JPS6077480A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS6077480A
JPS6077480A JP18453083A JP18453083A JPS6077480A JP S6077480 A JPS6077480 A JP S6077480A JP 18453083 A JP18453083 A JP 18453083A JP 18453083 A JP18453083 A JP 18453083A JP S6077480 A JPS6077480 A JP S6077480A
Authority
JP
Japan
Prior art keywords
rear end
light
layer
semiconductor laser
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18453083A
Other languages
Japanese (ja)
Inventor
Masahiro Kume
雅博 粂
Kunio Ito
国雄 伊藤
Takeshi Hamada
健 浜田
Fumiko Tajiri
田尻 文子
Yuichi Shimizu
裕一 清水
Masaru Wada
優 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18453083A priority Critical patent/JPS6077480A/en
Publication of JPS6077480A publication Critical patent/JPS6077480A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers

Abstract

PURPOSE:To reduce the emitting light from the rear end surface by alternately coating dielectric such as SiO2, Al2O3 and Si in four layers, on the ends, and setting the reflectivity of the rear end to the prescribed value. CONSTITUTION:A coating is not formed on the side for emitting forward the laser light, but the side is used while maintaining the reflectivity at 32%. Dielectric and Si are alternately coated in four layers on the rear end of the resonator of the reflecting side. The thicknesses t1-t3 of various types are set to 1/4 of the wavelength (lambda) of the laser light in the layer. The thickness t4 of the Si 5 of the final fourth layer is set to approx. 1/6 of the wavelength. When the front end light output is Pf, and the rear end light output is Pr, the light output ratio Pf/Pr can be represented as the formula I with the reflectivities Rf, Rr. Accordingly, when the rear end light output for obtaining necessary monitor pin current is decided, the reflectivity of the rear end is obtained, and the thickness can be determined. Thus, the emitting light from the rear end can be reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光フアイバ通信、光ディスクやレーザ・ゾリ
ンタなどの光情報処理装置の中枢に用いられる半導体レ
ーザ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor laser device used at the core of optical information processing devices such as optical fiber communications, optical disks, and laser solintors.

ため非常に重要な地位を占めるようになってきた。Therefore, it has come to occupy a very important position.

ところで、半導体レーザでは、共振器は通常■−V族化
合物半導体の臂開面を利用している。この場合、例えば
GaAsではバンド・キャッジ近傍の波長の光(800
nm 〜850nrri )に対するGaAaの屈折率
は約36であり、共振器端面の反射率は約32%となる
Incidentally, in a semiconductor laser, the resonator usually utilizes an open plane of a ■-V group compound semiconductor. In this case, for example, in GaAs, light with a wavelength near the band catch (800
The refractive index of GaAa for the wavelength range (nm ~ 850 nrri) is about 36, and the reflectance of the cavity end face is about 32%.

従来の半導体レーザでは、共−振器端面の両方とも同じ
約32%の反射率で用いてお泥光をレーザ・ステムから
取シ出さない方の端面がらも同量のレーザ光が出射して
いた。このレーザ光はステム内に内蔵した一ノ・フォト
ダイオードで受け、レーザ光出力のモニタとして用いて
いるが、ピン・フォトダイオード表面で反射したレーザ
光が前面に出てコ8−ストの原因となり易い。またビン
電流を得るだめのモニタ光として用いるには光出方は前
端面からの出射光に比べて小さくてよいのであ面に誘電
体の多層膜をコーティングし、ビン電流が許容値以上得
られる程度まで後端面からの出射光を抑えた半導体レー
ザ装置の構造を提供するものである。
In conventional semiconductor lasers, both end faces of the resonator are used with the same reflectance of approximately 32%, and the same amount of laser light is emitted from the end face that does not extract light from the laser stem. Ta. This laser light is received by a pin photodiode built into the stem and used to monitor the laser light output, but the laser light reflected from the pin photodiode surface comes out to the front and causes cost. easy. In addition, in order to use it as a monitor light for obtaining the bottle current, the light output needs to be smaller than the light emitted from the front end face, so by coating the surface with a dielectric multilayer film, the bottle current can be obtained above the allowable value. The present invention provides a structure of a semiconductor laser device that suppresses light emitted from the rear end facet to a certain extent.

