JPS61210802A - Regenerative brake control system of ac electric railcar - Google Patents

Regenerative brake control system of ac electric railcar

Info

Publication number
JPS61210802A
JPS61210802A JP4914485A JP4914485A JPS61210802A JP S61210802 A JPS61210802 A JP S61210802A JP 4914485 A JP4914485 A JP 4914485A JP 4914485 A JP4914485 A JP 4914485A JP S61210802 A JPS61210802 A JP S61210802A
Authority
JP
Japan
Prior art keywords
phase shift
converter
shift signal
main
gate phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4914485A
Other languages
Japanese (ja)
Inventor
Hideo Hoshino
星野 栄雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP4914485A priority Critical patent/JPS61210802A/en
Publication of JPS61210802A publication Critical patent/JPS61210802A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/16Dynamic electric regenerative braking for vehicles comprising converters between the power source and the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To shorten a costing period during which a brake force is not operated by storing gate phase shift signal values of main and field converters at nonvoltage zone entering time, and applying a gate phase shift signal stored after escaping from the nonvoltage zone. CONSTITUTION:When a signal that a nonvoltage zone approaches is output from a nonvoltage zone prenotifying unit 13 during regenerative braking operation, the gate phase shift signal values of field and main converters 6, 3 at that time are stored in a brake controller 12. The converter 6 is flywheel- operated. Then, when the fact that the car enters to the nonvoltage zone is detected by a voltage detector 9, the converter 3 is freewheel-operated. When the fact that the car again enters to a voltage application zone is detected by the detector 9, the stored gate phase shift signal value is applied to the converters 6, 3.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は、回生制動運転中の交流電気車が給電線の無
電圧区間を通過するときの回生制動制御方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a regenerative braking control method when an AC electric vehicle in regenerative braking operation passes through a no-voltage section of a power supply line.

〔従来技術とその問題点〕[Prior art and its problems]

走行中の交流電気車に制動をかけるとき、この交流電気
車の運動エネルギーを有効に利用するためK、いわゆる
電力回生制動運転によりこの運動エネルギーな電気エネ
ルギーに変換して電源に回生ずる制動方式が多用される
ようになっている。
When applying braking to a running AC electric car, in order to effectively utilize the kinetic energy of this AC electric car, a braking method is used that converts this kinetic energy into electrical energy and regenerates it to the power source through so-called power regenerative braking operation. It is becoming widely used.

しかしながらこのような電力回生制動運転を行う場合に
は、回生じ得る負荷が電源系統に接続されているときに
、はじめて制動力が得られるという性質上、電気鉄道に
存在する給電線の無電圧区間を当該交流電気車が回生制
動運転状態で通過することは絶対に避けなければならな
い。
However, when performing such power regenerative braking operation, braking force is obtained only when the load that can be regenerated is connected to the power supply system. It must be absolutely avoided that the AC electric vehicle in question passes by while operating under regenerative braking.

それ故、一般にはこの無電圧区間に一定距離まで接近す
ると回生制動運転を解除し、無電圧区間通過後に回生制
動運転を再開するように操作しているのであるが、この
場合、回生制動力が失効したり、あるいは主電動機回路
が過電流になるのを抑制するために回生制動力の立上り
を緩やかにしているので制動距離が長くなるなど、保安
上の問題を有している。
Therefore, in general, regenerative braking operation is canceled when the vehicle approaches this no-voltage zone within a certain distance, and regenerative braking operation is restarted after passing through the no-voltage zone.In this case, the regenerative braking force is Since the rise of the regenerative braking force is made gradual in order to prevent the regenerative braking force from failing or causing an overcurrent in the main motor circuit, there are safety problems such as a longer braking distance.

