JPS607678B2 - Hydrocarbon conversion method - Google Patents

Hydrocarbon conversion method

Info

Publication number
JPS607678B2
JPS607678B2 JP12196576A JP12196576A JPS607678B2 JP S607678 B2 JPS607678 B2 JP S607678B2 JP 12196576 A JP12196576 A JP 12196576A JP 12196576 A JP12196576 A JP 12196576A JP S607678 B2 JPS607678 B2 JP S607678B2
Authority
JP
Japan
Prior art keywords
weight
parts
residue
vacuum
distillate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12196576A
Other languages
Japanese (ja)
Other versions
JPS5249202A (en
Inventor
ヤーコブ・ウアン・クリンケン
ペーテル・ラデユール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of JPS5249202A publication Critical patent/JPS5249202A/en
Publication of JPS607678B2 publication Critical patent/JPS607678B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including solvent extraction as the refining step in the absence of hydrogen
    • C10G67/0454Solvent desasphalting
    • C10G67/0463The hydrotreatment being a hydrorefining
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/12Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/06Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of thermal cracking in the absence of hydrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】 本発明は、常圧炭化水素油釜残から1種又は2種以上の
常圧炭化水素油蟹出油の製造法に関するものである。 竪質炭化水素油蟹出油を製造する場合に、石油精製場で
大規模に行なわれているような原油の常圧蒸留では、釜
残油が副生成物として得られる。 この釜残油は、潤滑油製造用の基礎原料として適する場
合もあるが、いまいま、一般にかなりの量の硫黄、金属
及びアスファルトを含むので、燃料油としてのみ使用さ
れる。常圧炭化水素油留出油の増大する需要を考慮し「
釜残油を竪質留出油に転換しようとする各種のプロセス
が長年にわたって提案されてきた。 このような方法の例には、接触分解、熱分解、炭化水素
の合成と組合わされたガス化、コーキング及び水素化分
解がある。これらの各プロセスに対する原料油として釜
磯油を使用すれば、コマーシャルスケールでのプロセス
を著しく損なうというかなりの難点がある。例えば、こ
れらの釜残油を接触分解する場合には、触媒の消耗が非
常に高く、またコークス及びガスの生成が多いため、低
収量の目的とする常圧蟹出油が得られるにすぎないとい
う著しい欠点がある。釜残油を熱分解して常圧蟹出油を
製造する場合にも、分解生成物が安定のため、目的とす
る常圧留出油への転換が低いので好ましくない。釜残油
をコーキングすると、生成物としてかなりの量のコーク
スが生じ、このコークスの生成は、目的とする常圧蟹出
油の収量を犠牲にする。炭化水素の合成と組合わされた
釜残油のガス化は、むしろ経費がかかり、更にこの方法
では初めに非常に重い分子が分解されて非常に軽い分子
となり、次いでこの軽い分子が再び結合してより重い分
子となるので、大変好ましくない。釜残油を水素化分解
すると、触媒の失活が速く、ガスの生成と水素の消費が
多くなる。上記の事実及び原油を常圧蒸留すると原油の
約半分が蒸留釜残としてあとに残るという事実を考慮す
ると、経済的に実施可能な方法で常圧炭化水素油釜残を
ガソljンのような常圧炭化水素油留出油に転換し得る
方法に対し、さしせまった要求があることは明らかであ
ろう。 事実上水素化分解は、ガス油のような蚤質炭化水素油留
出油をガソリンのような竪質炭化水素油留出油に転換す
るのに優れたプロセスであることが明らかとなったので
、本出願人は、常圧炭化水素油釜残を常圧留出油に転換
するのに、水素化分解をどのように行なえばよいかを見
出すために研究を続けてきた。 主プロセス(即ち、主工程)としての水素化分解を従プ
ロセス(即ち、従工程)としての接触水素化処理、脱歴
、ガス化及び熱分解又はコーキングを正確に組み合わせ
れば、この目的にかなり適する方法となり得ることが見
出された。本発明によれば、次の諸工程即ち、 ‘aー 常圧炭化水素油釜残(AR)を真空蒸留により
真空蟹出油(VD)及び真空釜残(VR)に分別する工
程、‘b’工程
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing one or more atmospheric pressure hydrocarbon oil crab extract from an atmospheric pressure hydrocarbon oil pot residue. In the production of verteous hydrocarbon oil crabmeat oil, in the atmospheric distillation of crude oil, which is carried out on a large scale in oil refineries, kettle residue is obtained as a by-product. Although this kettle residue may be suitable as a base material for the production of lubricating oils, it is now generally used only as a fuel oil, since it generally contains significant amounts of sulfur, metals and asphalt. Considering the increasing demand for atmospheric pressure hydrocarbon distillate oil,
Various processes have been proposed over the years to attempt to convert kettle bottoms to vertical distillate. Examples of such processes are catalytic cracking, pyrolysis, gasification combined with hydrocarbon synthesis, coking and hydrocracking. The use of Kamaiso oil as a feedstock for each of these processes has considerable drawbacks, as it significantly impairs the process on a commercial scale. For example, when these pot residues are catalytically cracked, catalyst consumption is very high and coke and gas are produced in large quantities, so that only a low yield of the desired atmospheric pressure crab product oil can be obtained. There is a significant drawback. Even in the case of producing atmospheric pressure distillate oil by thermally decomposing the pot residue, the decomposition product is stable, so conversion to the target atmospheric distillate oil is low, which is not preferable. Coking of the bottoms produces a significant amount of coke as a product, and the production of this coke comes at the expense of the desired yield of atmospheric crabmeat oil. Gasification of kettle bottoms in combination with hydrocarbon synthesis is rather expensive and, furthermore, in this process very heavy molecules are first broken down into very light molecules, which are then recombined. This is very undesirable because it results in a heavier molecule. Hydrocracking of kettle residue results in rapid deactivation of the catalyst, resulting in increased gas production and hydrogen consumption. Taking into account the above facts and the fact that when crude oil is distilled under atmospheric pressure, approximately half of the crude oil remains as distillation bottoms, it is possible to convert atmospheric hydrocarbon oil bottoms into distillation bottoms in an economically viable manner. It will be clear that there is a pressing need for a process capable of converting atmospheric hydrocarbon oil distillates. In fact, it has become clear that hydrocracking is an excellent process for converting fleasy hydrocarbon oil distillates, such as gas oil, to vertical hydrocarbon oil distillates, such as gasoline. , the present applicant has continued research to find out how to carry out hydrocracking to convert atmospheric hydrocarbon oil bottoms into atmospheric distillate oil. Correct combinations of hydrocracking as the main process (i.e. main step) with catalytic hydrotreating, deasphalting, gasification and pyrolysis or coking as subsidiary processes (i.e. sub-steps) can significantly serve this purpose. It has been found that this method can be suitable. According to the present invention, the following steps are carried out, namely: 'a-- A step of separating atmospheric hydrocarbon oil residue (AR) into vacuum distillate oil (VD) and vacuum residue (VR) by vacuum distillation, 'b 'Process