(発明の構成) この目的を達成するために、本発明の半導体レーザ装置
は、5i02 r At203. Si3N4等の誘電
体と81を交互に4層、端面にコーティングし、後端面
の反射率を32%から70%〜90%に上げることによ
シ、後端面からの出射光を少なくしている。
(Structure of the Invention) In order to achieve this object, the semiconductor laser device of the present invention is based on 5i02 r At203. The end face is coated with four layers of dielectric material such as Si3N4 and 81 alternately, increasing the reflectance of the rear facet from 32% to 70% to 90%, thereby reducing the amount of light emitted from the rear facet. .

(実施例の説明) 以下、本発明の一実施例について、図面を参照しながら
説明する。
(Description of Embodiment) Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

第1図は、本発明のレーザチッグの片面に誘電体とSi
の4層膜をコーティングした様子を示している。1は半
導体レーザチッゾである。6は共振器前端面であシ、レ
ーザ光を前方に取シ出す方である。この側にはコーティ
ングは施さず、反射率が32チのままで用いるか、また
は反射率が変化しない2分の1波長膜厚の誘電体をコー
ティングする。反対側の共振器後端面には誘電体(S 
+ 02 rAz2o、 l 813N4等)とStを
交互に4層コーティングしている。2と4が誘電体で、
3と5がSi である。各種の膜厚t1%t3は層中で
のレーザ光の波長λが4分の1となる厚さにする。最後
の4層目のSi 5の膜厚t4は4分の1波長より薄く
し、6分の1波長程度とする。これは4分の1波長にす
ると反射率が高ぐなシすぎ、後端面からの出射光が小さ
すぎて、モニタビン電流が十分に得られないからである
。誘電体及びSi膜の形成には高周波スパッタリング装
置を用いる。この場合Si膜はアモルファスSi とな
って被着する。
FIG. 1 shows a dielectric material and Si on one side of the laser tick of the present invention.
This shows how the four-layer film is coated. 1 is a semiconductor laser chip. Reference numeral 6 denotes the front end face of the resonator, which is the side from which the laser beam is extracted forward. No coating is applied to this side, and the reflectance is used as it is at 32 inches, or a dielectric material with a half wavelength film thickness that does not change the reflectance is coated. A dielectric material (S
+02 rAz2o, l813N4, etc.) and St are alternately coated in four layers. 2 and 4 are dielectrics,
3 and 5 are Si. The various film thicknesses t1%t3 are set such that the wavelength λ of the laser light in the layer is one fourth. The film thickness t4 of the fourth and final layer of Si 5 is made thinner than 1/4 wavelength, and approximately 1/6 wavelength. This is because if the wavelength is set to 1/4, the reflectance is too high and the light emitted from the rear end face is too small, making it impossible to obtain a sufficient monitor bin current. A high frequency sputtering device is used to form the dielectric and Si films. In this case, the Si film is deposited as amorphous Si.

各誘電体の屈折率と、レーザの発振波長を0.82μm
とした時の4分の1波長に相当する膜厚を第1表に示す
。また各誘電体とSlの4層膜の反射率の計算結果を第
2図から第4図に示す。例えば誘電体にAt206を用
いた場合、第3図より4層目のslの膜厚をOからλ/
4まで変えることにより、反射率を47%から93チま
で制御できることが分る。
The refractive index of each dielectric and the laser oscillation wavelength are 0.82 μm.
Table 1 shows the film thickness corresponding to 1/4 wavelength. Further, the calculation results of the reflectance of each dielectric and the four-layer film of Sl are shown in FIGS. 2 to 4. For example, when At206 is used as the dielectric material, the thickness of the fourth layer sl is changed from O to λ/
It can be seen that by changing the reflectance up to 4, the reflectance can be controlled from 47% to 93%.

第1表 前端面光出力をPo、後端面光出力をPrとすると、前
端面と後端面の光出力比Pf/Prは各々の反射率R,
、Rrによシ次式の様に表わされる。
Table 1: If the front end surface optical output is Po and the rear end surface optical output is Pr, the optical output ratio Pf/Pr of the front end surface and the rear end surface is determined by the respective reflectances R,
, Rr is expressed as follows.

pf/pr= (Rr/R,)1A((x −RO/(
1−Rr))前端面の反射率を、コーティングを施さな
いときの値32チとし、後端面の反射率を変化させた時
の光出力比Pf/Prを第5図に示す。
pf/pr= (Rr/R,)1A((x −RO/(
1-Rr)) FIG. 5 shows the optical output ratio Pf/Pr when the reflectance of the front end face is set to 32 cm, which is the value when no coating is applied, and the reflectance of the rear end face is changed.