〔発明の目的〕[Purpose of the invention]

この発明は、給電線の無電圧区間を通過するさいに回生
制動運転を解除している期間を最短にするとともに再制
動時の制動力立上げを円滑に行うことにより、保安上と
ともに乗り心地にもすぐれている交流電気車の回生制動
制御方式を提供することを目的とするb 〔発明の要点〕 この発明は、回生制動運転中に給電線の無電圧区間を予
知する信号を受信したとき、この時点における交流電気
車駆動用の他励直流電動機に電機子電流を供給する主変
換器のゲート移相信号値とこの電動機の励磁電流を供給
する界磁用変換器のゲート移相信号値とを記憶させると
ともに1界磁用変換器にこの変換器をフリーホイール動
作にするゲート移相信号を与えることにより界磁電流な
減衰させ、これに伴って電機子電流を減少させ、ついで
給電線の無電圧区間に進入すれば主変換器にもこの変換
器をフリーホイール動作にするゲート移相信号を与える
。ここで無電圧区間を脱出すれば、主変換器と界磁用変
換器のそれぞれに前述の記憶していたゲート移相信号を
与えることにより電動機の界磁電流と電機子電流と速や
かに立上がって再び回生制動力が得られるので、制動力
が作用していない空走期間が短縮できて保安上の問題点
が解決できるとともに乗り心地も良好ならしめようとす
るものである。
This invention improves riding comfort as well as safety by minimizing the period during which regenerative braking is released when passing through a non-voltage section of a power supply line, and by smoothing the build-up of braking force when re-braking. It is an object of the present invention to provide an excellent regenerative braking control method for an AC electric vehicle. [Summary of the Invention] The present invention provides a system that, when receiving a signal predicting a no-voltage section of a power supply line during regenerative braking operation, At this point, the gate phase shift signal value of the main converter that supplies the armature current to the separately excited DC motor for driving the AC electric vehicle, and the gate phase shift signal value of the field converter that supplies the exciting current of this motor. is memorized and a gate phase shift signal is applied to the first field converter to cause the converter to operate in freewheel mode, thereby attenuating the field current, reducing the armature current accordingly, and then When entering the no-voltage section, a gate phase shift signal is applied to the main converter as well, which causes the converter to operate in freewheel mode. If you escape from the no-voltage section here, the field current and armature current of the motor will quickly rise by applying the previously memorized gate phase shift signal to each of the main converter and field converter. Since regenerative braking force can be obtained again, the idle running period during which no braking force is applied can be shortened, solving safety problems and improving ride comfort.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の実施例を示すブロック図であり、この
第1図により本発明の内容を以下に説明する。
FIG. 1 is a block diagram showing an embodiment of the present invention, and the content of the present invention will be explained below with reference to FIG.

第1図において給電線1からの交流電力はパンタグラフ
により交流電気車内に引込まれて主変圧器2の1次巻線
に与えられるのであるが、この給電線1には電源を区分
するために無電圧区間が設けられている。
In Fig. 1, AC power from feeder line 1 is drawn into the AC electric car by a pantograph and applied to the primary winding of main transformer 2. A voltage section is provided.

主変圧器202次巻線には半導体スイッチ素子たとえば
サイリスタなどで構成されている主変換器3が接続され
ていて、この主変換器3から得られる直流電力は平滑リ
アクトル4を介して交流電気車を駆動するための他励直
流電動機5の電機子5人に与えられる。また主変圧器2
の別の2次巻線には同じくサイリスタなどで構成されて
いる界磁用変換器6が接続されていて、この界磁用変換
器6からは他励直流電動Mk5の界磁巻線5Fに励磁電
流が与えられる。この界磁巻線5Fに流れる励磁電流I
6は変流器8で、また前述の電機子5λに流れる電機子
電流I3は変流器7により検出されて制動制御装置12
に入力される。また界磁用変換器6が接続されている主
変圧器2の2次巻線には電圧検出器9が、また主変換器
3の直流側にも電圧検出器10が備えられている。さら
に符号11は制動指令器、符号13は無電圧区間予知装
置であって、これらの信号も制動制御装置12に入力さ
れるようになっている。
A main converter 3 composed of a semiconductor switching element such as a thyristor is connected to the secondary winding of the main transformer 20, and the DC power obtained from the main converter 3 is passed through a smoothing reactor 4 to an AC electric vehicle. is given to five armatures of separately excited DC motor 5 for driving. Also main transformer 2
A field converter 6, which is also composed of a thyristor or the like, is connected to another secondary winding of , and from this field converter 6 to the field winding 5F of the separately excited DC electric motor Mk5. An excitation current is provided. Excitation current I flowing through this field winding 5F
6 is a current transformer 8, and the above-mentioned armature current I3 flowing through the armature 5λ is detected by the current transformer 7 and transmitted to the brake control device 12.
is input. Further, a voltage detector 9 is provided on the secondary winding of the main transformer 2 to which the field converter 6 is connected, and a voltage detector 10 is provided on the DC side of the main converter 3. Furthermore, reference numeral 11 is a brake command device, and reference numeral 13 is a no-voltage interval prediction device, and these signals are also input to the brake control device 12.

