JPS6077608A - Controller of electric railcar - Google Patents

Controller of electric railcar

Info

Publication number
JPS6077608A
JPS6077608A JP58185037A JP18503783A JPS6077608A JP S6077608 A JPS6077608 A JP S6077608A JP 58185037 A JP58185037 A JP 58185037A JP 18503783 A JP18503783 A JP 18503783A JP S6077608 A JPS6077608 A JP S6077608A
Authority
JP
Japan
Prior art keywords
armature
field
controller
output voltage
side output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58185037A
Other languages
Japanese (ja)
Inventor
Takanobu Arakane
荒金 孝延
Hiroshi Nomoto
浩 野元
Tetsuya Kawakami
哲也 川上
Yoshio Nozaki
野崎 吉雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPANESE NATIONAL RAILWAYS<JNR>
Hitachi Sanki Engineering Co Ltd
Hitachi Ltd
Japan National Railways
Hitachi Plant Technologies Ltd
Nippon Kokuyu Tetsudo
Original Assignee
JAPANESE NATIONAL RAILWAYS<JNR>
Hitachi Sanki Engineering Co Ltd
Hitachi Techno Engineering Co Ltd
Hitachi Ltd
Japan National Railways
Nippon Kokuyu Tetsudo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPANESE NATIONAL RAILWAYS<JNR>, Hitachi Sanki Engineering Co Ltd, Hitachi Techno Engineering Co Ltd, Hitachi Ltd, Japan National Railways, Nippon Kokuyu Tetsudo filed Critical JAPANESE NATIONAL RAILWAYS<JNR>
Priority to JP58185037A priority Critical patent/JPS6077608A/en
Publication of JPS6077608A publication Critical patent/JPS6077608A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Direct Current Motors (AREA)

Abstract

PURPOSE:To obtain a controller which has fast response of reducing an armature current by separately providing a step control system of an armature side output voltage and a control system of a field rate step. CONSTITUTION:A field side step controller 2 outputs a step of indicating a full field and stops until an armature side output voltage step controller 1 indicates the armature side output voltage maximum step. When the controller 1 outputs a step of instructing the maximum armature side output voltage, the controller 2 starts advancing the stage in the direction of weakening the field. When an overcurrent of an armature current is detected due to an abrupt rise of a trolley wire voltage during the weak field operation, a comand for advancing the step in reverse direction is applied to the controllers 1 and 2. When the step of the armature side is advanced in reverse direction, the response of reducing the armature current can be accelerated.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は電気車の制御装置に係ム特に電機子側出力電圧
及び界磁率をステップ状に制御する電気車の制御装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a control device for an electric vehicle, and more particularly to a control device for an electric vehicle that controls an armature side output voltage and a field rate in a stepwise manner.

〔発明の背景〕[Background of the invention]

従来の電機子側出力電圧及び界磁率をステップ状に制御
する電気車の制御装置としては、第1図に示すように同
じステップ指令系のうえに電機子側出力電圧と界磁率を
連続させて設定させているが、この方式ではカ行時架線
電圧の意外があった場合は界磁率が最低を指示するステ
ップまで進段していると、そのままでは電機子側に過電
流が流れるので界磁率を大きくする方向へステップを逆
進段させ、全界磁となるステップを通過後、電機子側出
力電圧を下げる方向へステップを進段させて電動機の過
電流を小さくするという制御を行っている。この方式で
は、界磁率の指令値の変わるステップの進段中には、界
磁の制御遅れによって、°速い応答ができないという欠
点があった。
Conventional electric vehicle control devices that control the armature output voltage and field rate in steps, as shown in Figure 1, continuously control the armature output voltage and field rate using the same step command system. However, with this method, if there is an unexpected change in the overhead line voltage during power running, if the field rate advances to the step that indicates the lowest value, the field rate will decrease as overcurrent will flow to the armature side. Control is performed by advancing the steps backwards in the direction of increasing the voltage, and after passing the step where the field becomes full, the steps are advanced in the direction of decreasing the armature side output voltage to reduce the overcurrent of the motor. . This method has the disadvantage that a quick response cannot be achieved due to a delay in field control during the progression of the step in which the field rate command value changes.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、電機子電流の絞り込みの応答の速い制
御装置を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a control device with a quick response for throttling armature current.

