JPS6076116A - Ultraviolet ray irradiation device for semiconductor wafer - Google Patents

Ultraviolet ray irradiation device for semiconductor wafer

Info

Publication number
JPS6076116A
JPS6076116A JP58181831A JP18183183A JPS6076116A JP S6076116 A JPS6076116 A JP S6076116A JP 58181831 A JP58181831 A JP 58181831A JP 18183183 A JP18183183 A JP 18183183A JP S6076116 A JPS6076116 A JP S6076116A
Authority
JP
Japan
Prior art keywords
ultraviolet rays
irradiation intensity
irregularity
ultraviolet
semiconductor wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58181831A
Other languages
Japanese (ja)
Inventor
Michiyoshi Iwai
岩井 道義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP58181831A priority Critical patent/JPS6076116A/en
Publication of JPS6076116A publication Critical patent/JPS6076116A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To irradiate ultraviolet rays uniformly on a semiconductor wafer of large area in the state wherein no irregularity in processing is generated and to perform the process quickly by a method wherein the irradiation intensity of ultraviolet rays in specified wavelength and the irregularity of irradiation intensity are specifically provided. CONSTITUTION:A main mirror 2 and an auxiliary mirror 3 are arranged in the case 1 of the titled device, and two ultraviolet ray lamps 4 are provided. Said ultraviolet ray lamps 4 are a low pressure mercury-arc lamps which mainly generated the ultraviolet rays of 254nm in wavelength, its light-emitting part 4a is curved almost in W-shape making a horizontal plane form, and it also forms a surface illuminant of almost square shape having length L. The valve space S of the light-emitting part 4a is made smaller than the distance H from the light-emitting part 4a to the semiconductor wafer (diameter D), which is the material to be projected 6 in the form of L>D+H. As a result, the irregularity of irradiation intensity can be brought within + or -20%, and the irregularity in processing is not generated. The cooled air of a cooling fan 7 is introduced to the valve part 4b which surrounds an electrode part. The ultraviolet ray lamps 4 are operated efficiently, and the irradiation intensity of the ultraviolet rays of 200-300nm in wavelength can be maintained at 10<mw>/cm<2> or above.

Description

【発明の詳細な説明】 本発明は半導体ウェハー用紫外線照射装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultraviolet irradiation device for semiconductor wafers.

半導体の製造工程において、光化学蒸着法により基板上
にSi薄膜を蒸着したり、その予備洗浄として表面に付
着した有機汚染物を分解洗浄するためなどに紫外線照射
が利用されているが、最近はLSIのベーキング工程へ
の適用が注目されている。このベーキング工程とは、5
i02薄膜が蒸着され、更にその上に感光剤が塗布され
た半導体ウェハーを感光させて感光剤を部分的に除去す
る感光工程と、この感光剤が除去された部分の5iOz
薄膜を除去してパターンを形成するエツチング工程との
中間で、5i02薄膜の接着強度を向上させることなど
を目的として、120〜200 ℃程度の温度でベーク
する工程を言うが、この温1現は高い方が接着強度が向
上して好ましい。しかし、この温度を140℃以上にす
れば、次のエツチング工程で残留した5i02IW膜と
感光剤の表面や垂直向がいびつとなって形成パターンが
悪くなり、LSIの性能が低下する問題点がある。そこ
でベーキング工程の前に半導体ウェハーに紫外線を照射
すれば、ベーキング温度を140℃以上としても残留し
たS iO2薄膜と感光剤の形成パターンが悪化するこ
となく接着強度を向上できることが知られている。しか
し紫外線でも有効な波長域は200〜300nmである
ことが分シかけて来た。
In the manufacturing process of semiconductors, ultraviolet irradiation is used to deposit Si thin films on substrates using photochemical vapor deposition and to decompose and clean organic contaminants attached to the surface as a preliminary cleaning process. Its application to the baking process is attracting attention. This baking process is 5
A photosensitive process in which a semiconductor wafer on which an i02 thin film is deposited and a photosensitizer coated thereon is exposed to partially remove the photosensitizer, and a 5iOz
This is a process of baking at a temperature of about 120 to 200 °C between the etching process of removing the thin film and forming a pattern, with the aim of improving the adhesive strength of the 5i02 thin film. A higher value is preferable because the adhesive strength improves. However, if this temperature is increased to 140°C or higher, the surface and vertical orientation of the 5i02IW film and photosensitive agent remaining in the next etching process become distorted, resulting in poor pattern formation and a problem in that LSI performance deteriorates. . Therefore, it is known that if the semiconductor wafer is irradiated with ultraviolet rays before the baking process, the adhesive strength can be improved without deteriorating the formed pattern of the remaining SiO2 thin film and photosensitive agent even if the baking temperature is 140°C or higher. However, it has become clear that the effective wavelength range for ultraviolet light is 200 to 300 nm.