カ行運転中の交流電気車を減速させるべく制動指令器1
1から制動制御装置12に回生制動運転の指令が入力さ
れると、この制動制御装置12は界磁用変換器6と主変
換器3とに適切なゲート移相信号を与えて交流電気車の
運動エネルギーを電気エネルギーに変換して電機子5A
から主変換器3と主変圧器2と給電線1とを経て図示さ
れていない電源へこの電気エネルギーを回生ずる。この
ような電力回生制動にあたっては電機子電流工3を変流
器7により検出し、励磁電流工6を変流器8により検出
して制動制御装置12に負帰還させ、その検出量が制動
指令器11からの指令値に一致するように主変換器3と
界磁用変換器6へのゲート移相信号を調節し、これによ
って電機子電流工3と励磁電流工6の値を増減させて所
要の制動力を得るようにしているのは従来方式と同様で
ある。
Brake command device 1 to decelerate an AC electric car that is running in a row.
When a command for regenerative braking operation is input from 1 to the brake control device 12, this brake control device 12 applies an appropriate gate phase shift signal to the field converter 6 and the main converter 3 to control the AC electric vehicle. Convert kinetic energy to electrical energy and create armature 5A
This electrical energy is regenerated from the main converter 3, the main transformer 2, and the power supply line 1 to a power source (not shown). In such power regenerative braking, the armature current generator 3 is detected by a current transformer 7, the exciting current generator 6 is detected by a current transformer 8, and negative feedback is sent to the brake control device 12, and the detected amount is used as a brake command. The gate phase shift signals to the main converter 3 and the field converter 6 are adjusted to match the command value from the device 11, thereby increasing or decreasing the values of the armature current generator 3 and the excitation current generator 6. The required braking force is obtained in the same manner as in the conventional system.

本発明においては、上述のようにして回生制動運転中に
給電線の無電圧区間が接近したことを知らせる信号が無
電圧区間予知装置13から発令されると、まずその時点
における界磁用変換器6のゲート移相信号値と、主変換
器3のゲート移相信号・値とが制動制御装置12の内部
に記憶され、引続き界磁用変換器6をフリーホイール動
作にするようにこの変換器6にゲート移相信号を与える
。そのために励磁電流I6は減衰して発電機運転してい
る他励直流電動機5の誘起電圧を減少させるので、これ
に伴って電機子電流工3も急速に減衰することになるの
で、給電線の無電圧区間に進入するとき、この電機子電
流I3はほぼ零となりている。
In the present invention, when the no-voltage section prediction device 13 issues a signal informing that the no-voltage section of the power supply line approaches during regenerative braking operation as described above, first the field converter at that point The gate phase shift signal value of 6 and the gate phase shift signal/value of the main converter 3 are stored inside the brake control device 12, and the field converter 6 is continuously operated in a freewheel operation. 6 is given a gate phase shift signal. For this reason, the excitation current I6 is attenuated to reduce the induced voltage of the separately excited DC motor 5 operating as a generator, and the armature current 3 is also rapidly attenuated accordingly. When entering the no-voltage section, this armature current I3 is approximately zero.