【c}で得られた蒸留釜残も含んでいて
もよい、工程{aーで得られたVRの少なくとも一部を
、脱歴帯城において脱歴して脱歴油及びアスファルトを
得る工程、{c} 工程【a’の前のAR、工楓aーで
得られたVR及び工程{b字で得られたアスファルトか
ら選ばれた流れの少なくとも一部を、工程【f}で得ら
れた水素で接触水素化処理し、そしてその水素化処理生
成物を蒸留して蒸留釜残を得る工程、‘d} 工程‘c
}で得られた蒸留釜残も含んでいてもよい、工程{b}
で得られたアスファルトの少なくとも一部を、熱分解帯
城及びコーキング帯城から選ばれた熱処理帯域において
加熱して液状熱処理生成物を得る工程、‘e)工程‘d
}で得られた液状熱処理生成物を蒸留により少なくとも
1種の竪質留出油最終生成物、熱処理中間留分及び熱処
理釜残留分に分別する工程、‘f} 工程‘e’で得ら
れた熱処理釜残留分及び工程側のコーキング帯域かち得
られたコークスから選ばれた流れをガス化帯域において
ガス化して水素を得る工程、の上記諸工程を含む、AR
から常圧炭化水素油蟹出油を製造する方法において、主
工程として次の工程則ち、(g)工程{aーで得られた
VD、工程‘dで得られた脱歴油、及び、工程(h)で
得られた釜残の少なくとも一部を、工程‘f}で得られ
た水素で水素化分解帯城において水素化分解して水素化
分解生成物を得る工程、及び(h) 工程(g)で得ら
れた水素化分解生成物を常圧蒸留により分別して少なく
とも1種の軽質蟹出油最終生成物及び釜残を得る工程、
を含むことを特徴とする上記方法が提供される。 本発明の方法の主な技術的効果は、水素化分解により、
釜残が主にガソリン(C5一20000)及び中質留出
油(200〜350qo)に実質的に転換されることで
ある。本発明に係る方法では、水素化分解を主プロセス
(主工程)として使用する。水素化分解プロセスでは、
童質原料油のかなりの部分をより軽質の生成物に転換す
る。目的とする最終生成物は、常圧蒸留して分解生成物
から分離する。最終生成物として1種又は2種以上の隆
質留出油のみを製造しようとする場合には、釜残の処理
を更に次の方法で行なうことができる。 1 全釜残を再び水素化分解する。 2 釜残を同じ組成の2つの部分に分割し、一方を再び
水素化分解し、他方をプロセスから除き、例えば燃料油
のブレンド成分として使用することができる。 3 分解生成物の常圧蒸留の際に、1種又は2種以上の
竪質蟹出油のほかに、再び水素化分解されるところの常
圧中質留出油M,を分離する。 この常圧蒸留で縛られた釜残は、次の方法で更に処理す
ることができる。{a} 全釜残をプロセスから除く。 ‘b} 釜残を同じ組成の2つの部分に分割し、一方を
再び水素化分解し、他方をプロセスから除く。 (c} 釜残から真空蒸留により留出油を分離し、この
留出油は再び水素化分解する。 この真空蒸留により得られた釜残は、プロセスから除く
か又は同じ組成の2つの部分に分割して、一方を再び水
素化分解し、他方をプロセスから除く。1種又は2種以
上の軽質留出油のほかに、最終生成物として常圧中質留
出油M,を製造しようとする場合には、更に得られた釜
残の処理を上記1、2及び3‘c)と同じ方法で行なう
ことができる。 水素化分解生成物を蒸留して得られた釜残を更に処理す
る場合、釜残を同じ組成の2つの部分に分割して、一方
を再び水素化分解し、他方をプロセスから除く方法を用
いるならば、再循環される物質の量は、利用できる釜残
量の25重量%以上が好ましく、またこの量は、釜残の
初留点が低ければ低いほど多く用いる方が好ましい。 本発明に係る方法で用いられる水素化分解は、高温、高
圧下で、また水素の存在下で原料油を適当な水素化分解
触媒と接触させて行なう。 水素化分解は、=毛没階法で行なうのが好ましく、また
第二段階の水素化分解は、水素化分解すべき原料油の窒
素及び多榛芳香族(polねromatjcs)含有量
を主として減少させる接触水素化処理後に行なつ。一段
階水素化分解法で用いるのに適する触媒は、二段階水素
化分解法の第二段階で用いるものと同じく、水素化活性
を有する1種又は2種以上の金属を担体に担持させて成
る中程度の酸性及び強酸性の触媒である。一段階水素化
分解法で用いるのに適する触媒の例は、ニッケル及び/
又はコバルトと更にモリブデン及び/又はタングステン
を坦体としてのアルミナ又は無晶形のシリカーアルミナ
に担持させて成る弗素含有硫化触媒である。二段階水素
化分解法の第二段階で用いるのに適する触媒の例は、ニ
ッケル及び/又はコバルトと更にモリブデン及び/又は
タングステンを無晶形のシリカーアルミナ担体に担持さ
せて成る弗素含有硫化触媒、ニッケル及び/又はコバル
トと更にモリブデン及び/又はタングステンを結晶性シ
リカーアルミナ担体に担持させて成る弗素を含有するか
又は発素を含有しない硫化触媒、及び1種又は2種以上
の第肌属の貴金属、特にパラジウムを結晶性シリカーア
ルミナ担体に担持させて成る弗素を含むか又は弗素を含
まない触媒である。第二段階水素化分解法の第一段階で
用いるのに適する触媒は、水素化活性を有する1種又は
2種以上の金属を担体に担持させて成る弱酸性及び中程
度の酸性の触媒、例えばニッケル及び/又はコバルトと
更にモリブデン及び/又はタングステンをアルミナ又は
悪晶形のシリカーアルミナ担体に担持させて成る弗素含
有硫化触媒である。本発明に係る方法において、水素化
分解を一段階で行なう場合には、次の反応条件が好まし
い:温度350〜4260特に375〜410℃、水素
分圧50〜30ルゞール特に75〜15ルゞール、空間
速度0.25〜5k9.1‐1.h‐1特に0.25〜
2k9.1‐1.h‐1及び水素/原料油の比500〜
300帆ぞ.k9‐1特に1000〜250側夕.k9
‐1。 本発明に係る方法において、水素化分解を二段階で行な
う場合には、第一段階では次の反応条件が好ましい:温
度325〜42500特に350〜410qo、水素分
圧50〜30ルゞ−ル特に75〜150バール、空間速
度0.1〜5k9.1‐1.h‐1特に0.5〜1.5
k9。1‐1.h‐1及び水素/原料油の比500〜3
00帆〆.k9‐1。 第二段階では、温度を除き上記の一段階法における場合
とほぼ同じ条件が好ましいが、この場合の温度は、好ま
しくは300〜400q○特に320〜380℃とすべ
きである。水素化分解を二段階法で行なう場合、第一段
階からの全反応生成物(分離されるアンモニア、硫化水
素又は他の揮発性成分を除く)を第二段階用の原料油と
して用いるのが好ましい。本発明に係る方法では、接触
水素化処理を従プロセス(従工程)として常圧釜残、又
は真空釜残もしくはアスファルトに適用する。 この処理では、水素化分解用の原料油中に存在する非常
に望ましくない化合物を「水素化分解用に一層適する化
合物に転換する。この処理では、同時に少量の常圧炭化
水素油留出油が生成し、最終生成物として単離される。
水素化処理生成物は、最終生成物としての1種又は2種
以上の常圧鰹質留出油、常圧中質蟹出油M2及び常圧釜
残に分け、この常圧釜残を更に真空蒸留して真空留出油
及び真空釜残に分けることができる。接触水素化処理を
アスファルトについて行なう場合には、水素化処理生成
物の常圧釜残に対する上記真空蒸留を非常に適切に脱歴
プロセスと置換することができる。 常圧釜残を脱歴して得られた脱歴油は、水素化分解用の
原料油成分として用いられ、またアスファルトは、熱分
解又はコーキングする。本発明に係る方法により最終生
成物として1種又は2種以上の蟹質留出油のみを製造し
ようとする場合には、常圧中質留出油M2を水素化分解
用の原料油成分として使用する。 しかしながら、1種又は2種以上の軽質留出油のほかに
、最終生成物として常圧中質蟹出油M2をも製造しよう
とする場合には、常圧中質留出油M2を最終生成物とし
てプロセスから除く。本発明に係る方法における従プロ
セス(従工程)としての接触水素化処理は、高温、高圧
及び水素の存在下で原料油を非酸性又は弱酸性の触媒に
接触させて行なわれる。 接触水素化処理を行なう場合には、次の反応条件が好ま
しい:温度380〜500℃特に総0〜460qo、水
素分圧50〜30ルゞール特に75〜20ルゞ−ル、空
間速度0.1〜5kg.1‐1.h‐1特に0.1〜l
k9.1‐1.h‐1及び水素/原料油の比200〜2
00皿Z.k9‐1特に500〜200帆〆.k9‐1
。接触水素化処理を行なう場合の温度は、水素化分解温
度より少なくとも10℃特に少なくとも2ぴ0高い温度
が好ましい(これに関連し、水素化分解を二段階で行な
う場合には、水素化分解温度は第二段階の温度であると
理解すべきである)。接触水素化処理用の適当な触媒の
例は、ニッケル及び/又はコバルトと更にモリブデン、
タングステン及び/又はバナジウムをアルミナ担体に担
持させて成る弗素を含むか又は弗素を含まないアルミナ
、シリカ、硫化触媒並びにニッケル及び/又はコバルト
と更にモリブデン、タングステン及び/又はバナジウム
をシリカ又はシリカーアルミナ担体に坦持させて成る硫
化触媒である。本発明に係る方法は、従プロセス(従工
程)として更に脱歴を含む。 この脱歴は、高温、高圧及び溶媒として過剰量の低級炭
化水素例えばプロパン、ブタン又はペンタンの存在下に
行なうのが好ましい。本発明に係る方法は、従プロセス
(従工程)として更に熱分解又はコーキングを含む。 これらの方法では、かなりの割合の釜残原料が蟹出油に
転換される。熱分解又はコーキングして得られた生成物
を蒸留し、最終生成物としての又は水素化分解用の原料
油としての中質留出油M3のほかに、最終生成物として
1種又は2種以上の竪質轡出油を分離することができる
。コークス又は熱分解して得られた生成物を処理した後
に残る釜残留分は、ガス化用の原料として役にたつ。本
発明に係る方法において熱分解を行なう場合には、温度
を400〜525qo、圧力を2.5〜25バール及び
滞留時間を1〜25分として行なうのが好ましい。特に
好ましいのは、熱分解を温度425〜500qo、圧力
5〜20バール及び滞留時間5〜20分で行なう場合で
ある。本発明に係る方法においてコーキングを行なう場
合には、温度400〜600qo、圧力1〜2$ゞール
及び滞留時間5〜5凪時間で行なうのが好ましい。特に
好ましいのは、コーキングを温度425〜550℃、圧
力2.5〜20バール及び滞留時間10〜4餌時間で行
なう場合である。最後に、本発明に係る方法は、従プロ
セス(従工程)としてガス化を含む。 ガス化用の原料としては、コークス又は熱分解して得ら
れた生成物を処理した後に残る釜残留分が用いられる。
ガス化は、原料を酸素と不完全燃焼させて行なう。スチ
ームを減速剤として混合物に加えることは好ましい。不
完全燃焼を行なうと、ほとんど一酸化炭素と水素から成
り、またかなりの量の硫黄を含むクルード(crMe)
ガスが得られる。このクルードガスの水素含有量は、ク
ルードガスを水性ガス転化反応させれば増大する。なお
この反応では、一酸化炭素がスチームと反応して二酸化
炭素と水素に転換される。水性ガス転化反応は、転換す
べきガスを温度325〜40030で、高温水性ガス転
化触媒を含む2以上の反応器に通し、次いで一部転換さ
れたガス混合物を温度200〜275q0で、低温水性
ガス転化触媒を含む反応器に通して行なうのが好ましい
。高温水性ガス転化触媒としては、鉄−クロム触媒が非
常に適している。効果的な低温水性ガス転化触媒は、銅
−亜鉛触媒である。すすによる触媒の汚染が遠いことを
考慮し、従来の反応器を用いる場合には、少なくともガ
スを接触水性ガス転化反応させる前に、当該ガスからす
すを除かねばならない。硫黄感受性の触媒例えば上記の
鉄一クロム及び銅−亜鉛触媒を用いる場合には、ガスを
接触水性ガス転化反応させる前に、当該ガスから硫黄も
除かねばならない。硫黄非感受性触媒例えば日本特許第
1108382号(持公昭56−52844号)明細書
によるNi/Mo/AI2QもしくはCo/八4o/A
i203触媒又は日本特許第1108384号(特公昭
56−52845号)明細書によるNi/Mo/AI/
AI203もしくはCo/Mo/AI/AI203触媒
を用いる場合には、クルードガスから硫黄を除くことは
省略することができる。水性ガス転化反応は、圧力10
〜10ルゞール特に20〜80バールで行なうのが好ま
しい。水性ガス転化反応を行なわせるガス混合物中に存
在するスチームの量は、一酸化炭素1モル当たり1〜5
0モルとするのが好ましい。水性ガス転化反応終了後純
粋な水素を得るには、水素に富むガスを精製しなければ
ならない。水性ガス転化反応に先がけて、すす及び硫黄
を除去していなかったときは、新たに除去しなければな
らない。更に水素に富むガスの精製は、とりわけ生成し
た二酸化炭素と未転換一酸化炭素の除去から成る。本発
明に係る方法において、ガス化して製造される水素は、
主として接触水素化処理及び水素化分解用に使用される
。この方法は、ガス化して製造された水素量が、接触水
素化処理と水素化分解との水素必要量を少なくとも完全
に満足させるに足りるようにして行なうのが好ましい。
ガス化で生じる水素量が、接触水素化処理及び水素化分
解用に必要とされる量より多ければ、余分の量の水素は
、この方法の範囲外の目的に用いることができる。ガス
化して製造された水素量が、接触水素化処理及び水素化
分解用の水素必要量を満たさない場合には、必要な水素
量を新たにプロセスの外部から供給せねばならない。ガ
ス化で得られる水素量は、主としてガス化帯城に供給さ
れる原料の量によって決定される。原料の量は、接触水
素化処理、脱歴及び熱分解又はコーキングを行なう条件
を変えることにより、ある程度まで制御することができ
る。ガス化帯域に送られる原料の量を制御するのに更に
好ましい手段は、下の通りである:‘a)水素化分解し
て得られた生成物の釜残の一部を、熱分解、コーキング
又はガス化用の原料成分として使用;{b’ 既に接触
水素化処理された生成物の重質留分に関する接触水素化
処理のくり返し;‘c} 当該物質の全てを処理するか
わりに、一部の適当な物質のみに関する接触水素化処理
;【d} ‘aー〜‘cーで述べた方法の組合せ。 ‘c)の場合には、プロセス用の原料として役にたつ常
圧蒸留釜残もしくはこれを真空蒸留して得られた真空釜
残、又は真空釜残を脱歴して得られたアスファルトの一
部のみを接触水素化処理し、残りを水素化処理生成物と
混合する。‘c}について上記に簡単に述べた本発明に
係る方法の3通りの態様の各々において、アスファルト
及び/又はこれを接触水素化し、水素化処理生成物を蒸
留して得られた釜残は、熱分解又はコーキングして転換
することができるので、この3通りの態様は、6通りの
プロセス例に相当する。この6通りのプロセス例は、添
付図面を参照しながら以下に詳細に説明する。プロセス
例 1(第1図参照) このプロセスは、接触水素化処理装置1、第一常圧蒸留
装置2、真空蒸留装置3、脱歴装置4、熱分解装置5、
第二常圧蒸留装置6、ガス化装置7、接触水素化分解装
置8及び第三常圧蒸留装置9から成るプラントで行なう
。 常圧炭化水素油釜残10は、11と12に二分割する。
11を接触水素化処理し、水素化処理生成物13は、常
圧蒸留してC4‐蟹分14、ガンリン留分15、中質留
出油留分16及び釜残17に分ける。 釜残17は、常圧釜残10からの12と混合し、混合物
を真空蒸留して真空蟹出油18及び真空釜残19に分け
る。釜残19は、脱歴して脱歴油20及びアスファルト
21に分ける。アスファルト21は熱分解し「 また熱
分解生成物22は、常圧蒸留してC4‐蟹分23、ガン
リン留分24へ中質留出油蟹分25及び釜残26に分け
る。釜残26はガス化し、また得られたガスは、水性ガ
ス転化反応及び精製させて、水素27及びほとんど二酸
化炭素から成る廃ガス28に転換される。水素は二分割
され、一方29は接触水素化処理、他方30は接触水素
化分解用に供給する。真空留出油18は、脱歴油20と
共に水素化分解する。水素化分解生成物31は、常圧蒸
留してC4‐蟹分32、ガソリン蟹分33、中質留出油
蟹分34及び釜残35に分ける。釜残35は二分割し、
一方36は再び水素化分解し、他方37はガス化用の原
料成分として使用する。プロセス例 0(第0図参照) このプロセスは、プロセス例1で述べたものとほとんど
等しいプラントで行なうが、異なる点は、先の熱分解装
置5のかわ切こコーキング装置5を用いることである。 常圧炭化水素油釜残10の処理は、釜残19を脱歴して
脱歴油20及びアスファルト21‘こ分割するまで(分
割を含む)はプロセス例1とほぼ同じ方法で行なう。ア
スファルト21は、コーキングして蟹出油22及びコー
クス23に転換する。蟹出油22は、常圧蒸留してC4
‐留分24、ガソリン蟹分25、中質留出油蟹分26及
びプロセスから除かれる釜残27に分ける。コークス2
3はガス化し、また得られたガスは、水性ガス転化反応
及び精製させて、水素28及びほとんどが二酸化炭素か
ら成る廃ガス29に転換する。水素28は二分割し、一
方30を接触水素化処理用に、他方31を接触水素化分
解用に供給する。真空留出油18は、脱歴油20と共に
水素化分解するが、この場合、水素31のほかに、新ら
しく水素32を水素化分解用に供給する。水素化分解生
成物33は、常圧蒸留してC4‐蟹分34、ガソリン蟹
分35、中質蟹出油鶴分36及び再水素化分解する釜残
37に分ける。プ。セス例 m(第m図参照)このプロ
セスは、第一真空蒸留装置1、接触水素化処理装置2、
第一常圧蒸留装置3、第二真空蒸留装置4、脱歴装置5
、熱分解装暦6、第二常圧蒸留装置7、ガス化装置8、
接触水素化分解装置9及び第三常圧蒸留装置10から成
るプラントで行なう。 常圧炭化水素油釜残11は、真空蒸留して真空留出油1
2及び真空釜残13に分ける。真空釜残13は、14及
び15に二分割する。14は援触水素化処理し、水素化
処理生成物16は、常圧蒸留してC4‐蟹分17、ガン
リン留分18、中質轡出油蟹分19及び釜残2川こ分け
る。 釜残20は、真空蒸留して真空留出油21及び真空釜残
22に分ける。真空釜残22は、真空釜残13からの1
5と混合し、混合物は脱歴して脱歴油23及びアスファ
ルト24に分ける。アスファルト24は熱分解し、また
熱分解生成物25は、常圧蒸留してC4‐蟹分26tガ
ンリン留分27、中質蟹出油蟹分28及び釜残29に分
ける。釜残29はガス化し、また得られたガスは、水性
ガス転化反応及び精製させて、水素30及びほとんどが
二酸化炭素から成る廃ガス31に転換する。水素3川ま
二分割し、一方32を接触水素化処理用に、他方33を
接触水素化分解用に供給する。真空蟹出油12は、脱歴
油23と共に水素化分解する。水素化分解生成物34は
、常圧蒸留してC4‐留分35、ガンリン留分36、中
質留出油留分37及び釜残38に分ける。釜残38は二
分割し、一方39を再び水素化分解し、他方40をプロ
セスから除く。プロセス例 W(第W図参照) このプロセスは、プロセス例mで述べたものとほとんど
等しいプラントで行なうが、異なる点は、先の熱分解装
置6のかわりにコーキング装置6を用いることである。 常圧炭化水素油釜残11の処理は、15及び22の混合
物を脱歴して脱歴油23及びアスファルト24に分割す
るまで(分割を含む)はプロセス例mとほぼ同じ方法で
行なう。アスファルト24は、コーキングして留出油2
5及びコークス26に転換する。留出油25は、常圧蒸
留してC4‐留分27、ガンリン留分28、中質留出油
留分29及びプロセスから除かれる釜残30に分ける。
コークス26はガス化し、また得られたガスは、水性ガ
ス転化反応及び精製させて、水素31及びほとんどが二
酸化炭素から成る廃ガス32に転換する。水素31は二
分割し、一方33を接触水素化処理用に「他方34を接
触水素化分解用に供給する。真空轡出油12及び21は
、脱歴油23と共に水素化分解する。水素化分解生成物
35は、常圧蒸留してC4‐蟹分36、ガソリン蟹分3
7、中質留出油留分38及び再び水素化分解される釜残
39に分ける。プロセス例 V(第V図参照) このプロセスは、第一真空蒸留装置1、脱歴装置2、接
触水素化処理装置3、第一常圧蒸留装置4、第二真空蒸
留装置5、熱分解装置6、第二常圧蒸留装置7、ガス化
装置8、接触水素化分解装置9及び第三常圧蒸留装置1
0から成るプラントで行なう。 常圧炭化水素油釜残ilは、真空蒸留して真空留出油1
2及び真空釜残13に分ける。真空釜残13は、脱歴し
て脱歴油14及びアスファルト15に分ける。アスファ
ルト15は、16及び17に二分割する。16は接触水
素化処理し、水素化処理生成物18は、常圧蒸留してC
4‐留分19、ガンリン留分20、中質留出油留分21
及び釜残22に分ける。 釜残22は、真空蒸留して真空留出油23及び真空釜残
24に分ける。真空釜残24は、アスファルト15から
の17と混合し、混合物は熱分解する。熱分解生成物2
5は、常圧蒸留してC4‐蟹分26、ガンリン留分27
、中質蟹出油蟹分28及び釜残29に分ける。釜残29
はガス化し、また得られたガスは、水性ガス転化反応及
び精製させて、水素30及びほとんどが二酸化炭素から
成る廃ガス31に転換する。水素30は二分割し、一方
32を接触水素化処理用に、他方33を接触水素化分解
用に供給する。真空蟹出油12及び23は、脱歴油14
と共に水素化分解する。水素化分解生成物34は、常圧
蒸留してC4‐蟹分36、ガンリン留分36、中質蟹出
油留分37及び釜残38に分ける。釜残38は二分割し
、一方39を再び水素化分解し、他方40をプ。セスか
ら除く。プロセス例 の(第の図参脇) このプロセスは、プロセス例Vで述べたものとほとんど
等しいプラントで行なうが、異なる点は、先の第二真空
蒸留装置5が存在せず、また熱分解装置6のかわりにコ
ーキング装置5を用いることである。 常圧炭化水素油釜残10は、真空蒸留して真空留出油1
1及び真空釜残12に分ける。真空釜残12は、脱歴し
て脱歴油13及びアスファルト14に分割する。アスフ
ァルト14は、15及び16に二分割する。15は接触
水素化処理し、水素化生成物17は、常圧蒸留してC4
‐蟹分18、ガソリン蟹分19、中質蟹出油轡分20及
び釜残21に分ける。 釜残21は、アスファルト14からの16と混合し、混
合物は、コーキングして留出油22及びコークス23に
転換する。蟹出油22は、常圧蒸留してC4‐留分24
、ガンリン留分25、中質留出油留分26及びプロセス
から除かれる釜残27に分ける。コークス23はガス化
し、また得られたガスは、水性ガス転化反応及び精製さ
せて、水素28及びほとんどが二酸化炭素から成る廃ガ
ス29に転換する。水素28は二分割し、一方30を接
触水素化処理用に、他方31を援軸水素化分解用に供給
する。真空蟹出油11は、脱燈油13と共に水素化分解
するが、この場合には、水素31のほかに、新らしく水
素32を水素化分解用に供給する。水素化分解生成物3
3は、常圧蒸留してC4‐留分34、ガソリン蟹分35
、中質留出油留分36及び釜残37に分ける。釜残37
は二分割し、一方38を再び水素化分解し、他方39を
プロセスから除く。本特許出願は、第1〜町図に示した
ように、本発明に係る方法を行なうためのプラントをも
含む。 次の実施例に従って本発明を説明する。 本発明に係る方法は、中東産の原油の常圧蒸留釜残につ
いて行なった。 常庄蒸留釜残の初留点は350oo、硫黄含有量は4重
量%及びC4アスファルト含有量は2立重量%であった
。本方法は、プロセス例1〜町に従って行なった。各プ
ロセスでは、次の条件を用いた。全てのプロセス例で、
アルミナ10の重量部に対し、コバルト5重量部及びモ
リブデン1の重量部を含む硫化(sulphjdic)
Co/Mo/AI203触媒を、接触水素化処理用に使
用した。 プロセス例1〜Wによる場合には、平均温度390qC
、水素分圧100バール及び水素/油の比100州そ/
k9で接触水素化処理を行なった。プロセス例1及び0
‘こよる場合には、接触水素化処理を、空間速度0.7
5【9.1‐1.h‐1で行ない、またプロセス例m及
びWによる場合には、空間速度0.4k9.1‐1.h
−1で行なった。プロセス例V及びのによる場合には、
接触水素化処理を、平均温度45ぴ0、水素分圧15ル
ゞール、空間速度0.2k9.1‐1.h‐1及び水素
/油の比1500N夕/k9で行なった。全てのプロセ
ス例で、溶媒として液体ブタンを用い、溶媒/油の重量
比を3.5:1〜4.5:1として脱歴を行なった。 プロセス例1〜m、V及びのによる場合には脱歴温度を
12030、プロセス例Wによる場合には当該温度を1
40qoとした。プロセス例1、m及びVによる場合に
は、熱分解を「圧力1ルゞール、滞留時間15分及び温
度450℃〜47000で行なった。プロセス例ロ、N
及びのによる場合には、コーキングを、圧力3.5ゞー
ル、温度470℃及び滞留時間20〜2餌時間で行なっ
た。 全てのプロセス例で、ガス化を、温度1300こ0、圧
力3ルぐ−ル、及びスチーム/原料の重量比と、酸素/
原料の重量比を共に0.8:1として行なった。 水性ガス転化反応は、温度350℃及び圧力30バール
で鉄−クロム触媒上で、また温度250oo及び圧力3
ルゞールで銅−亜鉛触媒上で連続して行なつた。全ての
プ。 セス例で、接触水素化分解を二段階法で行なったが、第
一段階からの全反応生成物を第二段階用の原料として用
い、分解生成物の一部を第一段階に再循環した。全ての
プロセス例で、接触水素化分解の第一段階用に、ァルミ
ナ100重量部当たりニッケル5重量部、モリブデン2
の重量部及び弗素15重量部を含む硫化Ni/Mo/F
/N203触媒を、また第二段階用には、ホージャサィ
ト10の重量部当たりニッケル3重量部、タングステン
10重量部及び弗素5重量部を含む硫化Ni/W/F/
ホージャサィト触媒を用いた。全てのプロセス例で、接
触水素化分解の第一段階を平均温度390℃、圧力12