以上より必要なモニタ・ビン電流を得るための後端面光
出力が決まると、後端面の反射率がまり、4層目の81
の膜厚を形定できる。半導体レーぜ高、−子、ソr落箇
臥l雷疏り、シコーテJング前の閾電流工thとの化工
th/’thと後端面の反射率Rrの関係の計算結果と
実験値を第6図に示す。
From the above, when the rear facet light output to obtain the required monitor bin current is determined, the reflectance of the rear facet increases and the 81
The film thickness can be determined. Calculated results and experimental values of the relationship between the semiconductor laser height, the threshold current process th, the chemical process th/'th, and the reflectance Rr of the rear facet before the semiconductor laser beam height, - child, sor drop, and the threshold current process th. It is shown in FIG.

(発明の効果) 以上のように本発明では誘電体とSiの4層膜をレーザ
の後端面にコーティングすることにより、後端面の反射
率を望みの値に設泪し、後端面からの光出力をモニタ・
ビン電流を得るのに必要な値にまで下げる事ができる。
(Effects of the Invention) As described above, in the present invention, by coating the rear facet of a laser with a four-layer film of dielectric and Si, the reflectance of the rear facet can be set to a desired value, and light from the rear facet can be set to a desired value. Monitor the output
It can be reduced to the value required to obtain the bin current.

その結果ビン・フォトダイオード表面で反射した光がコ
゛−ストとなって前方に出るのを抑える効果がある。ま
た後端面に無駄な光を出射することがなくなり、レーザ
の閾電流を下げ、前端面の微分量子効率を上げることが
できる。また前端面の微分量子効率のコーティング前後
の比η’of/ηDfとRrの関係を第7図に示す。
As a result, there is an effect of suppressing the light reflected on the surface of the bottle photodiode from becoming a cost and emitting to the front. Further, unnecessary light is not emitted to the rear end facet, the threshold current of the laser can be lowered, and the differential quantum efficiency of the front end facet can be increased. Further, FIG. 7 shows the relationship between the ratio η'of/ηDf of the differential quantum efficiency of the front end face before and after coating and Rr.

何れも前端面はコーティングされていない。(反射率3
2%)。後端面の反射率を50%〜90チにすることに
よシ、閾電流を10チ〜20チ、微分量子効率を20係
〜50%も改善出来ることが分る。その結果半導体レー
ザの動作電流を大幅に下げることができ、半導体レーザ
の信頼性向上に絶大な効果が期待できる。
In both cases, the front end surface is not coated. (Reflectance 3
2%). It can be seen that by setting the reflectance of the rear facet to 50% to 90%, the threshold current can be improved by 10% to 20%, and the differential quantum efficiency can be improved by 20% to 50%. As a result, the operating current of the semiconductor laser can be significantly reduced, and a tremendous effect on improving the reliability of the semiconductor laser can be expected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す半導体レーザチップを
示す図、 第2図、第3図、第4図はGaA s上に誘電体とSt
を交互に4層コーティングした時の反射率の計算結果を
示す図、 第5図は後端面の反射率Rrと前端面と後端面の光出力
比Pf/Prの計算結果を示す図、第6図は後端面の反
射率を変える前後の閾電流の比1h/’thの割算結果
と実験値を示す図、第7図は微分量子効率の比ηも、/
η。、の言1算結果と実験値を示す図。 1・・・半導体レーザチップ、2,4・・・誘電体膜、
3・・・アモルファスSi膜、5・・・アモルファスS
i膜、6・・・半導体レーデ前端面。 第1図 第2図 R(%) 第3図 R(%) 第4図 R(%] 第6図 7th / Ith Rr(Rf= Rr (Rf− 0,32) 0.32 )
FIG. 1 shows a semiconductor laser chip showing an embodiment of the present invention, and FIGS. 2, 3, and 4 show a dielectric and St.
Figure 5 is a diagram showing the calculation results of the reflectance when four layers are coated alternately. Figure 5 is a diagram showing the calculation results of the reflectance Rr of the rear end face and the optical output ratio Pf/Pr of the front end face and the rear end face. The figure shows the division results and experimental values of the threshold current ratio 1h/'th before and after changing the reflectance of the rear facet, and Figure 7 also shows the ratio η of the differential quantum efficiency, /
η. A diagram showing the calculation results and experimental values of . 1... Semiconductor laser chip, 2, 4... Dielectric film,
3...Amorphous Si film, 5...Amorphous S
i-film, 6... front end surface of semiconductor radar. Figure 1 Figure 2 R (%) Figure 3 R (%) Figure 4 R (%) Figure 6 7th / Ith Rr (Rf = Rr (Rf- 0,32) 0.32)

