JPS6076819A - Radio receiver free from cross spurious - Google Patents

Radio receiver free from cross spurious

Info

Publication number
JPS6076819A
JPS6076819A JP18473683A JP18473683A JPS6076819A JP S6076819 A JPS6076819 A JP S6076819A JP 18473683 A JP18473683 A JP 18473683A JP 18473683 A JP18473683 A JP 18473683A JP S6076819 A JPS6076819 A JP S6076819A
Authority
JP
Japan
Prior art keywords
frequency
mixer
oscillator
pll
khz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18473683A
Other languages
Japanese (ja)
Other versions
JPS6364092B2 (en
Inventor
Yoshiteru Hashimoto
橋本 義照
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaesu Musen Co Ltd
Original Assignee
Yaesu Musen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaesu Musen Co Ltd filed Critical Yaesu Musen Co Ltd
Priority to JP18473683A priority Critical patent/JPS6076819A/en
Publication of JPS6076819A publication Critical patent/JPS6076819A/en
Publication of JPS6364092B2 publication Critical patent/JPS6364092B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J5/00Discontinuous tuning; Selecting predetermined frequencies; Selecting frequency bands with or without continuous tuning in one or more of the bands, e.g. push-button tuning, turret tuner
    • H03J5/02Discontinuous tuning; Selecting predetermined frequencies; Selecting frequency bands with or without continuous tuning in one or more of the bands, e.g. push-button tuning, turret tuner with variable tuning element having a number of predetermined settings and adjustable to a desired one of these settings
    • H03J5/0245Discontinuous tuning using an electrical variable impedance element, e.g. a voltage variable reactive diode, in which no corresponding analogue value either exists or is preset, i.e. the tuning information is only available in a digital form
    • H03J5/0272Discontinuous tuning using an electrical variable impedance element, e.g. a voltage variable reactive diode, in which no corresponding analogue value either exists or is preset, i.e. the tuning information is only available in a digital form the digital values being used to preset a counter or a frequency divider in a phase locked loop, e.g. frequency synthesizer
    • H03J5/0281Discontinuous tuning using an electrical variable impedance element, e.g. a voltage variable reactive diode, in which no corresponding analogue value either exists or is preset, i.e. the tuning information is only available in a digital form the digital values being used to preset a counter or a frequency divider in a phase locked loop, e.g. frequency synthesizer the digital values being held in an auxiliary non erasable memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Superheterodyne Receivers (AREA)
  • Noise Elimination (AREA)

Abstract

PURPOSE:To prevent the generation of cross spurious beats by applying the voltage obtained by giving D/A conversion to the proper digit output of an up-down counter to a voltage control variable reactance element which gives a fine adjustment to the local oscillation frequency of a mixer at the next stage. CONSTITUTION:An input signal supplied through an antenna is turned into the 1st intermediate frequency of a mixer 2 of the preceding stage and then converted into the 2nd intermediate frequency by a mixer 4 of the next stage through a BPF3. The 2nd intermediate frequency is amplified and demodulated through a BPF5. The local oscillation frequency of the mixer 2 is injected from the 1st PLL oscillator 6, and the 2nd PLL oscillator 9 is used to a local oscillator of a mixer 62 within a control loop of the oscillator 6. Then the voltage which is obtained by giving D/A conversion to the proper digit output of a BCD up-down counter 10 which integrates the clock pulses given from an encoder 11 is applied to a voltage control variable reactance element 72 which controls the oscillation frequency of the mixer 4.

Description

【発明の詳細な説明】 この発明は多重周波数変換構成の通信機、特にPLL発
振器を含む回路に生ずるクロス・スノリアス・ビートの
発生を防止するにある。
DETAILED DESCRIPTION OF THE INVENTION The object of the present invention is to prevent cross-snorrious beats from occurring in a communication device having a multi-frequency conversion configuration, particularly in a circuit including a PLL oscillator.

最近の通信機はほとんど全部がスー・ぐ−へテロメイン
方式であり、2重以上の多M変換とすることも多く、各
変換器(以下ミクサと称す)にはそれぞれ局部周波数を
注入する局部発振器を備えるが・周波数可変発振器とし
ては周波数設定確度と安定度の点からPLL(Phas
e Locked Loop)制御とすることが多い。
Almost all of recent communication devices are based on the sous-guetero main system, and often have multiple M conversions of double or more, and each converter (hereinafter referred to as a mixer) has a local Although it is equipped with an oscillator, PLL (Phas
e Locked Loop) control is often used.

