JPH0524722B2 - - Google Patents

Info

Publication number
JPH0524722B2
JPH0524722B2 JP13550684A JP13550684A JPH0524722B2 JP H0524722 B2 JPH0524722 B2 JP H0524722B2 JP 13550684 A JP13550684 A JP 13550684A JP 13550684 A JP13550684 A JP 13550684A JP H0524722 B2 JPH0524722 B2 JP H0524722B2
Authority
JP
Japan
Prior art keywords
chopper
point
brake
brake resistor
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13550684A
Other languages
Japanese (ja)
Other versions
JPS6115501A (en
Inventor
Susumu Yomo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP13550684A priority Critical patent/JPS6115501A/en
Publication of JPS6115501A publication Critical patent/JPS6115501A/en
Publication of JPH0524722B2 publication Critical patent/JPH0524722B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/12Dynamic electric regenerative braking for vehicles propelled by dc motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Stopping Of Electric Motors (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> この発明は、回生率の向上を図るようにした電
気車用制動制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a brake control device for an electric vehicle that is designed to improve the regeneration rate.

<従来技術> 従来、この種の装置として第1図に示すものが
あつた。図において1は電車線、2はパンタグラ
フ、3はフイルタリアクトル、4はフイルタコン
デンサで、フイルタリアクトル3とフイルタコン
デンサ4とで逆L形のフイルタ回路を構成してい
る。5は逆流阻止用ダイオード、6はチヨツパ、
7は主平滑リアクトル、8は電動機の界磁巻線、
9は電動機の電機子巻線、そして界磁巻線8と電
機子巻線9とで直流巻線の電動機を構成する。1
0はブレーキ抵抗で、回生、ブレーキ領域を拡大
する為に高速域で電機子巻線9と直列に挿入され
る。11はスイツチで、中速域になつてブレーキ
抵抗10を短絡すべき条件が整うと、オンして、
ブレーキ抵抗10を短絡し、以後ブレーキオフあ
るいは停止寸前で回生ブレーキが失効して主回路
がオフするまでスイツチ11はオンの状態を保持
する。第2図に、速度Vとモータ電流IMとの関係
を示す。
<Prior Art> Conventionally, there has been a device of this type as shown in FIG. In the figure, 1 is a contact wire, 2 is a pantograph, 3 is a filter reactor, and 4 is a filter capacitor. The filter reactor 3 and the filter capacitor 4 constitute an inverted L-shaped filter circuit. 5 is a backflow blocking diode, 6 is a chopper,
7 is the main smoothing reactor, 8 is the field winding of the motor,
Reference numeral 9 denotes an armature winding of the motor, and the field winding 8 and armature winding 9 constitute a DC winding motor. 1
0 is a brake resistance, which is inserted in series with the armature winding 9 in the high speed range in order to expand the regeneration and braking area. Reference numeral 11 is a switch, which is turned on when the speed reaches the medium speed range and the conditions for short-circuiting the brake resistor 10 are established.
The brake resistor 10 is short-circuited, and the switch 11 remains on until the brake is turned off or the regenerative brake is disabled and the main circuit is turned off just before the brake is stopped. FIG. 2 shows the relationship between speed V and motor current I M.