ルゞール、水素/油の比2000Nそ.k9‐1及び空
間速度0.79.1−.h‐1で行ない、第二段階を平
均温度365℃、圧力120バール、水素/油の比20
0州夕.kg−1及び空間速度1.9.r1.h1で行
なった。実施例 1 この実施例は、プロセス例1に従って行なった。 350つ○十常圧蒸留釜残1010の重量部から出発し
、それぞれの物質について次の量が得られた:1 14
9.の重量部、1251重量部、 C4‐蟹分142.1重量部、 C5200ooガソリン轡分150.4重量部、200
〜350oo中質留出油蟹分1624重量部、350q
o+常圧釜残1744.な重量部、350〜52000
真空蟹出油1850.$重量部、520oo+真空釜残
1944.頚重量部、脱歴油2030.抗重量部、アス
ファルト2114重量部、 C4‐蟹分230.1重量部、 C5200q0ガソリン蟹分241.1重量部、200
〜350q0中質蟹出油留分251.5重量部、35ぴ
0十常圧蟹出油2611.丸重量部、水素272笹重量
部、290.積重量部、 302.の重量部、 C4‐蟹分324.4重量部、 C520000ガソリン蟹分3353.の重量部、20
0〜350qo中質蟹出油留分3423.4重量部、3
50oo十常圧釜残356.4重量部、364.4重量
部、及び 372.の重量部。 実施例 0 この実施例は、プロセス例nlこ従って行なった。 35000十常圧蒸留釜残1010の重量部から出発し
、それぞれの物質について次の量が得られた:1 12
7.2重量部、1272.母重量部、 C4‐留分141.1重量部、 ち200午0ガソリン蟹分150公重量部、200〜3
50qo中質留出油蟹分161.4重量部、35び○十
常圧釜残1724.の重量部、350〜52ぴ0真空留
出油1847.母重量部、520℃十真空釜残1949
.笹重量部、脱歴油2032.1重量部、 アスファルト2117.り重量部、 留出油228.2重量部、 コークス239.5重量部、 C4‐蟹分242公電量部、 C200℃ガソリン蟹分251.紅重量部、200〜3
50℃中質留出油留分262.2重量部、350℃十常
圧釜残272.の重量部、水素281.軍重量部、 300.4重量部、 311.a重量部、 水素321.2重量部、 C4‐蟹分344.5重量部、 C5200午0ガンリン留分3553.母重量部、20
0〜300℃中質蟹出油蟹分3624.1重量部、及び
350qo十常圧釜残378.1重量部。 実施例 mこの実施例は、プロセス例mに従って行なっ
た。 350qo十常圧蒸留釜残1 110の重量部から出発
し、それぞれの物質について次の量が得られた:350
〜520oo真空留出油1244.広重量部、520℃
十真空釜残1356.の重量部、1423.亀重量部、 1532.2重量部、 C4‐蟹分171.鑓重量部、 C520000ガソリン蟹分181.箱重量部、200
〜350oo中質留出油留分193.箱重量部、350
qo十常圧釜残2018.2重量部、350〜5200
0真空留出油218.4重量部、52ぴ0十真空釜残2
29.頚重量部、脱歴油2327.5重量部、 アスファルト2414.5重量部、 C4‐蟹分260.2重量部、 C5200℃ガンリン留分271.の重量部、200〜
350qo中質留出油留分281.4重量部、350℃
十常圧釜残2911.9重量部、水素302.丸重量部
、 320.母重量部、 331.0重量部、 C4‐留分354.1重量部、 C20ぴ○ガンリン留分3648.亀重量部、200〜
3503○中質蟹出油蟹分3721.4重量部、350
℃十常圧釜残3810.5重量部、393.の重量部、
及び 407.5重量部。 実施例 W この実施例は、プロセス例Wに従って行なった。 350午C+常圧蒸留釜残1 110の重量部から出発
して、それぞれの物質について次の鼻が得られた:35
0〜52000頁空留出油1244.■重量部、520
30十真空釜残】356.の重量部、1411.頚重量
部、1544.2重量部、 C4‐蟹分170.頚重量部、 C5200oCガンリン留分180.0重量部〜200
〜35000中質蟹出油蟹分191.5重量部、350
oo+常圧釜残2の9山室量部、350〜520こC夏
空留出油214.な重量部〜520qo十真空釜残22
44頚重量部「脱歴油2323.5重量部、 アスファルト2鶴25.5重量部し 留出油2611.0重量部、 コークス2613.母重量部、 C4‐蟹分273.2重量部、 C520000ガソリン蟹分282.笹重量部「200
〜350qo中質蟹出油蟹分293.1重量部、350
qo十常圧釜残302.鑓重量部「水素312.5重量
部、 330.2重量部、 342.溝重量部「 C4‐留分364.の重量%、 C5200qoガソljン留分3750.広重量部、2
00〜35000中質留出油蟹分3820.の重量部、
及び350oo+常圧釜残397.箱重量部。 実施例 V この実施例は、プロセス例Vに従って行なった。 35000十常圧蒸留釜残1 110の重量部から出発
し、それぞれの物質について次の量が得られた:350
ご0〜520oo真空留出油1244.の重量部、52
0qo十真空釜残1356.の重量部、脱歴油1433
.の重量部、アスファルト1523.0重量部、 1610.の重量部、 1713.の重量部、 C4‐蟹分191.鑓重量部、 C5200ooガンリン留分200.9重量部、200
〜350oo中質留出油留分213.母重量部、350
oo十常圧釜残224.4重量部、350〜52び0真
空蟹出油232.箱重量部、520oo+真空釜残24
2.1重量部、C4‐蟹分260.2重量部、 Q200qoガンリン留分271.公重量部、200〜
350qo中質蟹出油留分281.亀重量部、350℃
十常圧釜残2912.1重量部、水素302.4重量部
、 320.5重量部、 331.$重量部「 C4‐轡分354.丸重量部、 C200qoガンリン留分3652.4重量部、200
〜350午0中質留出油留分3722.8重量部、35
0午0十常圧釜残386.の重量部「394.丸重量部
「及び 4函1。 り重量部、実施例 の この実施例は〜プロセス例のに従って行なった。 350oo十常圧蒸留釜残亀010の重量部から出発し
それぞれの物質について次の量が得られた;350〜5
20qC真空蟹出油軍 144.の重量部、520oo
十真空釜残1256.の重量部、脱歴油1332.亀重
量部、アスファルト亀423.1重量部、 亀511.2重量部「 再611.$重量部「 C4‐留分181.5重量部、 C5200℃ガンリン留分貴91.の重量部「200〜
35000中質留出油留分204.4重量部、350q
o+常圧釜残214.堵重量部、函出油228.5重量
部、 コークス238.箱重量部、 C4‐留分242.箱重量部、 ち200午0ガンリン留分251.9重量部、200〜
350℃中質留出油留分262.丸重量部、350午0
十常圧釜残272.の重量部、水素281.5重量部、 300.亀重量部、 310.塁重量部、 水素321.の重量部、 C4‐留分344.1重量部、 C5200午0ガンリン留分3550.紅重量部、20
0〜350oo中質留出油蟹分3622.2重量部、3
50qo十常圧釜残375母重量部、384.1重量部
、及び 391.0重量部。
A step of deasphalting at least a part of the VR obtained in step {a-, which may also contain the distillation residue obtained in [c}, in a deasphalting belt to obtain deasphalted oil and asphalt; {c} At least a part of the stream selected from the VR obtained in the AR before step [a', the VR obtained in Koukae a] and the asphalt obtained in step {b-shape, is mixed with the asphalt obtained in step [f} A step of catalytic hydrotreating with hydrogen and distillation of the hydrotreated product to obtain a still residue, 'd} Step'c
} may also contain the still residue obtained in step {b}
a step of heating at least a part of the asphalt obtained in the heat treatment zone selected from the pyrolysis zone and the coking zone to obtain a liquid heat-treated product, 'e) step'd
} 'f} fractionating the liquid heat-treated product obtained in step 'e' into at least one final distillate product, a heat-treated middle distillate and a heat-treated kettle residue by distillation; AR comprising the above-mentioned steps of gasifying a stream selected from the heat treatment pot residue and coke obtained from the coking zone on the process side in a gasification zone to obtain hydrogen.
In the method for producing atmospheric pressure hydrocarbon oil crab product oil, the main steps include the following steps: (g) step {VD obtained in step a, deasphalted oil obtained in step 'd, a step of hydrogenolyzing at least a portion of the pot residue obtained in step (h) with the hydrogen obtained in step 'f} in a hydrocracking zone to obtain a hydrocracking product; and (h) fractionating the hydrocracked product obtained in step (g) by atmospheric distillation to obtain at least one light crab product final product and bottoms;
There is provided the above method, characterized in that the method includes: The main technical effect of the method of the present invention is that by hydrogenolysis,
The bottoms are essentially converted into gasoline (C5 - 20,000) and medium distillate (200-350 qo). In the method according to the invention, hydrocracking is used as the main process. In the hydrocracking process,
A significant portion of the young feedstock is converted to lighter products. The desired final product is separated from the decomposition products by atmospheric distillation. When one or more types of elevated distillate oils are to be produced as the final product, the bottom residue can be further treated by the following method. 1 Hydrocracking all the bottoms again. 2. The bottoms can be divided into two parts of the same composition, one of which is hydrocracked again and the other removed from the process and used, for example, as a blending component of fuel oil. 3. During the atmospheric distillation of the decomposition products, in addition to one or more types of vertical crab product oil, an atmospheric medium distillate M, which is to be hydrocracked again, is separated. This atmospheric distillation bound residue can be further processed in the following manner. {a} Remove all pot residue from the process. 'b} Split the bottoms into two parts of the same composition, hydrocrack one again and remove the other from the process. (c) Distillate oil is separated from the bottoms by vacuum distillation, and this distillate is again hydrocracked. The bottoms obtained by this vacuum distillation are either removed from the process or separated into two parts of the same composition. split, one is hydrocracked again and the other is removed from the process.In addition to one or more light distillates, an atmospheric medium distillate M, is to be produced as the final product. In this case, the remaining residue can be further treated in the same manner as in 1, 2 and 3'c) above. When the bottoms obtained by distilling the hydrocracked product are further processed, a method is used in which the bottoms are divided into two parts of the same composition, one part is hydrocracked again, and the other part is removed from the process. In this case, the amount of recycled material is preferably 25% by weight or more of the available remaining amount of the pot, and the lower the initial boiling point of the remaining pot, the more preferably this amount is used. The hydrocracking used in the process according to the invention is carried out by contacting the feedstock with a suitable hydrocracking catalyst at high temperature and pressure and in the presence of hydrogen. The hydrocracking is preferably carried out by the hair fall process, and the second stage of hydrocracking mainly reduces the nitrogen and aromatic content of the feedstock to be hydrocracked. This is done after catalytic hydrogenation treatment. Catalysts suitable for use in the one-stage hydrocracking process, like those used in the second stage of the two-stage hydrocracking process, are comprised of one or more metals having hydrogenation activity supported on a carrier. It is a moderately acidic and strongly acidic catalyst. Examples of suitable catalysts for use in the one-step hydrocracking process include nickel and/or
Alternatively, it is a fluorine-containing sulfurization catalyst in which cobalt and further molybdenum and/or tungsten are supported on alumina or amorphous silica alumina as a carrier. Examples of suitable catalysts for use in the second stage of the two-stage hydrocracking process are fluorine-containing sulfurized catalysts comprising nickel and/or cobalt and further molybdenum and/or tungsten supported on an amorphous silica-alumina support; A fluorine-containing or hydrogen-free sulfurization catalyst comprising nickel and/or cobalt and further molybdenum and/or tungsten supported on a crystalline silica-alumina support, and one or more fluorine-free sulfur catalysts. A fluorine-containing or fluorine-free catalyst comprising a noble metal, particularly palladium, supported on a crystalline silica alumina support. Catalysts suitable for use in the first stage of the second stage hydrocracking process include weakly acidic and moderately acidic catalysts comprising one or more metals having hydrogenation activity supported on a support, such as This is a fluorine-containing sulfurization catalyst comprising nickel and/or cobalt and molybdenum and/or tungsten supported on an alumina or malignant crystalline silica-alumina carrier. In the process according to the invention, if the hydrogenolysis is carried out in one step, the following reaction conditions are preferred: temperature 350-4260°C, especially 375-410°C, hydrogen partial pressure 50-30°C, especially 75-15°C. Rule, space velocity 0.25-5k9.1-1. h-1 especially 0.25~
2k9.1-1. h-1 and hydrogen/feedstock ratio 500~
300 sails. k9-1 especially on the 1000-250 side. k9
-1. If, in the process according to the invention, the hydrogenolysis is carried out in two stages, the following reaction conditions are preferred in the first stage: temperature 325-42,500 qo, especially 350-410 qo, hydrogen partial pressure 50-30 lbs, especially 75-150 bar, space velocity 0.1-5k9.1-1. h-1 especially 0.5-1.5
k9.1-1. h-1 and hydrogen/feedstock ratio 500-3
00 sails〆. k9-1. In the second stage, substantially the same conditions as in the one-stage process described above are preferred, except for the temperature, which should preferably be between 300 and 400 q<0>, particularly between 320 and 380<0>C. When hydrocracking is carried out in a two-stage process, it is preferred to use the entire reaction product from the first stage (excluding ammonia, hydrogen sulfide or other volatile components which are separated) as feedstock for the second stage. . In the method according to the present invention, catalytic hydrogenation treatment is applied as a sub-process to normal pressure pot residue, vacuum pot residue, or asphalt. This process converts highly undesirable compounds present in the feedstock for hydrocracking into compounds that are more suitable for hydrocracking. produced and isolated as the final product.