〔発明の概要〕[Summary of the invention]

本発明は直流電動機の界磁巻線を他励で制御する場合に
電機子側の出力電圧と界磁率をステップ状に制御する制
御装置を使用した場合に架線電圧の意外などによる電機
子電流の急増で電動機の整流悪化を防ぐために、電機子
側出力電圧のステップ制御系と界磁率ステップの制御系
を別に持ち架線電圧の意外、または過電流を検出した場
合に両方のステップ制御系に逆方向への進段を指令する
ことによ)速い応答が可能となるようにしたものである
The present invention provides a method for controlling the armature current due to an unexpected change in overhead line voltage when using a control device that controls the output voltage and field rate on the armature side in steps when controlling the field winding of a DC motor by separately excitation. In order to prevent deterioration of motor commutation due to sudden surges, we have separate step control systems for the armature side output voltage and field rate step control systems, and when an unexpected overhead line voltage or overcurrent is detected, both step control systems are controlled in the opposite direction. This allows for a quick response by commanding the next step.

〔発明の実施例とその効果〕[Embodiments of the invention and their effects]

第2図に本発明の一実施例を示す。図において、電機子
側出力電圧ステップ制御装置1の出力によシステップ電
圧変換回路3で出力電圧ステップに応じた電圧が電機子
5に加えられる。
FIG. 2 shows an embodiment of the present invention. In the figure, based on the output of the armature-side output voltage step control device 1, a step voltage conversion circuit 3 applies a voltage to the armature 5 according to the output voltage step.

界磁側ステップ制御装置2の出力と電機子電流または外
部よシの指令電流によシ界磁電流制御装装置4によシ界
磁巻線6が制御される。
The field winding 6 is controlled by the field current control device 4 based on the output of the field side step control device 2 and the armature current or a command current from an external source.

通常のステップ制御系の動作は、電機子側出力電圧ステ
ップ制御装置1が電機子側出力電圧最大のステップを指
示するまでは、界磁側ステップ制御装置2は全界磁を指
示するステップを出力し、停止している。
In the normal operation of the step control system, until the armature side output voltage step control device 1 instructs the step with the maximum armature side output voltage, the field side step control device 2 outputs a step instructing the entire field. and has stopped.

電機子側出力電圧ステップ制御装置1が電機子側出力電
圧最大を指示するステップを出力すると界磁側ステップ
制御装置2は界磁を弱める方向へ弱界磁運転中に架線電
圧の意外などによる電機子電流の過電流を検出すると電
機子側ステップ制御装置工と界磁側ステップ制御装置に
はステップを逆方向に進める指令が与えられる。電機子
側のステップが逆方向に進段することによシミ様子電流
を絞シ込む応答は速くなる。
When the armature-side output voltage step control device 1 outputs a step that instructs the maximum armature-side output voltage, the field-side step control device 2 causes the field to be weakened. When an overcurrent in the child current is detected, a command is given to the armature side step control device and the field side step control device to advance the step in the opposite direction. By advancing the steps on the armature side in the opposite direction, the response to narrow down the spot current becomes faster.

本発明の一実施例によれば通常は電機子側ステップ制御
と界磁側ステップ制御が同一の制御系で制御されたのと
同じ動作をすることができ、電機子電流の過電流に対す
る絞り込みの応答を速くすることができる。
According to an embodiment of the present invention, the armature side step control and the field side step control can normally perform the same operation as if they were controlled by the same control system, and the narrowing of the armature current against overcurrent can be performed. Response can be made faster.

本発明の他の実施例としてステップを逆方向に進段させ
る指令を電機子電流の過電流を検出するかわシに、架線
電圧の意外を検出する方法がある。
As another embodiment of the present invention, there is a method of detecting an abnormality in the overhead wire voltage instead of detecting an overcurrent of the armature current when issuing a command to advance the step in the reverse direction.