しかしながら、PLL回路には円部の周波数関係で発生
するスゲリアス・ビートがあり、特定の周波数で受信の
障害となる場合があるので、先づその発生のメカニス゛
ムと、本発明の成立のM要な要素であるトーノフトキャ
ンセル回路について説明しておく。
However, PLL circuits have spurious beats that occur due to the frequency relationship of the circular part, which may interfere with reception at certain frequencies.First, we will explain the mechanism of its occurrence and the M essential point for the establishment of the present invention. The tonoft cancellation circuit, which is an element, will be explained.

第1図は2重変換スーパーヘテロゲイン受信回路の構成
例であって、アンテナlよpの入カ情号彼は前段ミクサ
2で第1中間周波数となシ・パントハス・フィルタ3を
通って、後段ミクサ4で第2中間周波数となシ、バンド
パス・フィルタ5を通って、増幅および復調されるもの
である。前段ミクサ2の局部発振周波数fLjはPLL
制御発振回路上よシ注入される。PLL発振回路旦は1
に圧制御発振器(以下VCO)で基本波発振をし、その
出力をミクサ2に供給すると共に内部ミクサ62で固定
発振器7の周波数と混合してfmを出力する。第1図で
は発振器7の周波数はミクサ62に注入するほか、後段
ミクサ4の局部発振周波数fL2として利用され、発振
器7は前段ミクサと後段ミクサの共用発振器となってい
る。この構成は発振器7を共用することによって発振器
を1個′1制約し得るのみならす、共用発振器7の発振
周波数が多少変動しても、前段ミクサの注入周波数fL
1の変動による第1中間周波数の変化分を後段ミクサの
注入周波数fL2の変動で逆に打消して、第21;1間
周波数には全く影響が出ないようにすることができるも
のであるが、その原理はドリフト・キャンセル方式とし
て周知であるから詳しくは述べないが、本発明の瑣要な
構成要素の一つである。
FIG. 1 shows an example of the configuration of a double conversion superhetero gain receiving circuit, in which input information from antennas l and p is converted to a first intermediate frequency by a pre-stage mixer 2, and then passes through a transpantohas filter 3. It is amplified and demodulated by the downstream mixer 4 to the second intermediate frequency, which passes through the bandpass filter 5. The local oscillation frequency fLj of the front-stage mixer 2 is PLL
It is injected onto the controlled oscillation circuit. PLL oscillation circuit is 1
A pressure controlled oscillator (hereinafter referred to as VCO) generates fundamental wave oscillation, and its output is supplied to mixer 2 and mixed with the frequency of fixed oscillator 7 by internal mixer 62 to output fm. In FIG. 1, the frequency of the oscillator 7 is injected into the mixer 62 and is also used as the local oscillation frequency fL2 of the rear-stage mixer 4, so that the oscillator 7 serves as a shared oscillator for the front-stage mixer and the rear-stage mixer. This configuration can only limit the number of oscillators to one '1 by sharing the oscillator 7. Even if the oscillation frequency of the shared oscillator 7 fluctuates somewhat, the injection frequency fL of the pre-stage mixer
However, the change in the first intermediate frequency due to the fluctuation of 1 can be canceled out by the fluctuation of the injection frequency fL2 of the rear mixer, so that the 21st; 1 frequency is not affected at all. , the principle of which is well known as the drift cancellation method, so it will not be described in detail, but it is one of the essential components of the present invention.

ミクサ62の出力周波数は分局器63全通して位相比較
器64で基準周波数fRと位相比較し位相差に従って発
生する正または負の検出電圧をロー・ぐス争フィルタ6
5全通して直流制御電圧としてVCO61に加えて発振
周波数を安定化する制御ループを構成しているものであ
るが、基本的に発振周波数れ、は基準周波数fRのステ
ップで変化するのであるから、fLlVこくらべて九は
非常に小さく、寸だ九と位相比較すべき分周器出力周波
数も轟然小さい値となる。一方で分周器の分周比は大き
く取るほど制御ループ・ゲインが低下してPLLルーゾ
の安定度が低下するという問題があるので、ミクサ62
の出力f はなるべく低い周波数であることが望捷しい
のと、分周器の動作可能周波数による制約とから、ミク
サ62il−Lダウン・ミクサとしてfmはfL、よ勺
小さく取るのが普通である。PLL回路のクロス・スノ
リアス拳ビートはこのf とfLlの周波数が整数比と
なったときが最も顕著であるので、以下にその発生のメ
カニズムケ説明する。
The output frequency of the mixer 62 is passed through the divider 63 and compared with the reference frequency fR in the phase comparator 64, and the positive or negative detection voltage generated according to the phase difference is filtered into the low/high frequency filter 6.
In addition to the VCO 61 as a DC control voltage, it constitutes a control loop that stabilizes the oscillation frequency, but since the oscillation frequency basically changes in steps of the reference frequency fR, Compared to fLlV, 9 is very small, and the frequency divider output frequency whose phase should be compared with 9 is also an extremely small value. On the other hand, there is a problem that the larger the frequency division ratio of the frequency divider, the lower the control loop gain and the lower the stability of the PLL Luso.
Since it is desirable that the output f of the mixer 62il-L is a down mixer, it is desirable that the frequency is as low as possible, and because of the constraints imposed by the operable frequency of the frequency divider, fm is usually set to be much smaller than fL. . Since the cross snorious fist beat of the PLL circuit is most noticeable when the frequencies of f and fLl are in an integer ratio, the mechanism of its occurrence will be explained below.