The hydrotreated product is divided into one or more normal pressure bonito distillate oil, normal pressure medium crab distillate oil M2 and an atmospheric residue as final products, and this atmospheric distillation residue is further subjected to vacuum distillation. It can be divided into vacuum distillate oil and vacuum pot residue. When catalytic hydrotreating is carried out on asphalt, the vacuum distillation described above on the atmospheric bottoms of the hydrotreating product can very suitably be replaced by a deasphalting process. The deasphalted oil obtained by deasphalting the residue from the atmospheric reactor is used as a feedstock component for hydrocracking, and asphalt is thermally cracked or coked. When it is intended to produce only one or more types of crab distillate oil as the final product by the method according to the present invention, atmospheric pressure medium distillate M2 is used as a feedstock oil component for hydrocracking. use. However, in addition to one or more types of light distillate oil, when it is intended to produce normal pressure medium quality crab extract oil M2 as the final product, the normal pressure medium quality distillate oil M2 is used as the final product. removed from the process as an object. The catalytic hydrogenation treatment as a secondary process in the method of the present invention is carried out by bringing the feedstock oil into contact with a non-acidic or weakly acidic catalyst at high temperature, high pressure, and in the presence of hydrogen. When carrying out a catalytic hydrogenation treatment, the following reaction conditions are preferred: temperature 380-500°C, especially 0-460 qo total, hydrogen partial pressure 50-30 lbs, especially 75-20 lbs, space velocity 0. .1~5kg. 1-1. h-1 especially 0.1~l
k9.1-1. h-1 and hydrogen/feedstock ratio 200-2
00 dishes Z. K9-1 especially 500-200 sails. k9-1
. The temperature in the case of carrying out the catalytic hydrogenation treatment is preferably at least 10° C., especially at least 2.0° C. higher than the hydrocracking temperature (in this context, when the hydrocracking is carried out in two stages, the temperature is preferably at least 10° C. higher than the hydrocracking temperature). should be understood to be the second stage temperature). Examples of suitable catalysts for catalytic hydrotreating include nickel and/or cobalt and also molybdenum,
Fluorine-containing or fluorine-free alumina, silica, sulfide catalysts comprising tungsten and/or vanadium supported on an alumina support, and nickel and/or cobalt and molybdenum, tungsten and/or vanadium supported on a silica or silica-alumina support. This is a sulfurization catalyst supported on The method according to the present invention further includes deasphalting as a subsidiary process. This deasphalting is preferably carried out at elevated temperatures and pressures and in the presence of an excess of lower hydrocarbons such as propane, butane or pentane as solvent. The method according to the invention further includes pyrolysis or coking as a subsidiary process. In these processes, a significant proportion of the bottom feedstock is converted to crabmeat oil. The product obtained by thermal cracking or coking is distilled, and in addition to the medium distillate M3 as the final product or as a raw material oil for hydrocracking, one or more final products are produced. The vertebral oil can be separated. The kettle residue remaining after processing the coke or pyrolysis products serves as feedstock for gasification. If the pyrolysis is carried out in the process according to the invention, it is preferably carried out at a temperature of 400 to 525 qo, a pressure of 2.5 to 25 bar and a residence time of 1 to 25 minutes. Particular preference is given to carrying out the pyrolysis at a temperature of 425 to 500 qo, a pressure of 5 to 20 bar and a residence time of 5 to 20 minutes. When coking is carried out in the method according to the present invention, it is preferably carried out at a temperature of 400 to 600 qo, a pressure of 1 to 2 dollars, and a residence time of 5 to 5 calm hours. Particular preference is given to coking at a temperature of 425 DEG to 550 DEG C., a pressure of 2.5 to 20 bar and a residence time of 10 to 4 feeding hours. Finally, the method according to the invention includes gasification as a subsidiary process. As raw material for gasification, the kettle residue remaining after processing the coke or the products obtained by pyrolysis is used.
Gasification is performed by incomplete combustion of raw materials with oxygen. Preferably, steam is added to the mixture as a moderator. Incomplete combustion produces crude (crMe), which consists mostly of carbon monoxide and hydrogen and also contains a significant amount of sulfur.
Gas is obtained. The hydrogen content of this crude gas increases if the crude gas is subjected to a water gas conversion reaction. In this reaction, carbon monoxide reacts with steam and is converted into carbon dioxide and hydrogen. The water gas conversion reaction consists of passing the gas to be converted through two or more reactors containing a hot water gas conversion catalyst at a temperature of 325 to 40,030 ℃, and then converting the partially converted gas mixture to a cold water gas at a temperature of 200 to 275 q0. Preferably, it is carried out through a reactor containing a conversion catalyst. Iron-chromium catalysts are very suitable as high temperature water gas conversion catalysts. An effective low temperature water gas conversion catalyst is a copper-zinc catalyst. Considering that contamination of the catalyst by soot is remote, when using conventional reactors, the gas must be freed from soot at least before it is subjected to the catalytic water gas conversion reaction. When using sulfur-sensitive catalysts such as the iron-chromium and copper-zinc catalysts described above, sulfur must also be removed from the gas before it is subjected to the catalytic water gas conversion reaction. Sulfur-insensitive catalysts such as Ni/Mo/AI2Q or Co/84o/A according to Japanese Patent No. 1108382 (Jiko Sho 56-52844)
i203 catalyst or Ni/Mo/AI/ according to the specification of Japanese Patent No. 1108384 (Japanese Patent Publication No. 56-52845)
When using AI203 or Co/Mo/AI/AI203 catalysts, removing sulfur from the crude gas can be omitted. The water gas conversion reaction takes place at a pressure of 10
It is preferred to carry out the reaction at a pressure of 10 to 10 bar, especially 20 to 80 bar. The amount of steam present in the gas mixture carrying out the water gas conversion reaction is between 1 and 5 mol of steam per mole of carbon monoxide.
It is preferable to set it to 0 mol. In order to obtain pure hydrogen after the completion of the water gas conversion reaction, the hydrogen-rich gas must be purified. If soot and sulfur have not been removed prior to the water gas conversion reaction, they must be removed again. Furthermore, the purification of the hydrogen-rich gas consists, inter alia, of removing the carbon dioxide formed and the unconverted carbon monoxide. In the method according to the present invention, hydrogen produced by gasification is
Mainly used for catalytic hydrotreating and hydrocracking. The process is preferably carried out in such a way that the amount of hydrogen produced by gasification is sufficient to at least fully satisfy the hydrogen requirements of catalytic hydrotreating and hydrocracking.
If the amount of hydrogen produced in gasification is greater than that required for catalytic hydrotreating and hydrocracking, the excess amount of hydrogen can be used for purposes outside the scope of the process. If the amount of hydrogen produced by gasification does not meet the hydrogen requirements for catalytic hydrotreating and hydrocracking, the required amount of hydrogen must be newly supplied from outside the process. The amount of hydrogen obtained by gasification is mainly determined by the amount of raw material supplied to the gasification belt. The amount of feedstock can be controlled to some extent by varying the conditions under which the catalytic hydrotreating, deasphalting and pyrolysis or coking are carried out. A further preferred means for controlling the amount of feedstock sent to the gasification zone is as follows: 'a) A portion of the bottom residue of the product obtained from hydrocracking is subjected to pyrolysis, coking, etc. or as a feedstock component for gasification; {b' repeating catalytic hydrogenation on the heavy fraction of a product that has already been catalytically hydrotreated; 'c} instead of treating all of the material, some Catalytic hydrogenation treatment of only suitable substances; [d} Combination of the methods described in 'a-'c-. In the case of 'c), atmospheric distillation residue, vacuum distillation residue obtained by vacuum distilling it, or asphalt obtained by deasphalting vacuum residue, which is useful as a raw material for the process, is used. Only a portion is catalytically hydrotreated and the remainder is mixed with the hydrotreated product. 'c} In each of the three embodiments of the process according to the invention briefly described above, the bottoms obtained by catalytically hydrogenating asphalt and/or the same and distilling the hydrotreated product are: Since it can be converted by pyrolysis or coking, these three embodiments correspond to six process examples. These six process examples will be described in detail below with reference to the accompanying drawings. Process example 1 (see Figure 1) This process includes a catalytic hydrotreating device 1, a first atmospheric distillation device 2, a vacuum distillation device 3, a deasphalting device 4, a pyrolysis device 5,
The process is carried out in a plant consisting of a second atmospheric distillation device 6, a gasification device 7, a catalytic hydrocracking device 8, and a third atmospheric distillation device 9. The atmospheric pressure hydrocarbon oil pot residue 10 is divided into two parts 11 and 12.
11 is catalytically hydrotreated, and the hydrotreated product 13 is divided into C4-crab fraction 14, Ganlin fraction 15, medium distillate fraction 16, and bottom bottom 17 by atmospheric distillation. The bottoms 17 are mixed with 12 from the normal pressure bottoms 10, and the mixture is vacuum distilled to separate into vacuum crab oil 18 and vacuum bottoms 19. The pot residue 19 is deasphalted and separated into deasphalted oil 20 and asphalt 21. The asphalt 21 is thermally decomposed, and the thermal decomposition product 22 is distilled under atmospheric pressure and divided into a C4-crab fraction 23, a Ganlin fraction 24, a medium distillate oil fraction 25, and a pot residue 26. Gasified and the resulting gas is converted into a waste gas 28 consisting of hydrogen 27 and mostly carbon dioxide by a water gas conversion reaction and purification. 30 is supplied for catalytic hydrocracking. The vacuum distillate oil 18 is hydrocracked together with the deasphalted oil 20. The hydrocracked product 31 is distilled under atmospheric pressure to obtain C4-crab fraction 32 and gasoline crab fraction. 33, divide the medium distillate oil into crab fraction 34 and pot residue 35. Divide pot residue 35 into two,
