JPS607715A - Manufacture of compound semiconductor device - Google Patents

Manufacture of compound semiconductor device

Info

Publication number
JPS607715A
JPS607715A JP11554383A JP11554383A JPS607715A JP S607715 A JPS607715 A JP S607715A JP 11554383 A JP11554383 A JP 11554383A JP 11554383 A JP11554383 A JP 11554383A JP S607715 A JPS607715 A JP S607715A
Authority
JP
Japan
Prior art keywords
compound semiconductor
substrate
group
vapor phase
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11554383A
Other languages
Japanese (ja)
Inventor
Kenichi Arai
新井 謙一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP11554383A priority Critical patent/JPS607715A/en
Publication of JPS607715A publication Critical patent/JPS607715A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To contrive to enhance uniformity and reproducibility of impurity concentration distribution in the surface of a substrate at manufacture of a compound semiconductor device by a method wherein an ion implanted layer is activated according to heat treatment by forming a condition not to generate vapor phase growth and vapor phase etching on a compound semiconductor substrate. CONSTITUTION:At a Ga/AsCl3/H2 vapor phase growth device, by setting the temperature of a Ga source 13 and an impurity ions Si<+> implanted GaAs substrate 14 at nearly the same, a condition not to generate vapor phase growth and vapor phase etching appears on the substrate 14. Heat treatment of the substrate 14 is performed utilizing the condition thereof to perform activation of an impurity implanted layer. The implanted layer in the substrate 14 can be heat- treated at 800-850 deg.C of the temperature and at about 1X10<-3> of As partial pressure by using the method thereof. Reduction is not generated to the electric activation ratio of impurities implanted in such a way, and uniformity and reproducibility of concentration distribution in the surface of the substrate are enhanced sharply.

Description

【発明の詳細な説明】 本発明は、特に化合物半導体基板へイオン注入によシ形
成した不純物注入層を活性化するための熱処理方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention particularly relates to a heat treatment method for activating an impurity implantation layer formed by ion implantation into a compound semiconductor substrate.

近年、化合物半導体とりわけ■−v族化族化合物半導体
−用電子デバイスの生産は急激に増加して2シ、また最
近ではIC化への要請が急速に高まり、特に砒化ガリウ
ム(GoAs)のIC化の研究開発が世界的にすすめら
れている。
In recent years, the production of electronic devices for compound semiconductors, especially ■-V group compound semiconductors, has rapidly increased.Recently, the demand for ICs has increased rapidly, especially for gallium arsenide (GoAs). Research and development is being promoted worldwide.

IC製造のためには半導体基板中に導電性もしくは絶縁
性の層全厚さ及び濃度を制御性よく形成する必要がめ9
、そのためには不純物のイオン注入を行い、注入された
不純物層を電気的に活性化させるための熱処理技術が不
可欠である。例えば、クロム(Cr)ドープ半絶縁性G
aAs基板にN温感電層全形成するには、不純物イオン
としてシリコン(S i+) k 100kev程度の
加速エネルギーで注入して不純物注入層を形成し、注入
時に生じた結晶欠陥の回復及びドナーの活性化のために
800℃。
In order to manufacture ICs, it is necessary to form a conductive or insulating layer in a semiconductor substrate with good control over the total thickness and concentration9.
For this purpose, it is essential to implant impurity ions and to use a heat treatment technique to electrically activate the implanted impurity layer. For example, chromium (Cr) doped semi-insulating G
To form a complete N-temperature electrosensitive layer on an aAs substrate, silicon (Si+) is implanted as an impurity ion with an acceleration energy of about 100 keV to form an impurity implantation layer, and the crystal defects generated during implantation are recovered and the donor is activated. 800℃ for oxidation.