Claims (1)

【特許請求の範囲】 (リ 共振器端面の一方が、臂開面に誘電体層とSi層
からなる4層膜で被覆されている半導体レーザ装置。 (2)前記4層膜のうち、誘電体層とSi層の交互の3
層が、4分の1波長に相当する膜厚で形成されている特
許請求の範囲第(1)項記載の半導体レーザ装置。
[Scope of Claims] (Re: A semiconductor laser device in which one of the resonator end faces is covered with a four-layer film consisting of a dielectric layer and a Si layer on the open arm surface. (2) Of the four-layer film, one of the dielectric Alternating body layer and Si layer 3
The semiconductor laser device according to claim 1, wherein the layer is formed with a thickness corresponding to a quarter wavelength.
JP18453083A 1983-10-04 1983-10-04 Semiconductor laser device Pending JPS6077480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18453083A JPS6077480A (en) 1983-10-04 1983-10-04 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18453083A JPS6077480A (en) 1983-10-04 1983-10-04 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS6077480A true JPS6077480A (en) 1985-05-02

Family

ID=16154807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18453083A Pending JPS6077480A (en) 1983-10-04 1983-10-04 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS6077480A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0162668A2 (en) * 1984-05-16 1985-11-27 Sharp Kabushiki Kaisha Semiconductor laser
JPH01283894A (en) * 1988-05-10 1989-11-15 Sanyo Electric Co Ltd Semiconductor laser

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727213A (en) * 1980-07-26 1982-02-13 Mitsubishi Electric Corp Dielectric multilayer film mirror

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727213A (en) * 1980-07-26 1982-02-13 Mitsubishi Electric Corp Dielectric multilayer film mirror

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0162668A2 (en) * 1984-05-16 1985-11-27 Sharp Kabushiki Kaisha Semiconductor laser
EP0162668A3 (en) * 1984-05-16 1987-06-03 Sharp Kabushiki Kaisha Semiconductor laser
JPH01283894A (en) * 1988-05-10 1989-11-15 Sanyo Electric Co Ltd Semiconductor laser

Similar Documents

Publication Publication Date Title
KR100709281B1 (en) Semiconductor laser device
JP3637081B2 (en) Method and apparatus for optimizing the output characteristics of a tunable external cavity laser
JP2002528906A (en) Multi-layer mirror distributed control
US6487227B1 (en) Semiconductor laser
JPS60242689A (en) Semiconductor laser element
US4852112A (en) Semiconductor laser with facet protection film of selected reflectivity
WO2000052795A1 (en) Semiconductor light-emitting device
JP3635880B2 (en) Surface emitting semiconductor laser and manufacturing method thereof
JP2008294202A (en) Fabry-perot resonator laser, and designing method thereof
JPS6077480A (en) Semiconductor laser device
KR100598651B1 (en) Semiconductor laser device
KR100754956B1 (en) Semiconductor laser device and laser system
JP2006128475A (en) Semiconductor laser
KR100528857B1 (en) Semiconductor optical device and semiconductor laser module using the semiconductor optical device
JPH04299591A (en) Semiconductor element and its manufacture
US6432471B1 (en) Method for generating an anti-reflection coating for a laser diode
WO2016167071A1 (en) Grating element and external resonator-type light emitting device
JP3385833B2 (en) Semiconductor laser
JPH04176180A (en) Semiconductor laser element chip
JPH0266985A (en) Semiconductor laser and manufacture thereof
KR100228762B1 (en) Manufacturing method of optical communicating device
JPH0726856Y2 (en) Semiconductor laser device
JPS61258488A (en) Semiconductor laser device
JPS62260381A (en) Semiconductor laser device
JPS6010687A (en) Semiconductor laser device