図において、曲線aは、ブレーキ抵抗10が挿
入された状態において電機子巻線9とブレーキ抵
抗10との直列体の電圧が一定となるように制御
されたときの特性を示す。回生領域を最も広くと
つて回生率を向上させるには、この電圧を可能な
限り高く設定することが望ましい。この場合曲線
a上でチヨツパ6の通流率は、ほぼ最小通流率と
なる。同様に曲線bはブレーキ抵抗10がスイツ
チ11で短絡された状態において電機子巻線9の
電圧が一定となるように制御されたときの特性を
示し、曲線b上でチヨツパ6の通流率はほぼ最小
通流率となる。速度V1からブレーキをかけると、
モータ電流IMは速度の低下に従つてA点→B点→
C点→D点を通る形で制御される。A点からB点
の領域は、電機子巻線9及びブレーキ抵抗10と
の直列体の電圧が一定となるようにチヨツパ6の
通流率が制御される領域であり、電機子巻線9の
起電力をEM、ブレーキ抵抗10の抵抗値をR、
モータ電流をIM、チヨツパ6の通流率をγ、フイ
ルタコンデンサ4の電圧をECとすると、A点か
らB点の領域では次式が成り立つ。
In the figure, a curve a shows a characteristic when the voltage of the series body of the armature winding 9 and the brake resistor 10 is controlled to be constant in a state where the brake resistor 10 is inserted. In order to maximize the regeneration area and improve the regeneration rate, it is desirable to set this voltage as high as possible. In this case, the conductivity of the chopper 6 on the curve a becomes approximately the minimum conductivity. Similarly, curve b shows the characteristics when the voltage of armature winding 9 is controlled to be constant when brake resistor 10 is short-circuited by switch 11, and on curve b, the current conductivity of chopper 6 is Almost the minimum conduction rate. When you apply the brakes from a speed of V 1 ,
Motor current I M changes from point A → point B → as the speed decreases.
It is controlled by passing from point C to point D. The region from point A to point B is the region where the conductivity of the chopper 6 is controlled so that the voltage of the series body with the armature winding 9 and the brake resistor 10 is constant. The electromotive force is EM , the resistance value of the brake resistor 10 is R,
When the motor current is I M , the conductivity of the chopper 6 is γ, and the voltage of the filter capacitor 4 is E C , the following equation holds true in the region from point A to point B.

EM=IM・R+(1−γ)EC この式から、電機子巻線9とブレーキ抵抗10
との直列体の電圧は EM−IM・R=(1−γ)EC と表わされるので、ECを一定と考えれば通流率
γは結果的に一定になることがわかる。そして、
この通流率γは回生率をできるだけ高くするため
に最小通流率γminとなるように制御される。B
点からC点の領域では、速度の低下に従つて電機
子巻線9の起電力EMも低下してくるのでチヨツ
パ6は通流率を徐々に拡げて、モータ電流IMが指
令値のI0に等しくなるように制御する。B点から
C点の領域では次式が成り立つ。
From this formula , armature winding 9 and brake resistance 10
Since the voltage of the series body with is expressed as E M -I M · R = (1 - γ) E C , it can be seen that if E C is considered constant, the conduction rate γ becomes constant as a result. and,
This conductivity rate γ is controlled to be the minimum conductivity rate γmin in order to make the regeneration rate as high as possible. B
In the region from point to point C, as the speed decreases, the electromotive force E M in the armature winding 9 also decreases, so the chopper 6 gradually increases the conduction rate so that the motor current I M reaches the command value. I is controlled to be equal to 0 . In the area from point B to point C, the following equation holds true.

EM=I0・R+(1−γ)EC ブレーキ抵抗10が短絡された状態での特性曲線
bと交わるC点においてブレーキ抵抗10はスイ
ツチ11によつて短絡される。このとき通流率γ
はいつたん最小通流率γminまで絞り込まれ速度
の低下に従つて再び徐々に拡がつてゆく。C点か
らD点の領域では次式が成り立つ EM=(1−γ)EC 一方、フイルタアクトル3を経由して電車線1
に回生される回生電流ISは IS=(1−γ)IM となるので、各領域における回生電流ISを計算し
て図示すると第3図のようになり、回生電流IS
図中の実線A→B→C→C′→Dのように変化す
る。A、B,C,Dの各点は第2図のA,B,
C,Dの各点に対応している。
E M =I 0 ·R + (1-γ) E C The brake resistor 10 is short-circuited by the switch 11 at a point C where it intersects the characteristic curve b with the brake resistor 10 short-circuited. At this time, the conductivity γ
The flow rate is then narrowed down to the minimum flow rate γmin, and as the speed decreases, it gradually expands again. In the area from point C to point D, the following formula holds: E M = (1 - γ) E C On the other hand, contact line 1 is passed through filter actor 3
The regenerative current I S regenerated in the area becomes I S = (1-γ) IM , so if the regenerative current I S in each region is calculated and illustrated, it will be as shown in Figure 3, and the regenerative current I S will be as shown in Figure 3. It changes as shown by the solid line A→B→C→C′→D. Points A, B, C, and D are A, B, and D in Figure 2, respectively.
It corresponds to each point C and D.