ところで最近は、半導体ウェハーは大型化し、直径4イ
ンチ(約102s+m)以上のものが製造されるように
なったので、この大型化にともなって広い表面にできる
だけ均一に紫外線を照射することが重要なa題となって
きた。そして、半導体の全製造工程のうちでこの紫外線
照射工程が律i段階、即ちネックとなることを避けなけ
ればならず、前工程である感光工程の所要時間内に照射
工程が完了する必要がある。
By the way, recently, semiconductor wafers have become larger, with diameters of 4 inches (approximately 102 s + m) or more being manufactured, and with this increase in size, it is important to irradiate ultraviolet rays as uniformly as possible over a wide surface. It has become a topic. Of the entire semiconductor manufacturing process, this ultraviolet irradiation process must be avoided from becoming a critical stage, that is, a bottleneck, and the irradiation process must be completed within the time required for the previous process, the photosensitive process. .

そこで本発明は、直径4インチ以上の大面積の半導体ウ
ェハーに対して、波長200〜300nmの紫外線を処
理ムラが生じない範囲で均一に照射し、かつ、迅速に処
理できる半導体ウェハー用紫外線照射装置を提供するこ
とを目的とし、その構成は、直管型紫外線ランプを並設
するか、もしくはランプの発光部を屈曲させて形成され
る面光源の前方に直径4インチ以上の円形もしくは一辺
4インチ以上の方形の前面ガラスが配置され、この面光
源の前方の1〜2.5淵離れた位置における波長200
〜300nmの紫外線の照射強度が10mW/−以上に
保たれ、面光源の直径または一辺の長さLが被照射物の
直径りと面光源と被照射物との距離Hの和よシ大きく、
かつ面光源の発光部のパルプの間隔Sが前記距離Hよシ
小さくして照射強度のバラツキを±20%以内に規制さ
れてなることを特徴とするものである。
Therefore, the present invention has developed an ultraviolet irradiation device for semiconductor wafers that can uniformly irradiate large area semiconductor wafers with a diameter of 4 inches or more with ultraviolet rays with a wavelength of 200 to 300 nm within a range that does not cause processing unevenness, and can process them quickly. Its configuration is to provide a circular light with a diameter of 4 inches or more or a side of 4 inches in front of a surface light source formed by arranging straight tube ultraviolet lamps in parallel or by bending the light emitting part of the lamps. The above rectangular front glass is arranged, and the wavelength at a position 1 to 2.5 depths in front of this surface light source is 200.
The irradiation intensity of ~300 nm ultraviolet rays is maintained at 10 mW/- or more, and the diameter or length L of one side of the surface light source is larger than the sum of the diameter of the object to be irradiated and the distance H between the surface light source and the object to be irradiated,
Moreover, the spacing S between the pulps of the light emitting part of the surface light source is made smaller than the distance H, so that the variation in irradiation intensity is regulated within ±20%.

以下に図面に示す実施例に基いて本発明を具体的に説明
する。
The present invention will be specifically described below based on embodiments shown in the drawings.