30分程度の熱処理を行う。しかしながら、GaAsは
熱的に不安定すなわち高温では分解しやすく、熱処理時
に砒素(As)の蒸発が起きるという性質がめる。そこ
で、Asの解離を抑制するために、従来、 GaAs表
面に二酸化ケイ素(810z ) *窒化ケイ素(8i
 xNy )等の保護膜を設けて熱処理する方法、もし
くはアルシン(AsHl)ガスを導入してAs分圧を形
成した雰囲気中で熱処理する方法がとられてきた。
Heat treatment is performed for about 30 minutes. However, GaAs is thermally unstable, that is, it easily decomposes at high temperatures, and arsenic (As) evaporates during heat treatment. Therefore, in order to suppress the dissociation of As, silicon dioxide (810z) *silicon nitride (8i) was conventionally applied to the GaAs surface.
A method has been adopted in which a protective film such as xNy) is provided and heat treatment is performed, or a method is performed in which arsine (AsHl) gas is introduced to create an As partial pressure.

しかしながら、前者の方法の場合、GaAs基板と保護
膜とで熱膨張係数が異なるために基板と保護膜との界面
にストレスが生じ、この結果、界面に向って拡散係数の
大きいCr が析出してくるといういわゆるCrの再分
布が生ずる。この様にドナー補償型不純物でろるCrの
基板中での再分布が生じると、活性化された注入ドナー
不純物の濃度分布のバラツキと深さ方向のダレ、特に基
板表面での濃度低下が顕著となる。しかも、Orの再分
布程度は基板中のCr量、ストレスの大きさ等制御困難
な要因に支配されているため、イオン注入層の不純物濃
度分布は再現性の乏しいものであった。一方、後者の方
法の場合、上述の問題は小さいがAsH3という極めて
猛毒なガス七使用するため安全性上問題があるので好ま
しくない。
However, in the case of the former method, stress occurs at the interface between the substrate and the protective film because the thermal expansion coefficients of the GaAs substrate and the protective film are different, and as a result, Cr with a large diffusion coefficient precipitates toward the interface. A so-called redistribution of Cr occurs. When redistribution of Cr occurs in the substrate due to the donor compensation type impurity, the concentration distribution of the activated implanted donor impurity varies and sag in the depth direction, especially the concentration decrease at the substrate surface becomes noticeable. Become. Moreover, since the degree of redistribution of Or is controlled by factors that are difficult to control, such as the amount of Cr in the substrate and the magnitude of stress, the impurity concentration distribution in the ion-implanted layer has poor reproducibility. On the other hand, in the case of the latter method, although the above-mentioned problem is small, it is not preferable because it uses a very poisonous gas called AsH3, which poses a safety problem.

本発明はかかる従来法の欠点?除去し、化合物半導体基
板中の不純物イオン注入層の活性化に2いて、不純物濃
度分布の不均一性をなくシ、かつ安全性上においても極
めて有効な熱処理方法を提供すること全目的としている
Is the present invention a drawback of such conventional methods? The overall purpose of the present invention is to provide a heat treatment method that is extremely effective in removing and activating an impurity ion implanted layer in a compound semiconductor substrate, eliminating non-uniformity in impurity concentration distribution, and also in terms of safety.

すなわち、本発明は化合物基板上への気相成長および基
板のエツチングが2こらない状態にしてイオン注入層を
熱処理によシ活性化することvi:%徴とする。
That is, the present invention is characterized in that the ion-implanted layer is activated by heat treatment without vapor phase growth on the compound substrate and etching of the substrate.

本発明に係る化合物半導体基板の熱処理方法は、また、
イオン注入法により形成された区−v族化合物半導体基
板中の不純物注入層を熱処理する方法において、ガス送
入管を有する反応容器のガス上流側lCv族元素を飽和
させた■族元素、ガス下流側に前記■−v族化合9勿半
導体基板tそれぞれ配置し、前記V族元素全飽和させた
l族元素の温度を前記■−v族化合物半導体基板のそれ
とほぼ等しくした状態で前記ガス送入管よりv族元素の
塩化物と水素の混合ガスを導入することを特徴とする。
The method for heat treatment of a compound semiconductor substrate according to the present invention also includes:
In a method of heat treating an impurity implanted layer in a group V compound semiconductor substrate formed by an ion implantation method, a group III element saturated with an ICv group element on the gas upstream side of a reaction vessel having a gas inlet pipe, and a gas downstream The above ■-V group compound semiconductor substrate t is placed on the side, and the gas is introduced while the temperature of the I group element, which is fully saturated with the V group element, is approximately equal to that of the above ■-V group compound semiconductor substrate. It is characterized by introducing a mixed gas of chloride of group V elements and hydrogen through a tube.