One part 36 is subjected to hydrocracking again, and the other part 37 is used as a raw material component for gasification. Process Example 0 (See Figure 0) This process is carried out in a plant almost identical to that described in Process Example 1, except that the coking device 5 of the previous pyrolysis device 5 is used. . The treatment of the atmospheric pressure hydrocarbon oil pot residue 10 is carried out in substantially the same manner as Process Example 1, from deasphalting the pot residue 19 to dividing the deasphalted oil 20 and asphalt 21' (including the division). The asphalt 21 is converted into crab oil 22 and coke 23 by coking. Crab extract oil 22 is distilled under atmospheric pressure to produce C4
- Divided into fraction 24, gasoline crab fraction 25, medium distillate crab fraction 26 and bottoms 27 removed from the process. Coke 2
3 is gasified and the resulting gas is converted to hydrogen 28 and waste gas 29 consisting mostly of carbon dioxide through a water gas conversion reaction and purification. Hydrogen 28 is divided into two parts, one 30 being supplied for catalytic hydrotreating and the other 31 being supplied for catalytic hydrocracking. The vacuum distillate oil 18 is hydrocracked together with the deasphalted oil 20, but in this case, in addition to hydrogen 31, fresh hydrogen 32 is supplied for hydrocracking. The hydrocracked product 33 is distilled under atmospheric pressure and divided into a C4-crab fraction 34, a gasoline crab fraction 35, a medium crab product fraction 36, and a pot residue 37 to be rehydrocrazed. P. Process example m (see figure m) This process consists of a first vacuum distillation device 1, a catalytic hydrogenation device 2,
First atmospheric distillation device 3, second vacuum distillation device 4, deasphalting device 5
, pyrolysis device calendar 6, second atmospheric distillation device 7, gasification device 8,
The process is carried out in a plant consisting of a catalytic hydrocracking device 9 and a third atmospheric distillation device 10. Atmospheric pressure hydrocarbon oil pot residue 11 is vacuum distilled to vacuum distillate oil 1
2 and vacuum pot residue 13. The vacuum pot residue 13 is divided into two parts 14 and 15. 14 is subjected to catalytic hydrogenation treatment, and the hydrotreated product 16 is distilled at atmospheric pressure and separated into a C4-crab fraction 17, a Ganlin fraction 18, a medium sludge oil crab fraction 19, and two pot residues. The residue 20 is vacuum distilled and separated into a vacuum distillate oil 21 and a vacuum residue 22. The vacuum pot residue 22 is 1 from the vacuum pot residue 13.
5 and the mixture is deasphalted and separated into deasphalted oil 23 and asphalt 24. The asphalt 24 is thermally decomposed, and the thermal decomposition product 25 is distilled under atmospheric pressure and divided into C4-crab fraction 26t Ganlin fraction 27, medium crab extract crab fraction 28, and pot residue 29. The bottoms 29 are gasified and the resulting gas is converted to hydrogen 30 and waste gas 31 consisting mostly of carbon dioxide through a water gas conversion reaction and purification. Hydrogen is divided into three streams, one 32 being supplied for catalytic hydrogenation treatment and the other 33 for catalytic hydrocracking. The vacuum crab oil 12 is hydrocracked together with the deasphalted oil 23. The hydrocracked product 34 is separated into a C4 fraction 35, a Ganlin fraction 36, a medium distillate fraction 37, and a bottom bottom 38 by atmospheric distillation. The bottom 38 is divided into two parts, one part 39 is again hydrocracked and the other part 40 is removed from the process. Process Example W (See Figure W) This process is carried out in a plant almost identical to that described in process example m, except that a coking device 6 is used instead of the pyrolysis device 6 described above. The atmospheric pressure hydrocarbon oil pot residue 11 is treated in substantially the same manner as Process Example M until the mixture of 15 and 22 is deasphalted and divided into deasphalted oil 23 and asphalt 24 (including division). Asphalt 24 is coked and distilled oil 2
5 and coke 26. Distillate 25 is atmospherically distilled into a C4 fraction 27, Ganlin fraction 28, medium distillate fraction 29, and bottoms 30 which are removed from the process.
The coke 26 is gasified and the resulting gas is converted to hydrogen 31 and waste gas 32 consisting mostly of carbon dioxide through a water gas conversion reaction and purification. The hydrogen 31 is divided into two parts, one 33 is supplied for catalytic hydrotreating and the other 34 is supplied for catalytic hydrocracking. The vacuum oils 12 and 21 are hydrocracking together with the deasphalted oil 23. The decomposition product 35 is distilled under atmospheric pressure to obtain C4-crab fraction 36 and gasoline crab fraction 3.
7. It is divided into a medium distillate fraction 38 and a bottom residue 39 to be hydrocracked again. Process Example V (See Figure V) This process consists of a first vacuum distillation device 1, a deasphalting device 2, a catalytic hydrogenation device 3, a first atmospheric distillation device 4, a second vacuum distillation device 5, and a pyrolysis device. 6. Second atmospheric distillation device 7, gasification device 8, catalytic hydrocracking device 9, and third atmospheric distillation device 1
This is done in a plant consisting of 0. The atmospheric pressure hydrocarbon oil pot residue is vacuum distilled to vacuum distillate oil 1.
2 and vacuum pot residue 13. The vacuum pot residue 13 is deasphalted and separated into deasphalted oil 14 and asphalt 15. Asphalt 15 is divided into two parts 16 and 17. 16 was subjected to catalytic hydrogenation treatment, and the hydrogenation product 18 was distilled at atmospheric pressure to obtain C.
4 - Fraction 19, Ganlin fraction 20, Medium distillate fraction 21
and the remainder of the pot is divided into 22 parts. The residue 22 is vacuum distilled and separated into a vacuum distillate oil 23 and a vacuum residue 24. Vacuum pot residue 24 is mixed with asphalt 17 from asphalt 15 and the mixture is pyrolyzed. Pyrolysis product 2
5 is distilled under atmospheric pressure to obtain C4-crab fraction 26 and Ganlin fraction 27.
, medium-quality crab oil is divided into 28 pieces of crab oil and 29 pieces of leftovers from the pot. Remaining pot 29
is gasified and the resulting gas is converted to hydrogen 30 and waste gas 31 consisting mostly of carbon dioxide through a water gas conversion reaction and purification. Hydrogen 30 is divided into two parts, one 32 being fed for catalytic hydrotreating and the other 33 being fed for catalytic hydrocracking. Vacuum crab oil 12 and 23 are deasphalted oil 14
Hydrogenolysis together with The hydrocracked product 34 is distilled under atmospheric pressure and divided into a C4-crab fraction 36, a Ganlin fraction 36, a medium crab product fraction 37, and a bottom 38. The residue 38 is divided into two parts, one part 39 is again hydrocracked, and the other part 40 is recycled. Exclude from Seth. This process is carried out in a plant that is almost the same as that described in Process Example V, except that the second vacuum distillation device 5 does not exist, and the pyrolysis device The caulking device 5 is used instead of the caulking device 6. The atmospheric pressure hydrocarbon oil pot residue 10 is vacuum distilled to obtain 1 vacuum distillate oil.
Divide into 1 and 12 parts left in the vacuum pot. The vacuum pot residue 12 is deasphalted and divided into deasphalted oil 13 and asphalt 14. The asphalt 14 is divided into two parts 15 and 16. 15 was subjected to catalytic hydrogenation treatment, and the hydrogenated product 17 was distilled under atmospheric pressure to produce C4
- Separate into 18 crab parts, 19 gasoline crab parts, 20 medium crab oil parts, and 21 pot residues. Bottoms 21 is mixed with 16 from asphalt 14 and the mixture is coked and converted to distillate 22 and coke 23. Crab extract oil 22 is distilled under atmospheric pressure to obtain C4-fraction 24.
, Ganlin fraction 25, medium distillate fraction 26, and bottoms 27 which are removed from the process. The coke 23 is gasified and the resulting gas is converted to hydrogen 28 and waste gas 29 consisting mostly of carbon dioxide through a water gas conversion reaction and purification. Hydrogen 28 is divided into two parts, one part 30 is supplied for catalytic hydrogenation treatment and the other part 31 is supplied for axial hydrocracking. The vacuum-derived oil 11 is hydrocracked together with the delit oil 13, but in this case, in addition to hydrogen 31, fresh hydrogen 32 is supplied for hydrocracking. Hydrogenolysis product 3
3 is distilled under atmospheric pressure to obtain 34 C4 fractions and 35 gasoline crab fractions.
, a medium distillate fraction 36 and a bottom bottom 37. Remaining pot 37
is split in two, one 38 is hydrocracked again and the other 39 is removed from the process. The present patent application also includes a plant for carrying out the method according to the invention, as shown in the first diagram. The invention is illustrated according to the following examples. The method according to the present invention was carried out on atmospheric distillation residues of crude oil from the Middle East. The Josho distillation still residue had an initial boiling point of 350oo, a sulfur content of 4% by weight, and a C4 asphalt content of 2% by weight. The method was carried out according to Process Example 1 - Town. The following conditions were used in each process. In all process examples,
Sulfide containing 5 parts by weight of cobalt and 1 part by weight of molybdenum to 10 parts by weight of alumina
A Co/Mo/AI203 catalyst was used for the catalytic hydrogenation. In the case of process examples 1 to W, the average temperature is 390qC
, hydrogen partial pressure 100 bar and hydrogen/oil ratio 100 states/
Catalytic hydrogenation treatment was performed with k9. Process examples 1 and 0
'If this is the case, catalytic hydrogenation treatment is performed at a space velocity of 0.7
5 [9.1-1. h-1 and according to process examples m and W, the space velocity is 0.4k9.1-1. h
-1. In accordance with Process Example V and
The catalytic hydrogenation treatment was carried out at an average temperature of 45 psi, a hydrogen partial pressure of 15 ruels, and a space velocity of 0.2 k9.1-1. It was carried out at h-1 and hydrogen/oil ratio of 1500N/k9. In all process examples, deasphalting was carried out using liquid butane as the solvent and a solvent/oil weight ratio of 3.5:1 to 4.5:1. In the case of process examples 1 to m, V and, the deasphalting temperature is set to 12030, and in the case of process example W, the temperature is set to 1.
It was set to 40 qo. In the case of process examples 1, m and V, the pyrolysis was carried out at a pressure of 1 bar, a residence time of 15 minutes and a temperature of 450°C to 47,000°C.
In the case of and, caulking was carried out at a pressure of 3.5 degrees, a temperature of 470 DEG C., and a residence time of 20 to 2 feed hours. In all process examples, gasification was carried out at a temperature of 1300°C, a pressure of 3 ng, and a steam/feedstock weight ratio of
The weight ratio of both raw materials was set to 0.8:1. The water gas shift reaction was carried out over an iron-chromium catalyst at a temperature of 350 °C and a pressure of 30 bar, and at a temperature of 250 °C and a pressure of 3