装置箱1の赤1y中央に社主ミラー2が水千罠配置され
、その周辺の下方には垂直の副ミラー3が配置されて箱
形を形成している。紫外線ランプ4はその発光部4aが
ミラー2,6で囲まれる空所に、その電、極部を取り囲
むパルプ部4bが主ミラー2の背部である上方になるよ
うにして2本配設されている。この紫外線ランプ4はア
ーク長が100gn余であり、波長254nmの紫外線
が主に発生する低圧水銀灯であるが、電極部を取り囲む
パルプ部4bの近傍は垂直姿勢で配設され、発光部4a
は略W字形の蛇行状に屈曲されて水平の平面状をなして
いる。仁の紫外線ランプ4が2本隣接して配設されてい
るので光源は辺長がLlとL2の面光源をなすが、Ll
とL2は約200 gmではソ等しく、辺長りの略正方
形の面光源が形成されている。この発光部4aの下方に
は一辺が約200Mの方形の石英カラスからなる前面ガ
ラス5が設けられ、紫外線ランプ4よυの紫外線がこの
前面カラス5を透過して下方に照射される。被照射物6
である半導体ウェハーは直径りが6インチ(約153囲
)であり、発光部4aからの距離Hが2.5側の位置に
図示路の支持具で支持されている。ここで発光部4aの
パルプ間隔Sは15wNであり距離■(より小さい。そ
して前記の数値に示すように%L>D+Hとなっている
A company owner's mirror 2 is arranged in the center of the red 1y of the equipment box 1, and vertical sub-mirrors 3 are arranged below the periphery to form a box shape. Two ultraviolet lamps 4 are disposed in a space where the light emitting part 4a is surrounded by the mirrors 2 and 6, and the pulp part 4b surrounding the electrode and pole part is above the back of the main mirror 2. There is. The ultraviolet lamp 4 is a low-pressure mercury lamp that has an arc length of over 100gn and mainly emits ultraviolet light with a wavelength of 254 nm, but the vicinity of the pulp part 4b surrounding the electrode part is arranged in a vertical position, and the light emitting part 4a
is bent into a substantially W-shaped meandering shape to form a horizontal plane. Since the two UV lamps 4 are arranged adjacent to each other, the light source forms a surface light source with side lengths Ll and L2.
and L2 are equal to about 200 gm, forming a substantially square surface light source with long sides. A front glass 5 made of a rectangular quartz glass having a side of approximately 200 m is provided below the light emitting section 4a, and ultraviolet rays of the ultraviolet lamp 4 are transmitted through the front glass 5 and irradiated downward. Irradiated object 6
The semiconductor wafer has a diameter of 6 inches (approximately 153 cm), and is supported by a support shown in the diagram at a distance H from the light emitting part 4a of 2.5. Here, the pulp spacing S of the light emitting part 4a is 15 wN, which is smaller than the distance (2).As shown in the above numerical values, %L>D+H.

なお、紫外線ランプ4は前記のものに限られるものでは
なく、例えは直管型ランプを並設して面光源とするか、
もしくは発光部4aを渦巻状に屈曲して円形面光源とし
てもよい。円形面光源の場合は前面ガラス54円形とな
るが、いずれにしても前記のII>SとI、>D+Hの
関係は満す必要がある。
Note that the ultraviolet lamp 4 is not limited to the one described above; for example, straight tube lamps may be arranged in parallel to form a surface light source, or
Alternatively, the light emitting portion 4a may be bent into a spiral shape to form a circular surface light source. In the case of a circular surface light source, the front glass 54 is circular, but in any case, the above-mentioned relationships of II>S and I,>D+H must be satisfied.

そして、装置箱1の上面には冷却ファン7が設ゆられ、
冷却風がダクト8によって電極部を取シ囲むパルプ部4
bに導かれ、最冷点位置の温度金20〜50℃に、調節
できるようになっている。このために紫外線ランプ4は
効率よく作動し、被照射物6の位置において波長200
〜5[10チmの紫外線の照射強度が10mW/−以上
に保たれるようになt っでいる。
A cooling fan 7 is installed on the top surface of the device box 1.
Pulp section 4 where cooling air surrounds the electrode section through duct 8
The temperature at the coldest point can be adjusted to 20-50°C. For this reason, the ultraviolet lamp 4 operates efficiently and has a wavelength of 200 at the position of the object 6 to be irradiated.
The irradiation intensity of ultraviolet rays at ~5[10 cm] is maintained at 10 mW/- or more.