62はダウン・ミクサであるから、上記の整数比fnと
し、fL、〉fL2とすると fm=fL、−fL2 であシ、ミクサ出力にはfnIのほかにfLi ”L2
とfLs+fL2等の周波数が含まれるが、これ等はf
mよシはるかに高い周波数であるから、ミ、・ルす出力
/ 部ノローノやス、フィルターたけバンド、パス中フィル
タで容易に除去されてf のみを取出すことができるわ
けであるが、実際にけミクサの非直線性のため上記の周
波数の高調波が発生する。この高調波それ自体はさらに
i%い周波数であるから問題は無いが、 nfm=fL1の周波数状態では 出力fInのn番高調阪がfLiと同一周波数となって
干渉金生ずる。これはゼロビートとなって外には現わ7
1.ないが、入力周波数がΔf変化した場合には基本波
出力の変化はΔfであり、n番高調波出力の変化はnΔ
fとなる。従って nfm→】lfm:l:nΔf−fL、±nΔfこれと
入力のfL1±Δfとの差を取ると(fL、±nΔf)
−CfL、±Δf)=±(n−1)Δfこの式から、ダ
ウン・ミクサにおいて入力周波数が出力周波数のn倍と
なる周波数の前後において、該入力周波数との差周波数
の(n−1)倍のビート周波数を出力に発生することが
わがシルゼロビートを中心に周波数が交叉するように変
化するので、一般にクロス・スプリアス・ビートと称し
ている。
62 is a down mixer, so if we take the above integer ratio fn and let fL, > fL2, then fm = fL, -fL2, and the mixer output has fLi ``L2'' in addition to fnI.
This includes frequencies such as fLs+fL2, which are fLs+fL2, etc.
Since it has a much higher frequency than m, it is easily removed by the filter band and mid-pass filter, and only f can be extracted. Due to the non-linearity of the mixer, harmonics of the above frequencies are generated. This harmonic itself has an i% lower frequency, so there is no problem, but in the frequency state of nfm=fL1, the nth harmonic of the output fIn has the same frequency as fLi, causing interference. This becomes a zero beat and appears outside7
1. However, if the input frequency changes by Δf, the change in the fundamental wave output is Δf, and the change in the nth harmonic output is nΔ
It becomes f. Therefore, nfm→]lfm:l:nΔf-fL, ±nΔf Taking the difference between this and the input fL1±Δf, (fL, ±nΔf)
-CfL, ±Δf) = ±(n-1)Δf From this formula, it can be seen that before and after the frequency where the input frequency is n times the output frequency in the down mixer, the difference frequency from the input frequency is (n-1). Generating twice the beat frequency in the output means that the frequency changes so that it crosses around the silo beat, so it is generally called a cross spurious beat.