以下図にもとづいて本発明を詳述する。The present invention will be explained in detail below based on the figures.

第1図は本発明に係るCr ドープ半絶縁性GaAs基
板に不純物イオンsi+2加速エネルギー8Qkev。
FIG. 1 shows an impurity ion Si+2 acceleration energy of 8 Qkev on a Cr-doped semi-insulating GaAs substrate according to the present invention.

ドース量2X10’cls で注入して形成した不純物
注入層を熱処理する方法の一実施例ケ説明するための装
置の縦断面図全示しfcものである。同図で、11はガ
ス送入管、12は反応容器、13はAsi飽和させたガ
リウム(Qa)、 14は8i+に注入したG aAs
基板、15は框気炉、そして16は三塩化砒素(AsC
ta )と水素(H2)の混合ガスである。
This is a vertical cross-sectional view of an apparatus for explaining an embodiment of a method for heat treating an impurity implanted layer formed by implanting at a dose of 2×10'cls. In the figure, 11 is a gas supply pipe, 12 is a reaction vessel, 13 is Asi-saturated gallium (Qa), and 14 is GaAs injected into 8i+.
15 is a frame furnace, and 16 is arsenic trichloride (AsC).
ta) and hydrogen (H2).

ここで、Ga13とGaAs基板14の温度はほぼ等し
く800℃にと9トータルガス流量は1500ν分。
Here, the temperatures of the Ga 13 and the GaAs substrate 14 are approximately equal to 800°C, and the total gas flow rate is 1500ν.

GaAs基板14上に3けるAsのモル分圧はtxto
 、’熱処理時間は30分である。第1図に明らかな様
に、本方法は通常のGa/As C13/H2系の気相
成長装置ic9いて、Ga13とGaAs基板14の温
度?はぼ等しく設定することによってG a As基板
14上に気相成長も気相エツチングも起らない状態が出
現することを利用して熱処理を行うものでおる。
The molar partial pressure of As on the GaAs substrate 14 is txto
, 'The heat treatment time is 30 minutes. As is clear from FIG. 1, this method uses an ordinary Ga/As C13/H2 type vapor phase growth apparatus IC9, and the temperature of the Ga13 and GaAs substrate 14 is 1. The heat treatment is performed by taking advantage of the fact that by setting the values to be approximately equal, a state appears on the GaAs substrate 14 in which neither vapor phase growth nor vapor phase etching occurs.

すなわち、本方法の同容を詳しく説明するために示した
のが第2図であって、GaAs基板の温度上800℃と
850℃とにした場合のGa温度と気相成長速度もしく
はエツチング速度の関係を示したものである。ここで、
トータルガス流量は150田ン分。
That is, Fig. 2 is shown to explain the content of this method in detail, and shows the relationship between the Ga temperature and the vapor phase growth rate or etching rate when the temperature of the GaAs substrate is 800°C and 850°C. This shows the relationship. here,
The total gas flow rate is 150 tons.

G aAs基板上のAsのモル分圧1c 0.5〜1.
5X10″でめる。
Molar partial pressure of As on GaAs substrate 1c 0.5-1.
Measure 5X10''.

第2図に示した様にGa温度上昇と共にエツチングから
成長へと変化し、GaAs基板温度とほぼ等しい時成長
及びエツチング速度が0.すなわち成長もエツチングも
起らなくなる。この成長も工ッチングも起らない時のG
a温度は、Qa中へのAsの飽和が不完全であると高い
温度の方向へずれるが、我々の芙験の結果2〜3℃ずれ
るだけであって再現性よく条件設定が可能でめった。
As shown in FIG. 2, as the Ga temperature rises, etching changes to growth, and when the temperature is approximately equal to the GaAs substrate temperature, the growth and etching rates are 0. In other words, neither growth nor etching occurs. G when neither growth nor etching occurs
If the saturation of As in Qa is incomplete, the a temperature shifts toward a higher temperature, but as a result of our experiments, it only shifts by 2 to 3 degrees Celsius, making it possible to set the conditions with good reproducibility.

