン4岡4舎弧宕t4bシt3 補正をする
者 事件との関係 出願人 日本前’LU’ j+′+’人
会r1−4代理人 5 補正命令の1]イj 6 補正の対象 補 正 内 容 1本願の「特許請求の範囲」を以下のように訂正する。 rc:0.015wt%以下、Si:1wt%以下、M
n : 1 wt %以下、P : 0.01wt%以
下、S二〇、01wt%以下、Ni : 60wt%超
〜70wt%、Cr : 22〜35 wt%、 Mo
 : 10wt%以下、N:0.03wt%以下、CH
:1wt%以下、さらにこれらに加えて1 wt%以下
のTi、1wt%以下のNb、0.1wt%以下のCa
のうちの1種又は2種以上を含有し、残部鉄及び不可避
不純物からなる組成であって、 山= [Cr+1.5Mo+〇、8Ti +0.5Cu
 −1ooc :]でめられるΔlの値が25以上であ
る組成を有する合金鋼を、950〜1250℃の温度範
囲であって且つ下式の条件を満たす温度Tfにて溶体化
又は卑情体化処理することを特徴とする耐食性及び耐応
力腐食割れ性に優れた合金鋼の製造方法。 Δt=Ni−C((cr+t、5Mo−20)2/12
1−35C−27N +14 ) Tf<60Δ、−5504 ユ本願明細省中第3頁13行目末尾〜14行目冒頭にか
けて「約22〜35%以上」とあるを「約22%以上」
と訂正する。 3同書第5頁7行目中rN:0.01wt%以下、」と
あるをr N : 0.03wt%以下、」と削正する
。 ダ同4i′第5頁12行目を以下のように訂正する。 「Δs =CCr+1.5Mo+0.8Ti +0.5
Cu−10QC) J左同誉第8頁13行目中「Nは0
.01 wt%」とある全fNは0.03 wt%」と
訂正する。 ム同1−第8頁15行目中ro、01wt%」とあるを
jO,03wt%」と訂正する。 7同書第9頁14行目を以下のように訂正する。 r J1=[Cr+1.5Mo+0.8Ti+〇、5C
u tooc) Jに同w第10頁3行目中「Δs>2
5」とあるを「Δ1<25Jと訂正する。 デ回書第12頁15行目中[また溶体化処理後、」と゛
あるをrまた溶体化処理(若しくは卑情体化処理)後、
」と訂正する。
Figure 1 shows the relationship between Δ and pitting corrosion rate (pitting corrosion resistance). Figure 2 shows Δ. This shows the relationship between the value and the solution treatment (or the obscene treatment). U secret procedural amendment 1920 5g! [February 6]] Special FFIi Director Waka Iri, 111 No.N (Special Security 1 Examiner) 1 Indication of 1'1 1939 rco IIF Application No. 2 & 611. /7 Shi J2 brother Akira's 6 scoops; Relationship with the case of a person who makes an amendment Applicant Japan Pre-'LU'j+'+'jinkai r1-4 Agent 5 Amendment Order 1] Ij 6 Target of Amendment Amendment Content 1 "Claims" of the application Correct as follows. rc: 0.015wt% or less, Si: 1wt% or less, M
n: 1 wt% or less, P: 0.01 wt% or less, S20,01 wt% or less, Ni: more than 60 wt% to 70 wt%, Cr: 22 to 35 wt%, Mo
: 10wt% or less, N: 0.03wt% or less, CH
: 1wt% or less, and in addition to these, 1wt% or less of Ti, 1wt% or less of Nb, and 0.1wt% or less of Ca.
A composition containing one or more of the following, with the balance consisting of iron and unavoidable impurities, Mountain = [Cr + 1.5Mo + 〇, 8Ti + 0.5Cu
An alloy steel having a composition in which the value of Δl determined by -1ooc:] is 25 or more is solution-treated or made into a base material at a temperature Tf in the temperature range of 950 to 1250°C and satisfying the conditions of the following formula. A method for producing alloy steel with excellent corrosion resistance and stress corrosion cracking resistance, the method comprising: Δt=Ni-C((cr+t,5Mo-20)2/12
1-35C-27N +14) Tf<60Δ, -5504 From the end of line 13 to the beginning of line 14 on page 3 in the Ministry of Specification of the present application, the phrase "about 22 to 35% or more" is replaced with "about 22% or more".
I am corrected. 3 In the same book, page 5, line 7, the phrase "rN: 0.01 wt% or less" is revised to "rN: 0.03 wt% or less."4i', page 5, line 12, is corrected as follows. “Δs =CCr+1.5Mo+0.8Ti +0.5
Cu-10QC) JSadoho, page 8, line 13, “N is 0
.. The total fN that says "01 wt%" is corrected to "0.03 wt%". 1-8, line 15, correct the text "ro, 01 wt%" to "jO, 03 wt%". 7 Line 14 of page 9 of the same book is corrected as follows. r J1=[Cr+1.5Mo+0.8Ti+〇,5C
u tooc) J to page 10, line 3, “Δs>2
5" should be corrected as "Δ1<25J." In the circular, page 12, line 15, the phrase "[also after solution treatment]" should be changed to "r.
” he corrected.