このビートはfmと共に分周器を通って、またはfmヲ
変調して位相比較器64の出力に混在して、それがフィ
ルタ65のカットオフ周波数以下であると、VCO61
に加えられて出力fL1に周波数変調し、スジリアス成
分となるものである。このフィルタ65のカットオフ周
波数ヲ低く取ると時定数が増大して、PLL発振器のロ
ックアツプ・タイム(発振周波数が安定する1での時間
)が長くなるので、実用回路では制約がある。その他に
も基準周波数と位相比較器の高周波や非直線性に基因す
るスプリアスもあるが、いづれも特定の周波数に限定さ
れるから、スゲリアスを発生する周波数関係金賞ける設
i4が望捷しいが、広帯域のゼネツル・カパレーノ用で
は不可能である。その実状を第2図の実用回路例につき
説明する。この回路が第1図の構成と異るのは、PLL
N路立は受信・ぐンドを設定するだめの大きな周波数ス
テツク0(この場合1d 500 kHz )のみを受
持ち、1rIJt((操作のような細かい周波数調部は
別の発振回路(図には省略しであるが、通′iδはPL
L発振回路で構成する)で行い、その周波数を後段ミク
サ4の局部発振器70周波数とミクサ8で混合して、P
LL(ロ)1M6内のミクサ62に注入することによシ
目的を達成している。第1図と第2図とは構成的にはミ
クキ8が追加されただけであり、第1図についてi兄明
したドリフト・キャンセル動作は第2図にも適用される
。(証明は省略) 周波数構成は第]中間周波数47.055 kHz 、
第2中間周波数10,700 kHzで、受信周波数は
O〜30.000 kHzのゼイ、ラル・カッぐレージ
が可能である。以下も周波数は混乱を避けるためkHz
表示に統一する。前段ミクサ2の局部発振周波数fL1
は受信周波数と中間周波数の和であって、47,055
〜77.055 kHzであシ、PLL 60基準周波
数が500kHzであるので、バンド幅も500 kH
zとなる。
This beat passes through a frequency divider with fm or modulates fm and is mixed in the output of phase comparator 64, and if it is below the cutoff frequency of filter 65, VCO 61
It is frequency-modulated to the output fL1 and becomes a streaky component. If the cut-off frequency of this filter 65 is set low, the time constant increases and the lock-up time of the PLL oscillator (the time at 1 during which the oscillation frequency is stabilized) becomes longer, which is a limitation in practical circuits. There are also spurious waves caused by the high frequency and non-linearity of the reference frequency and phase comparator, but since all of them are limited to specific frequencies, it is desirable to have a setup i4 that is frequency-related, which generates spurious spurious waves. This is not possible for wideband Genezuru Capaleno applications. The actual situation will be explained using the practical circuit example shown in FIG. The difference between this circuit and the configuration shown in Figure 1 is that the PLL
The N-RIT is responsible only for the large frequency step 0 (in this case 1d 500 kHz) that is used to set the reception/gun. However, the constant ′iδ is PL
The frequency is mixed with the local oscillator 70 frequency of the downstream mixer 4 by the mixer 8, and the P
This purpose is achieved by injecting it into the mixer 62 in LL(b)1M6. 1 and 2, the only difference in their configuration is that the mikuki 8 is added, and the drift canceling operation described in connection with FIG. 1 is also applied to FIG. (Proof omitted) The frequency configuration is [intermediate frequency 47.055 kHz,
With the second intermediate frequency of 10,700 kHz, the reception frequency can range from 0 to 30.000 kHz. The following frequencies are also in kHz to avoid confusion.
Unify the display. Local oscillation frequency fL1 of front mixer 2
is the sum of the receiving frequency and the intermediate frequency, which is 47,055
~77.055 kHz, and since the PLL 60 reference frequency is 500 kHz, the bandwidth is also 500 kHz.
It becomes z.