以上説明した様に本方法で用いることによってGaAs
 基板中のイオン注入層(5As分圧約tx1o−3゜
温度800C乃至850℃で熱処理することが出来、こ
の様にして形成したN型導電層の不純物濃度分布は理論
的に予測されるり、 S、 S、分布に近く、又注入し
た不純物の電気的な活性化割合に低下はなく、基板面内
の濃度分布の均−性及び再現性が大幅に同上した。
As explained above, by using this method, GaAs
The ion-implanted layer (5As) in the substrate can be heat-treated at a partial pressure of about tx1o-3° and a temperature of 800°C to 850°C, and the impurity concentration distribution of the N-type conductive layer formed in this way can be predicted theoretically. There was no decrease in the electrical activation rate of the implanted impurities, and the uniformity and reproducibility of the concentration distribution within the substrate surface were significantly improved.

以上、本方法忙用いてイオン注入により形成したGaA
 s基板中の不純物注入層を効果的に熱処理することが
出来、(3aAslCの製造歩留向上への寄与は極めて
顕著である。
As described above, GaA formed by ion implantation using this method
The impurity implantation layer in the s-substrate can be effectively heat-treated, and the contribution to improving the manufacturing yield of 3aAslC is extremely significant.

以上、本発明はGaAs ’(例にとって説明したが、
他のI−V 族化合物半導体燐化インジウム(xnp)
As described above, the present invention has been explained using GaAs' (for example,
Other group IV compound semiconductors indium phosphide (xnp)
.

A重化インジウム(InAs)等icyいても同様であ
ることは本発明の原理から明らかである。
It is clear from the principle of the present invention that the same applies to icy materials such as A-weighted indium (InAs).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る不純物tイオン注入しICGaA
s基板の熱処理する方法の一例を説明するための装置の
縦断面図を示したもので、11はガス送入管、12は反
応容器、13はAs f飽和させたGa、14は不純物
全注入したG a A s基板、15は電気炉、16は
A s C13とH2の混合ガスである。 第2図はG a A s基板の温度’2 soo℃、8
50℃にした場合のGa温度と気相成長速度もしくはエ
ツチング速度の関係を示したものである。 、 9\ 代理人 弁理士 内 原 晋 −)
Figure 1 shows ICGaA with impurity t ion implantation according to the present invention.
s A vertical cross-sectional view of an apparatus for explaining an example of a method for heat-treating a substrate, 11 is a gas feed pipe, 12 is a reaction vessel, 13 is As f-saturated Ga, and 14 is a total impurity injection tube. 15 is an electric furnace, and 16 is a mixed gas of As C13 and H2. Figure 2 shows the temperature of the GaAs substrate at '2 soo℃, 8
This figure shows the relationship between Ga temperature and vapor phase growth rate or etching rate when the temperature is 50°C. , 9\Representative Patent Attorney Susumu Uchihara -)

Claims (1)