ところで従来の方式においては、以下に述べる
欠点があつた。即ち、C点においてブレーキ抵抗
10をスイツチ11で短絡するとき、短絡前まで
ブレーキ抵抗10でドロツプしていた電圧I0・R
がステツプ状にチヨツパ6に印加されることにな
る。あるいは表現を変えると、短絡前までは、
EM−I0Rを見かけ上のモータ起電力としてチヨツ
パ6が定電流制御をしているところへC点におい
てモータの起電力がEMにステツプ状に変化する
形となり定電流制御系で整定しきれずに、モータ
電流IMのハネ上りによる過電流検知、フイルタコ
ンデンサ4の電圧のハネ上りによる過電圧検知が
働く可能性がある。これらのハネ上り量は電圧変
動分I0Rが大きければ大きい程大きくなるのでブ
レーキ直列抵抗10の値には上限があり回生領域
の拡大にも限界があることになる。
However, the conventional method has the following drawbacks. That is, when the brake resistor 10 is short-circuited by the switch 11 at point C, the voltage I 0 ·R that had been dropping across the brake resistor 10 before the short-circuit is reduced.
is applied to the chopper 6 in steps. Or, to put it another way, before the short circuit,
While the chopper 6 is controlling the constant current with E M −I 0 R as the apparent motor electromotive force, the motor electromotive force changes stepwise to E M at point C, and is stabilized by the constant current control system. Otherwise, overcurrent detection due to a surge in the motor current I M and overvoltage detection due to a surge in the voltage of the filter capacitor 4 may occur. The amount of these splashes increases as the voltage fluctuation I 0 R increases, so there is an upper limit to the value of the brake series resistor 10, and there is also a limit to the expansion of the regeneration area.

<発明の概要> この発明は上記従来のものの欠点を解決するた
めになされたもので、ブレーキ抵抗に並列に半導
体スイツチを接続してチヨツピング動作を行なわ
せ、この通流率を制御することによつて、ブレー
キ抵抗の短絡を円滑なものとするとともに回生領
域を拡大することのできる電気車用制動制御装置
を提供する。
<Summary of the Invention> This invention was made to solve the above-mentioned drawbacks of the conventional brake resistor, and a semiconductor switch is connected in parallel to a brake resistor to perform a chopping operation, and the conduction rate is controlled. Accordingly, there is provided a brake control device for an electric vehicle that can smoothly short-circuit the brake resistance and expand the regeneration area.

<発明の実施例> 発明の一実施例を第4図に示す。図において、
1〜10はは従来のものと同様である。12は従
来のスイツチ11に替わりブレーキ抵抗10と並
列に接続された半導体スイツチとしての自己消弧
機能をもつたゲートターンオフサイリスタGTO、
13は制御回路である。つぎに動作について説明
する。ブレーキ抵抗10の抵抗値が従来と同一と
すれば速度Vとモータ電流IMとの関係は第2図と
同一となるが、制御方法が一部異なる。即ちA点
からB点の領域では、GTO12をオフ状態とし
ておくことによつてブレーキ抵抗10を挿入する
ことが従来のものと異るのみである。B点からC
点の領域において従来のものは速度Vの低下に従
つてチヨツパ6の通流率γを徐々に拡げることに
よつてモータ電流IMを指令値I0に等しくなるよう
に制御している。これに対して本実施例において
は、制御回路13によつて次のように制御する。
即ち、チヨツパ6の通流率γはγminに保つたま
まGTO12をチヨツピング動作させ、その通流
率を徐々に拡げることによつてモータ電流IMを指
令値I0に等しくなるように制御する。GTO12
を一定周期でチヨツピング動作させるときその通
流率δとすればブレーキ抵抗10とGTO12の
並列体は、見かけ上(1−δ)Rの抵抗値をもつ
た抵抗と見なすことができる。従つて本実施例に
おいてはB点からC点の領域では次式が成り立
つ。
<Embodiment of the invention> An embodiment of the invention is shown in FIG. In the figure,
1 to 10 are the same as the conventional ones. 12 is a gate turn-off thyristor GTO having a self-extinguishing function as a semiconductor switch connected in parallel with the brake resistor 10 in place of the conventional switch 11;
13 is a control circuit. Next, the operation will be explained. If the resistance value of the brake resistor 10 is the same as the conventional one, the relationship between the speed V and the motor current I M will be the same as in FIG. 2, but the control method is partially different. That is, in the region from point A to point B, the only difference from the conventional method is that the brake resistor 10 is inserted by keeping the GTO 12 in an OFF state. from point B to C
In the region indicated by the point, the conventional motor controls the motor current I M to be equal to the command value I 0 by gradually increasing the conduction rate γ of the chopper 6 as the speed V decreases. In contrast, in this embodiment, the control circuit 13 performs control as follows.
That is, the GTO 12 is operated in a chopping operation while the conduction rate γ of the chopper 6 is kept at γmin, and by gradually increasing the conduction rate, the motor current I M is controlled to be equal to the command value I 0 . GTO12
When the brake resistor 10 and the GTO 12 are operated in a chopping operation at a constant cycle, and the conduction rate is δ, the parallel body of the brake resistor 10 and the GTO 12 can be regarded as a resistor having an apparent resistance value of (1−δ)R. Therefore, in this embodiment, the following equation holds true in the area from point B to point C.