このバンド幅を500 kHzとしたのはアマチュア・
バンド用として都合がよいという理由による。後段ミク
サ4の局部発振周波数f、、2は36,355 kHz
であって、第2の発振周波数8,700〜9,200 
kHzとミクサ8で混合して、和の周波数45,055
〜45.555 kHzのfL4をPLL 6内のミク
サ62に注入している。分周器63の分周比N=4〜6
4で、出力側の比較周波数は500 kHzであるから
、分周器の入力(ミクサ62の出力でもある)fr11
=500 kHzX’Nであって、第1図で員兄明した
ようにnfm= fLlのときにクロス・スゲリアス・
ビートを生ずる。ただし、このスプリアスが全部のバン
ドで発生するのでは無いが、前記の周波数関係の場合に
は、fmが3.500 kHzでその14倍がfLiの
49,000 kHzと一致する受信周波1ffl、9
45kHzの前後でビートを発生する。その際の受48
周波数第1表 (単位: kHz ) に対する局部発振周波数fL1と九、の第14尚調波(
これは49,000 kHzで一定)と発生ずるクロス
・スゲリアス・ビートの周波数の関係を第1表に詳しく
示す。このビート周波数は干渉商階勾波の4’ 9,0
00 kHzが局部発掘のfLjと一緒にミクサに加え
られて、中間周波段を通って検波されて発生する周波数
でもある。このようにして発生するクロス・スゲリアス
・ビートを防止するために本発明では前段ミクサの局部
発振器を構成する第1のPLL発振器の制御ルーズ内の
ミクサの局部発振器として第2のPLL発振器を用い、
第1のPLL発振器にて運用バンドの周波数を設定し、
第2のPLL発振器にてバンド内の1位桁周波数を設定
する構成の無線受化機において、仮設ミクサの局75B
発振周波数を前記第1のPLL発振器の?111制御ル
−グに注入することによりドリフト・キャンセル回路を
(7t+成すると共に、該局部発振周波数を倣λ1にす
る′15゜圧制御可変リアクメノス素子に前記第2の1
)LL発振器の周波数を設定するアノア・ダウ/・カウ
ンタの適宜桁出力をD/A変換した′山5圧を肌える4
f/i成とすることにより、クロス・スゲリアス・ビー
トを発生する第1局部発振周波数fL1を、回路内のフ
ィルタでスゲリアス・ビートを除去できる範囲で偏移す
るものである。
The band width was set to 500 kHz by amateurs.
This is because it is convenient for bands. The local oscillation frequency f, 2 of the rear mixer 4 is 36,355 kHz.
and the second oscillation frequency is 8,700 to 9,200
kHz and mixer 8, the sum frequency is 45,055
~45.555 kHz fL4 is injected into mixer 62 within PLL 6. Frequency division ratio N of frequency divider 63 = 4 to 6
4, the comparison frequency on the output side is 500 kHz, so the input of the frequency divider (also the output of the mixer 62) fr11
= 500 kHzX'N, and as explained in Figure 1, when nfm = fLl, cross
produces a beat. However, this spurious does not occur in all bands, but in the case of the above frequency relationship, the receiving frequency 1ffl, 9
Generates beats around 45kHz. Uke 48 at that time
The 14th harmonic of the local oscillation frequency fL1 and 9 for the frequency table 1 (unit: kHz) (
Table 1 shows the relationship between the frequency of the cross-surgical beat (which is constant at 49,000 kHz) and the frequency of the generated cross-surgical beat. This beat frequency is 4'9,0 of the interference quotient gradient.
00 kHz is also the generated frequency that is added to the mixer together with the local excavation fLj and detected through the intermediate frequency stage. In order to prevent cross-surgical beats occurring in this way, the present invention uses a second PLL oscillator as the local oscillator of the mixer within the loose control of the first PLL oscillator constituting the local oscillator of the pre-stage mixer.
Setting the frequency of the operating band with the first PLL oscillator,
In a wireless receiver configured to set the first digit frequency within a band using a second PLL oscillator, the temporary mixer station 75B
The oscillation frequency of the first PLL oscillator? 111 control loop to form a drift canceling circuit (7t+) and set the local oscillation frequency to λ1.
) Setting the frequency of the LL oscillator Anor Dow/・D/A converting the appropriate digit output of the counter 4
By setting f/i, the first local oscillation frequency fL1, which generates the cross sharp beat, is shifted within a range where the sharp beat can be removed by a filter in the circuit.

上Heの第1のPLL光振光路回路いては第2図とほぼ
同様であるから、以下に第2のPLL発振回路旦につい
て述べる。第3図においてPLL回路旦は発振器(VC
O−2) 91 (発振周波数87,000〜92.0
0 (l kHz )、プログラマブル分周器92 (
N;700〜1199)、位相比較器93(基準周波数
f112は10 kHz )、ローパス・フィルタ94
とから飲6す、vCO〜2の発振周波数が非常に高いの
で、ダウン・ミクサ95によシ、分周器υに加える周波
数を7,000〜12,000 kf(zと低下させて
いる。
Since the first PLL optical oscillation optical path circuit of the above He is almost the same as that in FIG. 2, the second PLL oscillation circuit will be described below. In Figure 3, the PLL circuit is an oscillator (VC
O-2) 91 (Oscillation frequency 87,000 to 92.0
0 (l kHz), programmable frequency divider 92 (
N; 700 to 1199), phase comparator 93 (reference frequency f112 is 10 kHz), low-pass filter 94
Since the oscillation frequency of vCO~2 is very high, the frequency applied to the frequency divider υ is lowered to 7,000 to 12,000 kf (z) by the down mixer 95.