【特許請求の範囲】 1、 イオン注入法により形成した不純物注入層を有す
る化合物半導体基板を熱処理して該不純物注入層を活性
化させる工程上官む化合物半導体装置の製造方法におい
て、前記化合物半導体基板上への気相成長2よび前記化
合物半導体基板のエツチングが実質的に行わない状態に
して、前記熱処理?施すこと全特徴とする化合物半導体
装置の製造方法。 Z 前記化合物半導体基板はl−V族化合物半導体基板
であり、さらにガス送入管を有する反応容器のガス上流
側にV族元素上飽和させた狙族元素、ガス下流側に前記
■−■族化合物半導体基板をそれぞれ配置し、前記V族
元素を飽和させた■族元素の温度を前記I−v族化合物
半導体基板のそれとほぼ等しくした状態で前記ガス送入
管より■族元素の塩化物と水素の混合ガスを導入するこ
とにより、前記気相成長および前記エツチングが実質的
に行わない状態にすることを特徴とする特許請求の範囲
第1項記載の化合物半導体装置の製造方法。
[Scope of Claims] 1. A method for manufacturing a compound semiconductor device which includes a step of heat-treating a compound semiconductor substrate having an impurity-implanted layer formed by an ion implantation method to activate the impurity-implanted layer. The heat treatment is carried out in a state in which vapor phase growth 2 and etching of the compound semiconductor substrate are not substantially performed. A method for manufacturing a compound semiconductor device, which is characterized by: Z The compound semiconductor substrate is a l-V group compound semiconductor substrate, and further includes a group element saturated with a group V element on the gas upstream side of a reaction vessel having a gas feed pipe, and a group element saturated with the group V element on the gas downstream side, and a group element saturated with the group V element on the gas downstream side. Compound semiconductor substrates are each arranged, and the temperature of the group (I) element saturated with the group V element is made approximately equal to that of the group I-V compound semiconductor substrate, and a chloride of the group (I) element is supplied from the gas inlet pipe. 2. The method of manufacturing a compound semiconductor device according to claim 1, wherein said vapor phase growth and said etching are substantially not performed by introducing a mixed gas of hydrogen.
JP11554383A 1983-06-27 1983-06-27 Manufacture of compound semiconductor device Pending JPS607715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11554383A JPS607715A (en) 1983-06-27 1983-06-27 Manufacture of compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11554383A JPS607715A (en) 1983-06-27 1983-06-27 Manufacture of compound semiconductor device

Publications (1)

Publication Number Publication Date
JPS607715A true JPS607715A (en) 1985-01-16

Family

ID=14665133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11554383A Pending JPS607715A (en) 1983-06-27 1983-06-27 Manufacture of compound semiconductor device

Country Status (1)

Country Link
JP (1) JPS607715A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4713354A (en) * 1985-02-28 1987-12-15 Oki Electric Industry Co., Ltd. Method of heat treatment for reduction of dislocation density near III-V substrate surface
US5203975A (en) * 1991-10-29 1993-04-20 E. I. Du Pont De Nemours And Company Process for cathodic electrodeposition of a clear coating over a conductive paint layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4713354A (en) * 1985-02-28 1987-12-15 Oki Electric Industry Co., Ltd. Method of heat treatment for reduction of dislocation density near III-V substrate surface
US5203975A (en) * 1991-10-29 1993-04-20 E. I. Du Pont De Nemours And Company Process for cathodic electrodeposition of a clear coating over a conductive paint layer

Similar Documents

Publication Publication Date Title
US3208888A (en) Process of producing an electronic semiconductor device
EP0111085B1 (en) Ion implantation process for compound semiconductor
JPH03178126A (en) Impurity doping device
JPS607715A (en) Manufacture of compound semiconductor device
US4820651A (en) Method of treating bodies of III-V compound semiconductor material
US2850412A (en) Process for producing germaniumindium alloyed junctions
JP2928929B2 (en) Impurity doping method
JP2737781B2 (en) Heat treatment method for compound semiconductor substrate
JPS60227416A (en) Annealing method of semiconductor substrate
JP2926344B2 (en) Method for manufacturing field effect transistor
JPH0697664B2 (en) Compound semiconductor annealing method
JPH01129413A (en) Introduction of impurity into semiconductor substrate
JPH0689904A (en) Manufacture of insulated gate type field-effect semiconductor device
JP2617486B2 (en) (III) Heat treatment method for -V compound semiconductor
JPS58191426A (en) Semiconductor substrate
JP2973011B2 (en) Method of forming semiconductor element isolation region
JPS6046020A (en) Manufacture of semiconductor device
JPS63248796A (en) Molecular beam epitaxy and its device
JP2934665B2 (en) Method for manufacturing semiconductor device
JPS62128531A (en) Silicon substrate and manufacture thereof
JPS5643735A (en) Manufacture of semiconductor device
JPH01120015A (en) Impurity doping method using plasma
JPH06104195A (en) Impurity diffusing method for iii-v compound semiconductor
JPH0480878B2 (en)
JPH01283919A (en) Plasma doping method