すなわち無電圧区間に当該交流電気車が進入するときに
は励磁電流工6がほぼ消滅しているように無電圧区間予
知信号発令時点あるいは発令位置を適切に選定しておく
のである。
That is, the time or position at which the no-voltage section prediction signal is issued is appropriately selected so that the exciting current generator 6 has almost disappeared when the AC electric vehicle enters the no-voltage section.

この状態で無電圧区間に進入したことが電圧検出器9に
より検出されると、制動制御装置12から主変換器3に
はこの主変換器3をフリーホイール動作にするようにゲ
ート移相信号が与えられるので、無電圧区間では両変換
器3と6はともにフリーホイール状態にある。
When the voltage detector 9 detects that the voltage-free zone has entered in this state, a gate phase shift signal is sent from the brake control device 12 to the main converter 3 to cause the main converter 3 to perform freewheel operation. In the no-voltage section, both converters 3 and 6 are in a freewheeling state.

ここで当該交流電気車が給電線の無電圧区間から脱出し
て再び課電区間に進入したことが電圧検出器9により検
出されると、この検出信号により、主変換器3のゲート
と界磁用変換器6のゲートには、無電圧区間を予知する
信号を受信したときに記憶したそれぞれのゲート移相信
号値が与えられるので、両変換器3と6の電流は速やか
に立上り、回生制動運転が再開される。
When the voltage detector 9 detects that the AC electric vehicle has escaped from the no-voltage section of the feeder line and entered the energized section again, this detection signal causes the gate of the main converter 3 to Since the gates of the converters 6 are given the respective gate phase shift signal values stored when the signal predicting the no-voltage section is received, the currents in both converters 3 and 6 quickly rise, resulting in regenerative braking. Operation will resume.

第2図は第1図に示す実施例回路により無電圧区間を通
過するときの各部の動作状態図であって、第2図(イ)
は給電線電圧の実効値を、第2図(ロ)は無電圧区間予
知信号を、第2図(ハ)は電圧検出器9の出力信号を、
第2図に)は電機子電流I3を、第2図(ホ)は励磁電
流工6をそれぞれあられしている。
FIG. 2 is a diagram of the operating state of each part when passing through a no-voltage section by the embodiment circuit shown in FIG. 1, and FIG.
is the effective value of the feed line voltage, FIG. 2 (b) is the no-voltage section prediction signal, and FIG. 2 (c) is the output signal of the voltage detector 9.
2) shows the armature current I3, and FIG. 2(E) shows the exciting current 6, respectively.

この第2図にあられされるように1無電圧区間の接近が
無電圧区間予知装置13から出力されると界磁用変換器
6がフリーホイール動作になりて励磁電流I6が減衰し
、それと同時に電機子電流工3も減衰する。無電圧区間
を通過して課電区間に進入すれは主変換器3と界磁用変
換器6とには従前のゲート移相信号が与えられるので、
電機子電流I3と励磁電流I6は速やかに立上り、再び
所定の回生制動運転状態となる。
As shown in FIG. 2, when the approach of one no-voltage zone is output from the no-voltage zone prediction device 13, the field converter 6 becomes freewheeling, the excitation current I6 attenuates, and at the same time Armature electric current 3 is also attenuated. When passing through the no-voltage section and entering the energized section, the main converter 3 and the field converter 6 are given the previous gate phase shift signal.
The armature current I3 and the excitation current I6 quickly rise to a predetermined regenerative braking operating state again.

第3図は第1図に示す実施例回路において回生制動運転
時の各部の動作波形図であって、第3図←)は給電線1
からの交流入力電圧波形を、第3図(ロ)は主変換器3
の直流出力電圧波形を、第3図(ハ)は界磁用変換器6
の直流出力電圧波形をあられしており、図中のβは主変
換器3あゲート移相信号による出力制御位相を、またα
は界磁用変換器60ゲ一ト移相信号による出力制御位相
を示している。
FIG. 3 is an operating waveform diagram of each part during regenerative braking operation in the example circuit shown in FIG. 1, and FIG.
Figure 3 (b) shows the AC input voltage waveform from the main converter 3.
Figure 3 (c) shows the DC output voltage waveform of the field converter 6.
In the figure, β is the output control phase by the main converter 3 gate phase shift signal, and α is the DC output voltage waveform.
indicates the output control phase by the gate phase shift signal of the field converter 60.