この実施例ではさらに電機子電流が過電流になるまえに
絞シ込みが行えるという効果がある。
This embodiment also has the advantage of being able to reduce the armature current before it becomes an overcurrent.

本発明によれば、電機子側出力電圧及び界磁率をステッ
プ状に制御する制御装置の電機子電流の絞シ込みを速く
する効果がある。
According to the present invention, there is an effect of speeding up the throttling of the armature current of a control device that controls the armature side output voltage and field rate in a stepwise manner.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、ステップに対する電機子側出力電圧と界磁率
の関係を表わす説明図、第2図は本発明の動作原理を説
明するブロック図である。 1・・・電機子側ステップ制御装置、2・・・界磁側ス
テップ制御装置、3・・・電機子側ステップ電圧変換回
路、4・・・界磁電流制御装置、訃・・電機子、6・・
・界磁。 代理人 弁理士 高橋明夫 % ノ a
FIG. 1 is an explanatory diagram showing the relationship between armature side output voltage and field rate with respect to steps, and FIG. 2 is a block diagram illustrating the operating principle of the present invention. DESCRIPTION OF SYMBOLS 1... Armature side step control device, 2... Field side step control device, 3... Armature side step voltage conversion circuit, 4... Field current control device, End... Armature, 6...
・Field magnetic field. Agent Patent Attorney Akio Takahashi%Noa

Claims (1)

【特許請求の範囲】[Claims] 1、直流電動機の界磁を他励で制御し、電機子に印加す
る電圧と界磁率をあらかじめステップ状に決めておき、
このステップを順に進段することによシミ動機電流を制
御する制御装置において、電機子ステップと界磁ステッ
プの進段を制御する系をそれぞれ別に設ける事を特徴と
する電気車の制御装置。
1. Control the field of the DC motor by separately excitation, and predetermine the voltage applied to the armature and the field rate in steps.
What is claimed is: 1. A control device for an electric vehicle that controls a spot motor current by sequentially advancing the steps, characterized in that a system for controlling the advancement of the armature step and the field step is provided separately.
JP58185037A 1983-10-05 1983-10-05 Controller of electric railcar Pending JPS6077608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58185037A JPS6077608A (en) 1983-10-05 1983-10-05 Controller of electric railcar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58185037A JPS6077608A (en) 1983-10-05 1983-10-05 Controller of electric railcar

Publications (1)

Publication Number Publication Date
JPS6077608A true JPS6077608A (en) 1985-05-02

Family

ID=16163680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58185037A Pending JPS6077608A (en) 1983-10-05 1983-10-05 Controller of electric railcar

Country Status (1)

Country Link
JP (1) JPS6077608A (en)

Similar Documents

Publication Publication Date Title
JP3394197B2 (en) Electric vehicle control device and control method
JPH0612954B2 (en) Synchronous motor control method
JPS58198193A (en) Dc motor controller
US4380724A (en) Shunt field control apparatus and method
JPS6077608A (en) Controller of electric railcar
JP2008104265A (en) Control system for permanent-magnet-type-motor-driven rolling stock
US4792736A (en) Control apparatus for electric vehicles
GB988338A (en) Electric motor control system
JP4133434B2 (en) Winding motor control device
JP2988853B2 (en) DC linear motor
JPH0522618B2 (en)
JPS6212304A (en) Controller of electric railcar
JP2982436B2 (en) Inverter operation state switching method
JPS6057313B2 (en) DC motor braking control device
JPS62290302A (en) Induction motor-type electric rolling stock controller
JPH0670573A (en) Speed controller for wound-rotor induction motor
JPS6032406B2 (en) Vernier control type electric vehicle control device
JP2637945B2 (en) Electric vehicle regenerative brake control device
JPH03159501A (en) Controller for electric vehicle
JPH0584121B2 (en)
JPH0246105A (en) Controller for ac electric vehicle
JPS61116905A (en) Controlling method of electric railcar
JPS61224804A (en) Controlling method for electric railcar
JPS6240947B2 (en)
JPS61210802A (en) Regenerative brake control system of ac electric railcar