It was carried out continuously over a copper-zinc catalyst at Ruehl. All pu. In this example, catalytic hydrocracking was carried out in a two-stage process, where all the reaction products from the first stage were used as feedstock for the second stage, and a portion of the cracked products were recycled to the first stage. . In all process examples, 5 parts by weight of nickel and 2 parts by weight of molybdenum per 100 parts by weight of alumina were used for the first stage of catalytic hydrocracking.
Ni/Mo/F sulfide containing parts by weight of and 15 parts by weight of fluorine
/N203 catalyst and for the second stage a Ni/W/F/sulfide containing 3 parts by weight of nickel, 10 parts by weight of tungsten and 5 parts by weight of fluorine per 10 parts by weight of faujasite.
A faujasite catalyst was used. In all process examples, the first stage of catalytic hydrocracking was carried out at an average temperature of 390 °C and a pressure of 12
Lure, hydrogen/oil ratio 2000N. k9-1 and space velocity 0.79.1-. h-1, and the second stage was carried out at an average temperature of 365 °C, a pressure of 120 bar, and a hydrogen/oil ratio of 20.
0 state evening. kg-1 and space velocity 1.9. r1. It was done in h1. Example 1 This example was conducted according to Process Example 1. Starting from 350 parts by weight of 1010 atmospheric distillation residues, the following amounts of each substance were obtained: 1 14
9. parts by weight, 1251 parts by weight, C4-crab part 142.1 parts by weight, C5200oo gasoline part 150.4 parts by weight, 200 parts by weight.
~350oo Medium Distillate Oil Crab 1624 parts by weight, 350q
o + normal pressure pot residue 1744. parts by weight, 350-52000
Vacuum crab extract oil 1850. $ parts by weight, 520oo + vacuum pot residue 1944. Neck weight part, deasphalted oil 2030. Drag weight part, asphalt 2114 parts by weight, C4-crab content 230.1 parts by weight, C5200q0 gasoline crab content 241.1 parts by weight, 200
~350q0 medium quality crab extract oil fraction 251.5 parts by weight, 35 pp0 normal pressure crab extract oil 2611. Parts by weight of round, 272 parts by weight of hydrogen, 290. Loading weight part, 302. parts by weight, C4-crab part 324.4 parts by weight, C520000 gasoline crab part 3353. Parts by weight of 20
0-350qo medium crab oil fraction 3423.4 parts by weight, 3
50oo 10 atmospheric pressure pot residue 356.4 parts by weight, 364.4 parts by weight, and 372. parts by weight. Example 0 This example was conducted according to Process Example nl. Starting from 35,000 parts by weight and 1,010 parts by weight of atmospheric still residue, the following amounts of each substance were obtained: 1 12
7.2 parts by weight, 1272. Part by weight of base, 141.1 parts by weight of C4-distillate, 150 parts by weight of gasoline crab, 200~3
50 qo medium distillate crab content 161.4 parts by weight, 35 qo atmospheric pressure cooker residue 1724. Parts by weight of 350-52 p0 vacuum distillate oil 1847. Mother weight part, 520℃, vacuum pot residue 1949
.. Parts by weight of bamboo, 2032.1 parts by weight of deasphalted oil, 2117 parts by weight of asphalt. parts by weight of distillate, 228.2 parts by weight of distillate, 239.5 parts by weight of coke, 242 parts of C4-crab fraction, 251 parts of C200°C gasoline crab. Beni weight part, 200-3
50°C medium distillate fraction 262.2 parts by weight, 350°C normal pressure pot residue 272. parts by weight of hydrogen, 281. Military weight part, 300.4 weight part, 311. Parts by weight of a, 321.2 parts by weight of hydrogen, 344.5 parts by weight of C4-crab fraction, 3553 parts by weight of C5200. Mother weight part, 20
3624.1 parts by weight of crab in medium quality crab extract oil at 0 to 300°C, and 378.1 parts by weight of 350 qo atmospheric pressure cooker residue. Example m This example was carried out according to Process Example m. Starting from 110 parts by weight of 350 qo and 1 atmospheric still residue, the following amounts of each substance were obtained: 350
~520oo vacuum distillate oil 1244. Wide weight section, 520℃
1356 remaining in the ten-vacuum pot. Parts by weight, 1423. Parts by weight of turtle, 1532.2 parts by weight, C4-crab part 171. Weight part, C520000 gasoline crab part 181. Box weight part, 200
~350oo medium distillate fraction 193. Box weight part, 350
qo 10 normal pressure pot residue 2018.2 parts by weight, 350-5200
0 vacuum distillate oil 218.4 parts by weight, 52 pi 0 vacuum pot residue 2
29. Neck weight part, deasphalted oil 2327.5 parts by weight, asphalt 2414.5 parts by weight, C4-crab fraction 260.2 parts by weight, C5 200°C Ganlin fraction 271. Parts by weight of 200~
350qo medium distillate fraction 281.4 parts by weight, 350°C
2911.9 parts by weight of atmospheric pressure pot residue, 302.9 parts by weight of hydrogen. Round weight parts, 320. Mother weight part: 331.0 parts by weight, C4-distillate: 354.1 parts by weight, C20 pi○ganlin fraction: 3648. Turtle weight part, 200~
3503○Medium quality crab extract crab content 3721.4 parts by weight, 350
℃10 Normal pressure pot residue 3810.5 parts by weight, 393. parts by weight,
and 407.5 parts by weight. Example W This example was conducted according to Process Example W. Starting from 110 parts by weight of 350 pm C + 1 atmospheric still residue, the following noses were obtained for each substance: 35
0-52000 pages air distilled oil 1244. ■Weight part, 520
300 vacuum pot residue] 356. Parts by weight, 1411. Neck weight part, 1544.2 weight part, C4-crab part 170. Neck weight part, C5200oC Ganrin fraction 180.0 parts by weight ~ 200
~35000 Medium quality crab extract crab content 191.5 parts by weight, 350
oo + 9 parts of normal pressure pot residue 2 parts, 350-520 C summer air distilled oil 214. Weight part ~ 520 qo 1 vacuum pot residue 22
44 parts by weight of neck, 2323.5 parts by weight of deasphalted oil, 25.5 parts by weight of asphalt, 2611.0 parts by weight of distillate, 2613 parts by weight of coke, 273.2 parts by weight of C4-crab, C520000 Gasoline crab part: 282. Bamboo weight part: 200
~350qo Medium quality crab extract crab content 293.1 parts by weight, 350
qo 10 atmospheric pressure pot residue 302. Part by weight: Hydrogen 312.5 parts by weight, 330.2 parts by weight, 342 Parts by weight: C4-fraction 364.% by weight, C5200qo gasoline fraction 3750. Broad weight parts, 2
00-35000 Medium Distillate Oil Crab 3820. parts by weight,
and 350oo + normal pressure pot residue 397. Box weight part. Example V This example was conducted according to Process Example V. Starting from 110 parts by weight of 35,000 atmospheric still residues, the following amounts of each substance were obtained: 350
0~520oo vacuum distilled oil 1244. parts by weight, 52
0qo ten vacuum pot remaining 1356. Part by weight of deasphalted oil 1433
.. parts by weight, asphalt 1523.0 parts by weight, 1610. Parts by weight, 1713. Parts by weight, C4-Crab 191. Part by weight, C5200oo Ganlin fraction 200.9 parts by weight, 200
~350oo medium distillate fraction 213. Mother weight part, 350
oo 10 Normal pressure pot residue 224.4 parts by weight, 350-52 and 0 vacuum crab extract oil 232. Box weight part, 520oo + vacuum pot remaining 24
2.1 parts by weight, C4-crab fraction 260.2 parts by weight, Q200qo Ganlin fraction 271. Public weight part, 200~
350qo medium crab oil fraction 281. Tortoise weight part, 350℃
2912.1 parts by weight of atmospheric pressure cooker residue, 302.4 parts by weight of hydrogen, 320.5 parts by weight, 331. $ parts by weight " C4 - 轡 354. Parts by weight, C200qo Ganrin fraction 3652.4 parts by weight, 200
~350pm Medium distillate fraction 3722.8 parts by weight, 35
0:00:00 Remaining pressure pot 386. This example was carried out according to the process example.Starting from 350 oooo and 1000 yen parts by weight of the residue from the atmospheric distillation pot, The following amounts were obtained for the substance; 350-5
20qC vacuum crab oil army 144. Parts by weight, 520oo
1256 remaining in the ten-vacuum pot. Parts by weight of deasphalted oil 1332. Part by weight of Asphalt, 423.1 parts by weight of Asphalt, 511.2 parts by weight of Asphalt, 611.2 parts by weight of C4-distillate, 181.5 parts by weight of C4-distillate, 200 parts by weight of C5, 200°C Ganlin distillate, 91.
35000 medium distillate fraction 204.4 parts by weight, 350q
o + normal pressure pot residue 214. parts by weight, boxed oil 228.5 parts by weight, coke 238. Box parts by weight, C4-Fraction 242. Parts by weight of the box, 200 parts by weight, 251.9 parts by weight of Ganlin distillate, 200~
350°C medium distillate fraction 262. Maru weight department, 350 pm
10 Normal pressure pot residue 272. parts by weight, hydrogen 281.5 parts by weight, 300. Turtle weight part, 310. Base weight department, hydrogen 321. 344.1 parts by weight of C4-distillate, 3550 parts by weight of C5200. Red weight part, 20
0-350oo medium distillate oil crab content 3622.2 parts by weight, 3
50 qo atmospheric pressure pot residue 375 parts by weight, 384.1 parts by weight, and 391.0 parts by weight.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第0図、第m図、第W図、第V図及び第の図は
、本発明によるプロセス図を示す。 第1図及び第ロ図において、1…・・・接触水素化処理
装置、2…・・・第一常圧蒸留装置、3・・・・・・真
空蒸留装置、4……脱歴装置、5……熱分解装置(第1
図)又はコーキング装置(第0図)、6・・…・第二常
圧蒸留装置、7・・・・・・ガス化装置、8・・・・・
・接触水素化分解装置、9・・・・・・第三常圧蒸留装
置。第m図及び第W図において、1・・・・・・第一真
空蒸留装置、2・・・・・・接触水素化処理装置、3・
・・・・・第一常圧蒸留装置、4・・・・・・第二真空
蒸留装置、5・・・・・・脱歴装置、6・・・・・・熱
分解装置(第m図)又はコーキング装置(第W図)、7
・・・・・・第二常圧蒸留装置、8・・・・・・ガス化
装置、9……接触水素化分解装置、10・・・・・・第
三常圧蒸留装置。第V図において、1・・・・・・第一
真空蒸留装置、2・…・・脱歴装置、3・・・・・・接
触水素化処理装置、4・…・・第一常圧蒸留装置、5・
・・・・・第二真空蒸留装置、6…・・・熱分解装置、
7・・・・・・第二常圧蒸留装置、8…・・・ガス化装
置、9・・・・・・接触水素化分解装置、10・・・・
・・第三常圧蒸留装置。第の図において、1・・・・・
・真空蒸留装置、2・・・・・・脱歴装置、3・・・・
・・接触水素化処理装置、4・・・・・・第一常圧蒸留
装置、5・・・・・・コーキング装置、6・・・・・・
第二常圧蒸留装置、7・・・・・・ガス化装置、8・・
・・・・接触水素化分解装置、9・・・・・・第三常圧
蒸留装置。FIGIFIG.11FIG OO FIG.口Z FIG・1【 FIG.yは
Figures 1, 0, m, W, V, and 5 show process diagrams according to the present invention. In FIG. 1 and FIG. 5...Pyrolysis device (first
(Figure) or coking device (Figure 0), 6... Second atmospheric distillation device, 7... Gasification device, 8...
- Catalytic hydrocracking device, 9...Third atmospheric distillation device. In Fig. M and Fig. W, 1...first vacuum distillation apparatus, 2...catalytic hydrogenation apparatus, 3...
...First atmospheric distillation device, 4...Second vacuum distillation device, 5...Deasphalting device, 6...Pyrolysis device (Fig. ) or caulking device (Figure W), 7
. . . Second atmospheric distillation device, 8… Gasification device, 9… Catalytic hydrocracking device, 10… Third atmospheric distillation device. In FIG. equipment, 5.
...Second vacuum distillation device, 6...Pyrolysis device,
7... Second atmospheric distillation device, 8... Gasifier, 9... Catalytic hydrocracking device, 10...
...Third atmospheric distillation device. In the figure, 1...
・Vacuum distillation equipment, 2... Deasphalting equipment, 3...
... Catalytic hydrotreating device, 4... First atmospheric distillation device, 5... Coking device, 6...
Second atmospheric distillation device, 7...Gasification device, 8...
...Catalytic hydrocracking device, 9...Third atmospheric distillation device. FIGIFIG. 11FIG OO FIG. Mouth Z FIG・1 [FIG. y is