Claims (1)

【特許請求の範囲】 coo、015wt%以下、Si:1wt96以下。 MH: 1 wt %以下、P:0.01wt%以下、
s:0.01wt%以下、Nt:60wt%超〜70 
wt % 。 Cr:22〜35wt%、Mo:10wt%以下、N:
o、oxwt%以下、Cu:1tvt%以下、さらにこ
れらに加えて1wt%以下のTi 、 1 wtチ以下
のNb 、 0.1 wt %以下のCaのうちの1種
又は21′!II以上を含有し、残部鉄及び不可避不純
物からなる組成であって、 Δ、 == [Cr−1−1,5Mo+ 0.8Ti 
+〇、5Cu−too−c)でめられるΔ1 の値が2
5以上である組成を有する合金鋼を、950〜125o
“0の温度範囲であって且つ下式の条件を満たす温度T
f にて溶体化又は卑湿体化処理することを特徴とする
耐食性及び耐応力腐食割れ性に優れた合金鋼の製造方法
。 Δ*=Ni [((Cr+1.5Mo−20)”/12
1−35C−27N+14] Tf≦60Δ、−550
[Claims] Coo: 0.015wt% or less, Si: 1wt.96 or less. MH: 1 wt% or less, P: 0.01 wt% or less,
s: 0.01wt% or less, Nt: more than 60wt% ~ 70
wt%. Cr: 22 to 35 wt%, Mo: 10 wt% or less, N:
o, oxwt% or less, Cu: 1tvt% or less, and in addition to these, one of the following: 1wt% or less of Ti, 1 wt% or less of Nb, 0.1 wt% or less of Ca, or 21'! Δ, == [Cr-1-1,5Mo+0.8Ti
+○, 5Cu-too-c) The value of Δ1 is 2
Alloy steel having a composition of 5 or more, 950~125o
Temperature T that is in the temperature range of 0 and satisfies the conditions of the following formula
1. A method for producing an alloy steel having excellent corrosion resistance and stress corrosion cracking resistance, the method comprising solution treatment or humidification treatment. Δ*=Ni [((Cr+1.5Mo-20)”/12
1-35C-27N+14] Tf≦60Δ, -550
JP18641783A 1983-10-05 1983-10-05 Manufacture of alloy steel having superior resistance to corrosion and stress corrosion cracking Granted JPS6077916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18641783A JPS6077916A (en) 1983-10-05 1983-10-05 Manufacture of alloy steel having superior resistance to corrosion and stress corrosion cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18641783A JPS6077916A (en) 1983-10-05 1983-10-05 Manufacture of alloy steel having superior resistance to corrosion and stress corrosion cracking

Publications (2)

Publication Number Publication Date
JPS6077916A true JPS6077916A (en) 1985-05-02
JPS649392B2 JPS649392B2 (en) 1989-02-17

Family

ID=16188055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18641783A Granted JPS6077916A (en) 1983-10-05 1983-10-05 Manufacture of alloy steel having superior resistance to corrosion and stress corrosion cracking

Country Status (1)

Country Link
JP (1) JPS6077916A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210235A (en) * 1985-07-06 1987-01-19 Babcock Hitachi Kk Nickel alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210235A (en) * 1985-07-06 1987-01-19 Babcock Hitachi Kk Nickel alloy

Also Published As

Publication number Publication date
JPS649392B2 (en) 1989-02-17

Similar Documents

Publication Publication Date Title
US4059440A (en) Highly corrosion resistant ferritic stainless steel
JP5225855B2 (en) High-strength corrosion-resistant alloy for oil patch application and method for producing the same
EP1423549B1 (en) Use of a duplex stainless steel alloy
JP3106674B2 (en) Martensitic stainless steel for oil wells
EP3438306B1 (en) Ni-fe-cr alloy
CA1149646A (en) Austenitic stainless corrosion-resistant alloy
JPS649391B2 (en)
JPH0114992B2 (en)
JP3848463B2 (en) High strength austenitic heat resistant steel with excellent weldability and method for producing the same
JPS6077916A (en) Manufacture of alloy steel having superior resistance to corrosion and stress corrosion cracking
JPH0643626B2 (en) Martensitic stainless steel for oil country tubular goods
JP2672437B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JPS6119764A (en) Two-phase stainless steel excellent in toughness
JPH07179943A (en) Production of high toughness martensitic strainless steel pipe excellent in corrosion resistance
JPH07331368A (en) Age hardening nickel-base alloy material, excellent in strength and corrosion resistance, and its production
JPS602653A (en) Production of precipitation hardening type nickel-base alloy
JPH0860238A (en) Production of martensitic stainless steel excellent in hot workability and sulfide stress cracking resistance
KR100215727B1 (en) Super duplex stainless steel with high wear-resistance
JP2672430B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JP3250263B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JP3525843B2 (en) High strength low alloy heat resistant steel
JP2580407B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JPS6240345A (en) High tension steel pipe for oil well having superior delayed fracture resistance
JPH0352527B2 (en)
Austenitic 3.3 Stainless Steels