EM=IM(1−δ)R+(1−γmin)EC 本実施例における回生電流ISを図示すると第5
図のようになる。従来のものと異なり、B点から
C点の領域において、チヨツパ6の通流率が
γminに固定されているので回生電流ISがIS=(1
−γmin)I0となり、図中B−C′の実線をたどる
ことになる。従つて、従来のものに比べて三角形
BCC′に囲まれた面積だけ回生電力が増加するこ
とになる。さらに本実施例においては、ブレーキ
抵抗10がGTO12のチヨツピング通流率δを
0から1に連続的に徐々に増加させることによつ
て短絡されるので従来のもののような、短絡時の
電圧変化によるモータ過電流あるいはフイルタコ
ンデンサ4の過電圧は全く生じない。またB点か
らC点の領域におけるブレーキ直列抵抗10の損
失を計算してみると従来のものでは∫T 0I0 2・Rdt=
I0 2・R・T(joule)となるのに対して(但しTは
B点からC点へ変化するまでの時間)本実施例の
ものでは ∫T 0I0 2・R(1−t/T)dt=I0 2・R・T/2(joul
e)と なりブレーキ抵抗10の損失もB点からC点の領
域で半分となつているのでブレーキ抵抗10を小
型・軽量化することができる。
E M =I M (1-δ)R+(1-γmin)E CThe regenerative current I S in this example is illustrated as 5th
It will look like the figure. Unlike the conventional one, the conduction rate of the chopper 6 is fixed at γmin in the region from point B to point C, so the regenerative current I S is I S = (1
-γmin)I 0 , and follows the solid line B-C' in the figure. Therefore, compared to the conventional one, the triangular
Regenerative power increases by the area surrounded by BCC′. Furthermore, in this embodiment, the brake resistor 10 is short-circuited by gradually increasing the chopping conductivity δ of the GTO 12 from 0 to 1, so unlike the conventional one, the brake resistor 10 is short-circuited by gradually increasing the chopping conductivity δ of the GTO 12 from 0 to 1. No motor overcurrent or overvoltage of the filter capacitor 4 occurs. Also, when calculating the loss of the brake series resistor 10 in the area from point B to point C, in the conventional one, ∫ T 0 I 0 2・Rdt=
In this example, ∫ T 0 I 0 2・R (1 - t /T) dt=I 0 2・R・T/2(joul
e) Since the loss of the brake resistor 10 is halved in the region from point B to point C, the brake resistor 10 can be made smaller and lighter.