VCO−2)出力はl/10分周器を通して8,700
〜9.200 kHzとしてミクサ8 (記号fd第2
図と共通)に加えているが、このように発振周波数を高
くして分周器を;liiすのは、基準周波数をなるべく
尚く取れるようにして回路のロック・アップ・タイムを
短かくするためと、出力を分周することにより、回路内
で発生するスゲリアス出力が軽妙、する等の効果による
が、本発明と直接の関係が無いから詳しくは述べない。
VCO-2) output is 8,700 through a l/10 divider.
~9.200 kHz as mixer 8 (symbol fd 2nd
(common with the figure), the purpose of increasing the oscillation frequency and using the frequency divider is to shorten the lock-up time of the circuit by making it possible to obtain the reference frequency as much as possible. This is due to effects such as frequency division of the output, which reduces the sharpness of the output generated within the circuit, but these are not directly related to the present invention and will not be discussed in detail.

周波数の設定はエンコーダ11から供給するクロック・
パルスを積算するBCDア、f・ダウン・カウンタ10
のデータを分局器揺の各桁に入力している。これは通常
行われている周波数制御方式本発明では前記のアップ・
ダウン・カウンタ10のデータ出力のうちの適宜の桁(
第3図では] kHy。
The frequency is set using the clock supplied from the encoder 11.
BCD f down counter 10 that integrates pulses
The data is input to each digit of the branch unit. This is the commonly used frequency control method.
The appropriate digit of the data output of the down counter 10 (
In Figure 3] kHy.

の桁)の出力をD/A俊換器12を通して直流電圧の変
化に直したものを、後段ミクサ4の局部発振器7の発振
水晶片71の発振周波数全微細胞整する電圧<Ii1!
御可変リアクタンス素子(図では電圧iIt制御可変容
量ダイオ−1’)72に加えて、第2図では36,35
5 kHzの固定周波数であった発振周波数を36,3
55〜36,365kHzの間で変化させて、第1表に
見られるように受信周波数1.945 kH7,の前後
で発生するクロス・スゲリアスを避けることケ可能とす
るものである。この周波数関係を判シ易くまとめたのが
第2辰であって、第1列の受信周波数の変化に対して、
第2局部発振周波斂fL2を第2列のように変化させる
と、第1局部ヴろ振周波FIfL1は第3列に示すよう
に段階的に変化し、クロス・スゲリアスは第4列のよう
にビート周波数は、51cHz以下にはならないので、
狭帯域のフィルタを使用ずれは完全に除去することがで
きるものである。この際に第1中間周波数は々25列の
ように]、 OkHzの暁で変動するが、前に説明した
ドリフト・ギャンセルの原理により補正されるから、第
1中間周波フィルタの帯域を外れないように注i(Cず
れは動作上の問題は紫(い。
The output of the oscillating crystal element 71 of the local oscillator 7 of the rear-stage mixer 4 is adjusted to a voltage <Ii1!
In addition to the controlled variable reactance element (voltage iIt controlled variable capacitance diode 1' in the figure) 72, 36, 35 in FIG.
The oscillation frequency, which was a fixed frequency of 5 kHz, was changed to 36.3
By changing the frequency between 55 and 36,365 kHz, it is possible to avoid the cross-surgical noise that occurs around the receiving frequency of 1.945 kHz, as shown in Table 1. The second column summarizes this frequency relationship in an easy-to-understand manner, and for changes in the reception frequency in the first column,
When the second local oscillation frequency fL2 is changed as shown in the second column, the first local oscillation frequency FIfL1 changes stepwise as shown in the third column, and the cross oscillation frequency changes as shown in the fourth column. Since the beat frequency does not go below 51 kHz,
The deviation can be completely removed by using a narrow band filter. At this time, the first intermediate frequency fluctuates in the order of 25 kHz], but it is corrected by the drift-cancelling principle explained earlier, so that it does not fall out of the band of the first intermediate frequency filter. Note i(C misalignment indicates operational problem).