第4図は同じく回生制動運転中の主変換器出力特性図で
あって、ゲート移相信号による出力制御位相βをパラメ
ータとした出力電流と出力電圧との関係が示されている
FIG. 4 is also a main converter output characteristic diagram during regenerative braking operation, and shows the relationship between output current and output voltage using the output control phase β by the gate phase shift signal as a parameter.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、交流電気車を駆動する他励直流電動
機の電機子には主変換器を、また界磁巻線には界磁用変
換器を備えて電機子電流と励磁電流を制御するようにし
ている交流電気車が回生制動運転中に給電線の無電圧区
間に接近すれば、その時点における両変換器のゲート移
相信号を記憶するとともに界磁用変換器を7リ一ホイー
ル動作させるよう制御して励磁電流と電機子電流とを急
速に減衰させ、無電圧区間に進入すれば主変換器もフリ
ーホイール動作にして再課電に備え、課電区間に再進入
すれば両変換器には前述の記憶していたゲート移相信号
を与えて速やかに回生制動力を立上げるようにしている
。このような制御方式により、回生制動運転中に給電線
の無電5区間を通過するさいに回生制動力が消失してい
る期間を最短にすることができるので、いわゆる空走期
間(または空走距離)をと(僅かな値に抑制して保安上
の危険を極小にするとともに、第2図に示すように電流
変化を滑らかにすることにより制動力の立下げ、立上げ
が円滑となり、乗り心地を悪化させるおそれがないとい
う効果を発揮できる。
According to this invention, the armature of a separately excited DC motor that drives an AC electric car is equipped with a main converter, and the field winding is equipped with a field converter to control armature current and excitation current. If an AC electric vehicle that is running regenerative braking approaches a non-voltage section of the feeder line, it will memorize the gate phase shift signals of both converters at that time and re-wheel the field converter. The excitation current and armature current are controlled to rapidly attenuate, and when the no-voltage section is entered, the main converter is also freewheeled in preparation for re-energization, and when the energized section is re-entered, both conversions are performed. The above-mentioned stored gate phase shift signal is applied to the regenerative braking force to quickly start up the regenerative braking force. With this control method, it is possible to minimize the period during which the regenerative braking force is lost when passing through the five non-electrified sections of the power supply line during regenerative braking operation, so the so-called idle running period (or idle running distance) can be minimized. ) and () to a small value to minimize safety hazards, and as shown in Figure 2, by smoothing current changes, braking force starts and falls smoothly, improving ride comfort. It is possible to exhibit the effect that there is no risk of worsening the condition.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示すブロック図であり、第2
図は第1図に示す実施例回路により無電圧区間を通過す
るときの各部の動作状態図、第3図は第1図に示す実施
例回路において回生制動運転時の各部の動作波形図、第
4図は回生制動運転中の主変換器出力特性図である。 1・・・給電線、2・・・主変圧器、3・・・主変換器
、4・・・平滑リアクトル、5・・・他励直流電動機、
5A・・・電機子、5F・・、・界磁巻線、6・・・界
磁用変換器、7゜8・・・変流器、9.10・・・電圧
検出器、11・・・制動指令器、12・・・制動制御装
置、13・・・無電圧区間予知装置。 11図 第2図 第4!!1
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG.
The figure is a diagram of the operation state of each part when passing through a no-voltage section in the example circuit shown in Figure 1. Figure 3 is an operation waveform diagram of each part during regenerative braking operation in the example circuit shown in Figure 1. Figure 4 is a main converter output characteristic diagram during regenerative braking operation. DESCRIPTION OF SYMBOLS 1... Power supply line, 2... Main transformer, 3... Main converter, 4... Smoothing reactor, 5... Separately excited DC motor,
5A... Armature, 5F... Field winding, 6... Field converter, 7° 8... Current transformer, 9.10... Voltage detector, 11... - Brake command device, 12... Brake control device, 13... No-voltage section prediction device. Figure 11 Figure 2 Figure 4! ! 1