また上述したように本実施例によれば従来のも
ののような抵抗短絡に伴う電圧変動がないので抵
抗Rの上限が無く、ブレーキ抵抗10の大きさ及
びモータの起電力の許される範囲内で回生領域の
拡大が可能である。例として第6図に抵抗値Rを
大きくしたときの回生電流ISを実線E→F→B→
C′→Dで示す。一方、C′点からD点の領域におい
て、GTO12をオンのままとすることによつて
ブレーキ抵抗10を完全に短絡しているので、制
御方法は従来のものと同様である。
In addition, as described above, according to this embodiment, there is no voltage fluctuation caused by a resistor short circuit as in the conventional one, so there is no upper limit to the resistance R, and regeneration can be performed within the range allowed by the size of the brake resistor 10 and the electromotive force of the motor. It is possible to expand the area. As an example, in Fig. 6, the regenerative current I S when the resistance value R is increased is shown as a solid line E→F→B→
It is shown as C'→D. On the other hand, in the region from point C' to point D, the brake resistor 10 is completely short-circuited by keeping the GTO 12 on, so the control method is the same as the conventional one.

なお、第4図においては、ブレーキ抵抗10に
並列に接続する半導体スイツチをGTOで説明し
たが、逆導通または逆阻止サイリスタを使用した
チヨツパ、パワートランジスタ、静電誘導サイリ
スタなどを用いても差しつかえないのは明らかで
ある。
In Fig. 4, the semiconductor switch connected in parallel to the brake resistor 10 is explained as a GTO, but a switch using a reverse conduction or reverse blocking thyristor, a power transistor, a static induction thyristor, etc. may also be used. Obviously not.

<発明の効果> 以上説明したように、この発明によれば、ブレ
ーキ抵抗に並列に半導体スイツチを接続して、チ
ヨツピング動作を行なわせチヨツパの通流率は最
小に固定したまま上記半導体スイツチの通流率を
順次拡げることによつて電動機の電流を指令値に
等しくなるように制御するので、ブレーキ抵抗の
短絡が円滑に行なわれるとともに、回生電力量も
増加する。さらに抵抗短絡時の電圧変動といつた
制限が無いのでブレーキ抵抗の抵抗値に上限が無
く回生領域を拡大することができるという効果が
ある。
<Effects of the Invention> As explained above, according to the present invention, a semiconductor switch is connected in parallel to a brake resistor to perform a chopping operation, and the conduction of the semiconductor switch is fixed while the conduction rate of the chopper is fixed to the minimum. Since the current of the motor is controlled to be equal to the command value by sequentially increasing the flow rate, short-circuiting of the brake resistor is performed smoothly and the amount of regenerated electric power is increased. Furthermore, there is no upper limit to the resistance value of the brake resistor, and the regeneration area can be expanded, since there is no restriction such as voltage fluctuation when the resistor is short-circuited.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の電気車用制動制御装置を示す回
路図、第2図及び第3図は第1図の場合のそれぞ
れ速度−電動機電流及び速度−回生電流の関係を
示す特性図、第4図はこの発明の一実施例におけ
る電気車用制動制御装置を示す回路図、第5図は
第4図の場合の速度−回生電流の関係を示す特性
図、第6図は第4図のブレーキ直列抵抗の抵抗値
を大きくしたときの速度−回生電流の関係を示す
特性図である。 図において、6はチヨツパ、8及び9は電動機を
構成するそれぞれ界磁巻線及び電機子巻線、10
はブレーキ抵抗、12は半導体スイツチ、13は
制御回路である。なお、図中同一符号は同一又は
相当部分を示す。
Fig. 1 is a circuit diagram showing a conventional braking control device for electric vehicles, Figs. 2 and 3 are characteristic diagrams showing the speed-motor current and speed-regenerative current relationships, respectively, in the case of Fig. 1. The figure is a circuit diagram showing a braking control device for an electric vehicle according to an embodiment of the present invention, FIG. 5 is a characteristic diagram showing the relationship between speed and regenerative current in the case of FIG. 4, and FIG. FIG. 3 is a characteristic diagram showing the relationship between speed and regenerative current when the resistance value of a series resistor is increased. In the figure, 6 is a chopper, 8 and 9 are field windings and armature windings that constitute the motor, and 10
1 is a brake resistor, 12 is a semiconductor switch, and 13 is a control circuit. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 1 制御回路13を有する電気車用制御装置であ
つて、 電気車は、チヨツパ6の後段に駆動用電動機
8,9とブレーキ抵抗10とを直列接続したもの
を接続し、ブレーキ抵抗10と並列に半導体スイ
ツチ12が接続されて、回生制動制御を行うもの
であり、 制御回路13は、電気車の高速域では、半導体
スイツチ12をオフして電動機の電機子巻線9と
ブレーキ抵抗10との直列体の両端電圧が一定に
なるようにチヨツパ6の通流率を制御し、電気車
の速度が低下して電動機8,9の電流が増加し、
指令値に達してチヨツパ6の通流率が固定される
領域では、半導体スイツチ12の通流率を徐々に
拡げて電動機8,9の電流を指令値に等しくなる
ようにし、半導体スイツチ12の通流率が最大に
なつた後では、電動機8,9の電流が指令値に等
しくなるようにチヨツパ6の通流率を制御するも
のである 電気車用制動制御装置。
[Scope of Claims] 1. A control device for an electric vehicle having a control circuit 13, in which the electric vehicle has a drive motor 8, 9 and a brake resistor 10 connected in series after the chopper 6, A semiconductor switch 12 is connected in parallel with the brake resistor 10 to perform regenerative braking control, and the control circuit 13 turns off the semiconductor switch 12 and disconnects the armature winding 9 of the motor in the high speed range of the electric vehicle. The current flow rate of the chopper 6 is controlled so that the voltage across the series body with the brake resistor 10 is constant, the speed of the electric car decreases, and the current of the electric motors 8 and 9 increases,
In the region where the command value is reached and the conduction rate of the chopper 6 is fixed, the conduction rate of the semiconductor switch 12 is gradually expanded to make the currents of the motors 8 and 9 equal to the command value, and the conduction rate of the semiconductor switch 12 is increased. A brake control device for an electric vehicle that controls the conduction rate of the chopper 6 so that the current of the electric motors 8 and 9 becomes equal to the command value after the current rate reaches the maximum.
JP13550684A 1984-06-28 1984-06-28 Control system for electric railcar Granted JPS6115501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13550684A JPS6115501A (en) 1984-06-28 1984-06-28 Control system for electric railcar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13550684A JPS6115501A (en) 1984-06-28 1984-06-28 Control system for electric railcar