第1表と第2表の周波数関係をさらに4(」シ易くする
だめに直視的にグラフ表示したのか第4図である。太線
(A)は第1表の場合であって、横軸の受信J・1波叔
に対応して、局部発振周波数は比例的に変化し、1.9
45kHzのゼロ・ビートを中心にクロス・スゲリアス
・ビートが発生し、中間周波数は47,055 kHz
一定であることがわかる。また第2表t」、波数(B)
で示すように、局部発振周波第2表 (単位:kHz) 数1d 49,00 ’OkHz、を避けるように10
 kHzの段階状変化をするからビート周波数は最低で
5kHz一定となる。1.940 kHzで49,00
0 kHzと交叉するように見えるが、実際1−148
,995から49,005 kHz丑でソヤングして変
化するのでビートは発生しない。′また中間周波数は匈
チ歯状に10 kHzの幅で変化するので、フィルタの
中心周波数は47,060 kHzとずれは更に良いこ
とがわかる。第2衣では1kHz間隔の変化で表示しで
あるか、実際はもっと細かく変化できるので、第4図の
ような形状となる。
Figure 4 is a graphical representation of the frequency relationship between Tables 1 and 2 to make it easier to see.The thick line (A) is for Table 1, and the horizontal axis In response to the received J.1 wave, the local oscillation frequency changes proportionally to 1.9
A cross-surgical beat occurs around the zero beat of 45 kHz, and the intermediate frequency is 47,055 kHz.
It can be seen that it is constant. Also, Table 2 t'', wave number (B)
As shown in Table 2, the local oscillation frequency (unit: kHz) is 1d 49,00'OkHz, and the local oscillation frequency is 10
Since the beat frequency changes stepwise in kHz, the beat frequency is constant at a minimum of 5 kHz. 49,00 at 1.940 kHz
Although it appears to intersect with 0 kHz, it is actually 1-148
,995 to 49,005 kHz, so no beat occurs. 'Furthermore, since the intermediate frequency changes in a serpentine shape with a width of 10 kHz, it can be seen that the center frequency of the filter is 47,060 kHz, which is an even better deviation. In the second case, changes are displayed at 1 kHz intervals, but in reality, changes can be made more finely, so the shape is as shown in Figure 4.

282次、第4図では受信周波数と第2局部発振周波数
f工、2とが同量のjI、1波?j1.変化をすると想
定しているが、これVj、必ずしも厳密に同量変化の必
要は蛎、く、H174図破線の11j勝変化が多少曲線
化するだけであって、実用土には支障とならないから、
生産上のネックとなる心配は無いものである。
In the 282nd order, in Fig. 4, the receiving frequency and the second local oscillation frequency f, 2 are the same amount of jI, 1 wave? j1. Although it is assumed that Vj will change, it is not necessarily necessary to change it by exactly the same amount, since the change in 11j shown by the broken line in Figure H174 will only be slightly curved and will not cause any problems in practical use. ,
There is no need to worry about it becoming a bottleneck in production.

4図iMF ノTri]単な156明 第1図はPLL制御届部発振回路を有するダブル・コン
パーノヨン受信俵のグロック回路図例、第2図、第3図
は本発明実施回路のブロック図、第4図は本発明回路の
周波数動作関イイ・全同視的に拾示したグラフである。
Figure 4 is a simple 156-inch diagram. Figure 1 is an example of a Glock circuit diagram of a double comparator receiver having a PLL-controlled transmitter oscillation circuit. Figures 2 and 3 are block diagrams of a circuit implementing the present invention. FIG. 4 is a graph showing the frequency behavior of the circuit of the present invention, taken in a totally symmetrical manner.

1・・・アンテナ、2・・・前段ミクサ、3,5・・バ
ンドパス・フィルタ、4・・・故殺ミクサ、互、旦・・
・PLL発振回路、61.91・・・VCo、62.9
5・・・内部ミクサ、63.92・・・グログラマプル
分周?J、64.93・・・位相比較Wi、65,94
 ・・ローパス・フィルタ、7・・第2/−i部発振器
、71・・・発掘水晶片、72・・・可変容量ダイオー
ド、8・・ミクサ、10・・・BCDアソゾ・ダウン・
カウンタ、11・・エンコーダ、12・・D/A変換器
、fL+ ’ fL2 ’ fL5’fL4・・・局部
発振周波数、fRl l fR2・基準周波数。
1... Antenna, 2... Pre-stage mixer, 3, 5... Band pass filter, 4... Manslaughter mixer, mutual, tan...
・PLL oscillation circuit, 61.91...VCo, 62.9
5...Internal mixer, 63.92...Glogrammaple frequency division? J, 64.93... Phase comparison Wi, 65,94
...Low-pass filter, 7.2nd/-i section oscillator, 71.. Excavation crystal piece, 72.. Variable capacitance diode, 8.. Mixer, 10.. BCD assozo down.
Counter, 11...Encoder, 12...D/A converter, fL+'fL2'fL5'fL4...Local oscillation frequency, fRl l fR2・Reference frequency.

特許出願人 八Nみ1無線株式会社 手続補正招(方式) 昭和59年2月15日 特許庁長官 若 杉 和 夫 殿 、嫁)bl、事件の
表示 昭和58年特許願第184736号 2、発明の名称 クロススプリアスを除去した無線受信機3、補正をする
者 4、補正命令の日付 発明の名称を「クロススプリアスを除去した無線受信機
」と訂正する。
Patent Applicant: 8N Mi1 Radio Co., Ltd. Procedural Amendment Invitation (Method) February 15, 1980 Commissioner of the Patent Office Kazuo Wakasugi, Wife) bl, Indication of Case 1984 Patent Application No. 184736 2, Invention The name of the radio receiver 3 from which cross spurious was removed, the person making the correction 4, the date of the correction order, and the name of the invention are corrected to ``Radio receiver from which cross spurious was removed.''