Claims (1)

【特許請求の範囲】 1 次の諸工程即ち、 (a)常圧炭化水素油釜残(AR)を真空蒸留により真
空留出油(VD)及び真空釜残(VR)に分別する工程
、(b)工程(c)で得られた蒸留釜残も含んでいても
よい、工程(a)で得られたVRの少なくとも一部を、
脱歴帯域において脱歴して脱歴油及びアスフアルトを得
る工程、(c)工程(a)の前のAR、工程(a)で得
られたVR及び工程(b)で得られたアスフアルトから
選ばれた流れの少なくとも一部を、工程(f)で得られ
た水素で接触水素化処理し、そしてその水素化処理生成
物を蒸留して蒸留釜残を得る工程、(d)工程(c)で
得られた蒸留釜残も含んでいてもよい、工程(b)で得
られたアスフアルトの少なくとも一部を、熱分解帯域及
びコーキング帯域から選ばれた熱処理帯域において加熱
して液状熱処理生成物を得る工程、(e)工程(d)で
得られた液状熱処理生成物を蒸留により少なくとも1種
の軽質留出油最終生成物、熱処理中間留分及び熱処理釜
残留分に分別する工程、(f)工程(e)で得られた熱
処理釜残留分及び工程(d)のコーキング帯域から得ら
れたコークスから選ばれた流れをガス化帯域においてガ
ス化して水素を得る工程、の上記諸工程を含む、ARか
ら常圧炭化水素油留出油を製造する方法において、主工
程として次の工程即ち、(g)工程(a)で得られたV
D、工程(b)で得られた脱歴油、及び、工程(h)で
得られた釜残の少なくとも一部を、工程(f)で得られ
た水素で水素化分解帯域において水素化分解して水素化
分解生成物を得る工程、及び(h)工程(g)で得られ
た水素化分解生成物を常圧蒸留により分別して少なくと
も1種の軽質留出油最終生成物及び釜残を得る工程、を
含むことを特徴とする上記方法。 2 工程(h)において少なくとも1種の軽質留出油最
終生成物、中質留出油M_1及び釜残を得ること、M_
1を工程(g)において水素化分解すること、該釜残を
、次の処理即ち(I)プロセスから除く処理、(II)同
じ組成の2つの部分に分割して、一方を工程(g)にお
いて水素化分解しそして他方をプロセスから除く処理、
及び(III)真空蒸留により、工程(g)において水素
化分解されるところの真空留出油と(I)又は(II)の
処理に付されるところの真空釜残とに分別する処理、か
ら選ばれた処理に付すこと、を特徴とする特許請求の範
囲第1項に記載の方法。 3 工程(h)において少なくとも1種の軽質留出油最
終生成物、中質留出油最終生成物M_1及び釜残を得、
この釜残を真空蒸留により真空留出油及び真空釜残に分
別すること、該真空留出油を工程(g)において水素化
分解すること、該真空釜残を、次の処理即ち(I)プロ
セスから除く処理及び(II)同じ組成の2つの部分に分
割して、一方を工程(g)において水素化分解しそして
他方をプロセスから除く処理、から選ばれた処理に付す
こと、を特徴とする特許請求の範囲第1項に記載の方法
。 4 工程(h)で得られた釜残を同じ組成の2つの部分
に分割して、一方を工程(g)において水素化分解しそ
して他方をプロセスから除くこと、工程(g)に再循環
される物質の量が、工程(h)で得られた利用できる釜
残量の25重量%以上であること、を特徴とする特許請
求の範囲第1〜3項のいずれか一項に記載の方法。5
水素化活性を有する少なくとも1種の金属を担体に担持
させて成る中程度の酸性及び強酸性の触媒から選ばれた
触媒の存在下で、1つの水素化分解帯域において工程(
g)の水素化分解を行なうこと、を特徴とする特許請求
の範囲第1〜4項のいずれか一項に記載の方法。 6 工程(g)の水素化分解を2つの水素化分解帯域に
おいて、即ち水素化活性を有する少なくとも1種の金属
を担体に担持させて成る弱酸性及び中程度の酸性の触媒
から選ばれた触媒の存在下で第一帯域においてそして水
素化活性を有する少なくとも1種の金属を担体に担持さ
せて成る中程度の酸性及び強酸性の触媒から選ばれた触
媒の存在下で第二帯域において行なうこと、を特徴とす
る特許請求の範囲第1〜4項のいずれか一項に記載の方
法。 7 第一帯域からの全反応生成物を第二帯域用の原料油
として使用すること、を特徴とする特許請求の範囲第6
項に記載の方法。 8 工程(h)で得られた釜残の一部を、工程(d)及
び(f)の少なくとも1つの工程用の原料油成分として
使用すること、を特徴とする特許請求の範囲第1〜7項
のいずれか一項に記載の方法。
[Scope of Claims] 1. The following steps: (a) a step of separating atmospheric hydrocarbon oil bottoms (AR) into vacuum distillate (VD) and vacuum bottoms (VR) by vacuum distillation; b) At least a portion of the VR obtained in step (a), which may also contain distillation residue obtained in step (c),
(c) a step selected from AR before step (a), VR obtained in step (a) and asphalt obtained in step (b) by deasphalting in a deasphalting zone to obtain deasphalted oil and asphalt; (d) catalytically hydrotreating at least a portion of the collected stream with the hydrogen obtained in step (f) and distilling the hydrotreated product to obtain a bottoms; (d) step (c) At least a part of the asphalt obtained in step (b), which may also contain still residue obtained in step (b), is heated in a heat treatment zone selected from a pyrolysis zone and a coking zone to form a liquid heat treatment product. (e) fractionating the liquid heat-treated product obtained in step (d) into at least one light distillate final product, a heat-treated middle distillate and a heat-treated kettle residue by distillation; (f) gasifying a stream selected from the heat-treated kettle residue obtained in step (e) and the coke obtained from the coking zone in step (d) in a gasification zone to obtain hydrogen; In the method for producing atmospheric hydrocarbon oil distillate from AR, the main steps include the following steps: (g) the V obtained in step (a);
D. Hydrocracking the deasphalted oil obtained in step (b) and at least a portion of the bottom residue obtained in step (h) in a hydrocracking zone with hydrogen obtained in step (f). (h) fractionating the hydrocracked product obtained in step (g) by atmospheric distillation to obtain at least one light distillate final product and bottoms; The above method, characterized in that it includes the step of obtaining. 2 obtaining in step (h) at least one light distillate final product, a medium distillate M_1 and a bottom residue, M_
1 in step (g); the residue is subjected to the following treatments, namely (I) removal from the process; (II) dividing it into two parts of the same composition, one of which is subjected to step (g). hydrocracking and removing the other from the process;
and (III) a process of separating by vacuum distillation into the vacuum distillate to be hydrocracked in step (g) and the vacuum pot residue to be subjected to the treatment in (I) or (II). A method according to claim 1, characterized in that it is subjected to selected treatments. 3 obtaining at least one light distillate final product, medium distillate final product M_1 and bottom residue in step (h);
This residue is separated into a vacuum distillate oil and a vacuum residue by vacuum distillation, the vacuum distillate is hydrocracking in step (g), and the vacuum residue is subjected to the following treatment, namely (I). and (II) dividing into two parts of the same composition, subjecting one to a treatment selected from hydrocracking in step (g) and removing the other from the process. A method according to claim 1. 4. Splitting the bottoms obtained in step (h) into two parts of the same composition, one being hydrocracked in step (g) and the other being removed from the process, being recycled to step (g). The method according to any one of claims 1 to 3, characterized in that the amount of the substance is 25% by weight or more of the available pot residue obtained in step (h). . 5
The process (
The method according to any one of claims 1 to 4, characterized in that g) is subjected to hydrogenolysis. 6. Hydrocracking of step (g) is carried out in two hydrocracking zones, i.e. a catalyst selected from weakly acidic and moderately acidic catalysts comprising at least one metal having hydrogenation activity supported on a support. and in the second zone in the presence of a catalyst selected from moderately acidic and strongly acidic catalysts comprising at least one metal having hydrogenation activity supported on a support. 5. A method according to any one of claims 1 to 4, characterized in that: 7. Claim 6, characterized in that the entire reaction product from the first zone is used as feedstock for the second zone.
The method described in section. 8. Claims 1 to 1, characterized in that a part of the pot residue obtained in step (h) is used as a raw oil component for at least one of steps (d) and (f). The method described in any one of Section 7.
JP12196576A 1975-10-15 1976-10-13 Hydrocarbon conversion method Expired JPS607678B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL7512090 1975-10-15
NL7512090A NL7512090A (en) 1975-10-15 1975-10-15 PROCESS FOR CONVERTING HYDROCARBONS.