Publications (2)

Publication Number Publication Date
JPS6115501A JPS6115501A (en) 1986-01-23
JPH0524722B2 true JPH0524722B2 (en) 1993-04-08

Family

ID=15153348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13550684A Granted JPS6115501A (en) 1984-06-28 1984-06-28 Control system for electric railcar

Country Status (1)

Country Link
JP (1) JPS6115501A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2529269B2 (en) * 1987-06-25 1996-08-28 松下電器産業株式会社 Magnetic recording / reproducing device

Also Published As

Publication number Publication date
JPS6115501A (en) 1986-01-23

Similar Documents

Publication Publication Date Title
JPS59230480A (en) Electric brake control circuit for dc motor
US4380724A (en) Shunt field control apparatus and method
JPH0524722B2 (en)
JPH0437642B2 (en)
JP2845093B2 (en) AC electric vehicle control device
JPS6057313B2 (en) DC motor braking control device
JP2613584B2 (en) Electric car control device
JPS5851785A (en) Brake circuit for 3-phase induction motor
JPS6129202B2 (en)
JPH056402B2 (en)
JPS62290302A (en) Induction motor-type electric rolling stock controller
JPH0514482B2 (en)
Allan et al. Rheostatic stabilisation of a chopper-controlled brake for traction drives
JPH03159501A (en) Controller for electric vehicle
JPS5826817Y2 (en) Regenerative load device for vehicles
JPH0797882B2 (en) Braking control device for electric vehicles
JPH0379926B2 (en)
JPS5854754B2 (en) Chiyotupa type braking device
JPS5917880A (en) Regenerative brake system for motor driven by inverter
JPH0526405B2 (en)
JPS63209403A (en) Controller for electric rolling stock
JPS62135201A (en) Controller for electric railway car
JPH11215605A (en) Car controller
JPS58212301A (en) Chopper device for electric motor vehicle
JPS5829716B2 (en) DC electric car drive circuit