Claims (1)

【特許請求の範囲】[Claims] 前段ミクサの局部発振器を構成する第1のPLL発振器
の制御ループ内のミクサの局部発振器として第2のPL
L発振器を用い、第1のPLL発振器にて運用バンドの
周波数を設定し、第20PLL発振器にてバンド内の下
位桁周波数を設定する構成の無線受信機において、後段
ミクサの局部発振周波数を前記第1のPLL発振器の制
御ループに注入することによシトリフト・キャンセル回
路を構成すると共に、該局部発振周波数を微調整する電
圧制御可変リアクタンス紫子に前記第20PLL発振器
の周波数を設定するアラグーダウン・カウンタの適宜桁
出力をD/Ai換した電圧を加える4u成とすることに
より、PLL発振器内にて発生するクロス・スノリアス
を除去したことを特徴とするクロススシリアスを除去し
た無線受信機。
A second PL as a local oscillator of the mixer in the control loop of the first PLL oscillator that constitutes the local oscillator of the pre-stage mixer.
In a radio receiver configured to use an L oscillator, a first PLL oscillator sets the frequency of the operating band, and a 20th PLL oscillator sets the lower digit frequency within the band, the local oscillation frequency of the subsequent mixer is set to the second PLL oscillator. The 20th PLL oscillator is injected into the control loop of the 20th PLL oscillator to configure a seat lift cancellation circuit, and the 20th PLL oscillator frequency is set to the voltage controlled variable reactance zigzag that finely adjusts the local oscillation frequency. A radio receiver that eliminates cross-snoritious noise generated in a PLL oscillator by using a 4U configuration that applies a voltage obtained by D/Ai converting the digit output as appropriate.
JP18473683A 1983-10-03 1983-10-03 Radio receiver free from cross spurious Granted JPS6076819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18473683A JPS6076819A (en) 1983-10-03 1983-10-03 Radio receiver free from cross spurious

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18473683A JPS6076819A (en) 1983-10-03 1983-10-03 Radio receiver free from cross spurious

Publications (2)

Publication Number Publication Date
JPS6076819A true JPS6076819A (en) 1985-05-01
JPS6364092B2 JPS6364092B2 (en) 1988-12-09

Family

ID=16158461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18473683A Granted JPS6076819A (en) 1983-10-03 1983-10-03 Radio receiver free from cross spurious

Country Status (1)

Country Link
JP (1) JPS6076819A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4923659B2 (en) * 2006-03-24 2012-04-25 日本電気株式会社 Local oscillation device and radio transceiver using the same

Also Published As

Publication number Publication date
JPS6364092B2 (en) 1988-12-09

Similar Documents

Publication Publication Date Title
US5534822A (en) Parallel phase-locked loop oscillator circuits with average frequency calculation of input stage loop
JP2861542B2 (en) Phase locked loop synthesizer
US4459560A (en) Plural phase locked loop frequency synthesizer
US4488123A (en) Frequency synthesizer
CA1289633C (en) Pll frequency synthesizer
JPS6076819A (en) Radio receiver free from cross spurious
JPH0834589B2 (en) Sampling clock generator
EP1107458B1 (en) System for limiting IF variation in phase locked loops
JPS5994076A (en) Spectrum analyser
KR0140602B1 (en) Phase lock loop for super high frequency ossillator
JPH0130332B2 (en)
JPS61135227A (en) Phase locked loop oscillator
JPH09135167A (en) Phase locked loop circuit device
JP2000004121A (en) Oscillation modulating circuit
JP3248453B2 (en) Oscillator
JPS61216529A (en) Inductive radio frequency synthesizer device
JP2516972Y2 (en) Phase-locked oscillator
JPS6359223A (en) Local oscillator
JPH01114122A (en) Digital frequency synthesizer
JPS5918757Y2 (en) Frequency synthesizer using PLL circuit
JPH04256218A (en) Low noise phase lock oscillation circuit
JPH04138722A (en) Pll integrated circuit device
JPH09214336A (en) Double comparison type synthesizer oscillator
JPH05291948A (en) Phase locked loop system
JPS63228818A (en) Automatic frequency control circuit