Publications (2)

Publication Number Publication Date
JPS5249202A JPS5249202A (en) 1977-04-20
JPS607678B2 true JPS607678B2 (en) 1985-02-26

Family

ID=19824670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12196576A Expired JPS607678B2 (en) 1975-10-15 1976-10-13 Hydrocarbon conversion method

Country Status (7)

Country Link
JP (1) JPS607678B2 (en)
CA (1) CA1088448A (en)
DE (1) DE2646220A1 (en)
FR (1) FR2328033A1 (en)
GB (1) GB1546960A (en)
IT (1) IT1068909B (en)
NL (1) NL7512090A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7702161A (en) * 1977-03-01 1978-09-05 Shell Int Research METHOD FOR CONVERTING HYDROCARBONS.
EP0068543B1 (en) * 1981-06-25 1988-09-21 Shell Internationale Researchmaatschappij B.V. Process for the preparation of a hydrocarbon mixture
NL8105660A (en) * 1981-12-16 1983-07-18 Shell Int Research PROCESS FOR PREPARING HYDROCARBON OIL DISTILLATES
NL8201233A (en) * 1982-03-24 1983-10-17 Shell Int Research PROCESS FOR THE PREPARATION OF LOW ASPHALTENE HYDROCARBON MIXTURE.
NL8201243A (en) * 1982-03-25 1983-10-17 Shell Int Research PROCESS FOR THE PREPARATION OF LOW ASPHALTANE HYDROCARBON MIXTURE.
DE3479225D1 (en) * 1983-04-18 1989-09-07 Shell Int Research A process for the production of low-asphaltenes hydrocarbon mixtures
ITMI20042446A1 (en) * 2004-12-22 2005-03-22 Eni Spa PROCEDURE FOR CONVERSION OF PESANTYI CHARGES SUCH AS HEAVY CRATES AND DISTILLATION RESIDUES
FR2933711B1 (en) * 2008-07-10 2010-08-27 Inst Francais Du Petrole CONVERSION PROCESS COMPRISING VISCOREDUCTION OF RESIDUE, THEN DESASPHALTAGE AND HYDROCONVERSION
FR2933710B1 (en) * 2008-07-10 2012-12-07 Inst Francais Du Petrole CONVERSION PROCESS COMPRISING DESASPHALTAGE AND RESIDUAL CONVERSION

Also Published As

Publication number Publication date
FR2328033B1 (en) 1982-06-11
JPS5249202A (en) 1977-04-20
GB1546960A (en) 1979-05-31
IT1068909B (en) 1985-03-21
NL7512090A (en) 1977-04-19
CA1088448A (en) 1980-10-28
DE2646220C2 (en) 1987-05-27
DE2646220A1 (en) 1977-04-28
FR2328033A1 (en) 1977-05-13

Similar Documents

Publication Publication Date Title
US4039429A (en) Process for hydrocarbon conversion
US4294686A (en) Process for upgrading heavy hydrocarbonaceous oils
US4062758A (en) Process for the conversion of hydrocarbons in atmospheric crude residue
US4152244A (en) Manufacture of hydrocarbon oils by hydrocracking of coal
US3898299A (en) Production of gaseous olefins from petroleum residue feedstocks
US4609456A (en) Process for converting heavy petroleum residues to hydrogen and gaseous distillable hydrocarbons
US4592827A (en) Hydroconversion of heavy crudes with high metal and asphaltene content in the presence of soluble metallic compounds and water
US4126538A (en) Process for the conversion of hydrocarbons
US3938968A (en) Process for the production of substitute natural gas
JP2000516664A (en) A method for high olefin yield from heavy feeds
US3862899A (en) Process for the production of synthesis gas and clean fuels
JPS607678B2 (en) Hydrocarbon conversion method
JPS6239192B2 (en)
US4405442A (en) Process for converting heavy oils or petroleum residues to gaseous and distillable hydrocarbons
US3732085A (en) Thermally efficient nonpolluting system for production of substitute natural gas
EP0035864B1 (en) Process for upgrading heavy hydrocarbonaceous oils
JPS6132356B2 (en)
AU694799B2 (en) Process for the thermal cracking of a residual hydrocarbon oil
JPS62246995A (en) Treatment of gas oil
JPH0678527B2 (en) Method of catalytic hydrogenation of coal
JPH0580960B2 (en)
EA001938B1 (en) Process and apparatus for upgrading hydrocarbon feeds containing sulfur, metals and asphaltenes
CN116075478A (en) Method and apparatus for producing gasoline from tar-containing feedstock
US4715947A (en) Combination process for the conversion of a residual asphaltene-containing hydrocarbonaceous stream to maximize middle distillate production
SU1306479A3 (en) Method for producing hydrocarbon petroleum distillates