Claims (1)

【特許請求の範囲】[Claims] 交流電力を直流電力に変換する主変換器により他励直流
電動機の電機子電流を制御し、界磁用変換器により当該
他励直流電動機の励磁電流を制御しつつ走行する交流電
気車において、前記交流電気車が回生制動運転中に給電
線の無電圧区間を予知する信号を受信したとき、この時
点における前記主および界磁用変換器のゲート移相信号
値を記憶するとともに界磁用変換器に該変換器をフリー
ホィール動作にするゲート移相信号を与え、当該電気車
が無電圧区間に進入したときに主変換器に当該変換器を
フリーホィール動作にするゲート移相信号を与え、当該
電気車が再び給電線の荷電区間に進入したとき主および
界磁用変換器に前記の記憶されているそれぞれのゲート
移相信号値を与えることを特徴とする交流電気車の回生
制動制御方式。
In the AC electric vehicle that runs while controlling the armature current of a separately excited DC motor using a main converter that converts AC power to DC power, and controlling the excitation current of the separately excited DC motor using a field converter, When the AC electric vehicle receives a signal predicting a no-voltage section of the power supply line during regenerative braking operation, it stores the gate phase shift signal values of the main and field converters at this time, and also stores the gate phase shift signal values of the main and field converters at this time A gate phase shift signal that causes the converter to perform freewheel operation is applied to the main converter, and when the electric vehicle enters a no-voltage section, a gate phase shift signal that causes the converter to perform freewheel operation is applied to the main converter. A regenerative braking control system for an AC electric vehicle, characterized in that when the electric vehicle enters a charged section of a power supply line again, the stored gate phase shift signal values are applied to the main and field converters.
JP4914485A 1985-03-12 1985-03-12 Regenerative brake control system of ac electric railcar Pending JPS61210802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4914485A JPS61210802A (en) 1985-03-12 1985-03-12 Regenerative brake control system of ac electric railcar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4914485A JPS61210802A (en) 1985-03-12 1985-03-12 Regenerative brake control system of ac electric railcar

Publications (1)

Publication Number Publication Date
JPS61210802A true JPS61210802A (en) 1986-09-19

Family

ID=12822894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4914485A Pending JPS61210802A (en) 1985-03-12 1985-03-12 Regenerative brake control system of ac electric railcar

Country Status (1)

Country Link
JP (1) JPS61210802A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007107056A1 (en) * 2006-03-23 2007-09-27 Shanghai Ruihua (Group) Corporation A powertrain of an environmental protection hybrid supper-capacity electric vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007107056A1 (en) * 2006-03-23 2007-09-27 Shanghai Ruihua (Group) Corporation A powertrain of an environmental protection hybrid supper-capacity electric vehicle

Similar Documents

Publication Publication Date Title
US4478315A (en) Apparatus for operating an AC power elevator
JPH0378355B2 (en)
JPS6356183A (en) Invertor for driving elevator
JPS6337026B2 (en)
JPS6315231B2 (en)
JPH05338947A (en) Control device of elevator
KR840002352B1 (en) Ac elevator control circuit
JP2821159B2 (en) Electric car control device
JPH0632553A (en) Elevator device
JPS61210802A (en) Regenerative brake control system of ac electric railcar
JPS641391B2 (en)
JP2672911B2 (en) Blackout detection method for AC electric vehicles
JP3883091B2 (en) Power regeneration inverter control method
JPS6253435B2 (en)
JPS597679A (en) Controller for alternating current elevator
JP2671415B2 (en) AC electric vehicle control device
JP2692909B2 (en) Inverter device for electric car
JPH0368637B2 (en)
JP3376812B2 (en) Elevator brake control device
JPH0739010A (en) Control device of ac electric rolling stock
JPH0522618B2 (en)
JPH03205279A (en) Controller for elevator
JPH0311195B2 (en)
JPH0347075B2 (en)
JP2001177903A (en) Controller for electric rolling stock