しかして、感光工程の終った半導体ウヱノ・−を前記の
位置に支持し、冷却ファン7を作動させて紫外線ランプ
4を点灯すると主として波長254 nmの紫外線が半
導体ウェハー上に照射されるが、前記の通り)l > 
SとL > D + Hの関係が保たれているので照射
強度のバラツキを±20チ以内に納めることができ、処
理ムラが生じることがない。そして照射強度が10mW
/A以上に保たれているので60秒以内で照射が完rし
、前工程である感光工程の所要時間内で処理することが
できる。次に、この照射工程の完了した半導体ウエノ・
−を温度180℃でベーキングし、プラズマエツチング
によりパターンを形成したが、ベーキング温度が180
℃の高温であったにもかかわらず、広い面積の全面にわ
たって一様に歪みの小さいパターンを得ることができ、
またS ich薄膜の接着強度を大きくすることができ
た。
When the semiconductor wafer that has undergone the exposure process is supported at the above-mentioned position, the cooling fan 7 is operated, and the ultraviolet lamp 4 is turned on, ultraviolet rays mainly having a wavelength of 254 nm are irradiated onto the semiconductor wafer. (as per) l>
Since the relationship S and L>D+H is maintained, variations in irradiation intensity can be kept within ±20 inches, and processing unevenness will not occur. And the irradiation intensity is 10mW
Since the temperature is maintained at or above /A, irradiation can be completed within 60 seconds, and the processing can be completed within the time required for the photosensitive step, which is the previous step. Next, the semiconductor wafer after this irradiation process is completed.
- was baked at a temperature of 180°C and a pattern was formed by plasma etching, but the baking temperature was 180°C.
Even though the temperature was as high as ℃, we were able to obtain a uniform pattern with small distortion over a wide area.
Furthermore, the adhesive strength of the Sich thin film could be increased.

以上説明したように、本発明は大きな面光源の紫外線ラ
ンプを用いて±20%以内のバラツキで10mWArI
Hの強度の波長200〜300 nmの紫外線を照射で
きるようにしたので、本発明に従えば、直径4インチ以
上の大面積の半導体ウェハーに対して、処理ムラの生じ
ない範囲で均一に紫外線を照射し、かつ迅速に処理でき
る半導体ウェハー用紫外線照射装置を提供することがで
きる。
As explained above, the present invention uses an ultraviolet lamp with a large surface light source to produce 10mWA ArI with a variation within ±20%.
According to the present invention, it is possible to irradiate ultraviolet rays with a wavelength of 200 to 300 nm with an intensity of H. It is possible to provide an ultraviolet irradiation device for semiconductor wafers that can irradiate and rapidly process ultraviolet rays.

【図面の簡単な説明】[Brief explanation of drawings]

@1図は本発明実施例の正面断面図、第2図は同じく側
面断面図を示す。 1・・・装置箱 2・・・主ミラー 6・・・副ミラー
4・・・紫外線ランプ 4a・・・発光部4b・・・電
極部を取り囲むバルブ部 5・・・前面ガラス 6・・・被照射物(半導体ウェハー) 7・・・冷却ファン 8・・・ダクト 出願人 ウシオ電機株式会社 代理人 弁理士 田原寅之助 手続補正書(自発) 昭和58年11月17日 特許庁長官 若杉和夫 殿 1、事件の表示 昭和58年 特許願第181831号 2、発明の名称 半導体ウェハー用紫外線照射装置3、
 補正をする者 事件との関係 特許出願人 代表者“揚重大蔵 4、代理人 住 所 東京都港区南青山2−2−15 ウィン青白4
22号6 補正により増加する発明の数 なし7、補正
の対象 明細書の3発明の詳細な説明の欄 8、補正の内容 別紙の通り −ハ衣 (1) 明細書第2頁5行目の[・・・光化学蒸着法−
1のあとに1など」を追加する。 (2)同上4行目のl−S i薄膜を蒸着」を「酸化膜
、窒化脱、金属膜などを形成」に補正する。 (3〕 同上8行目、11行目から12行目にかけ、1
3行目の6箇所の「S r Ot薄膜」を「−酸化膜な
ど」に補正する。 (4) 同上17行目がら18行トjにがけての「次の
エツチング工程で残留したSin、薄膜と」を削除する
。 (5) 同第3負5行目のr S t Ot薄膜と」を
削除する。 (6)同上5行目から6行目にかけての[・・・形成パ
ターンが・・・・・・知られていJ(i=I−・・・形
成パターンが悪化しないことが知られてい]に補正する
。 (7) 同上7行目の1−シかし」を「シかも」に補正
する。 (8)同第7貞16行目から17行目」の1・・・ベー
キングし、・・・・・・ベーキング温度が180Jを「
ベーキングしたところ、ベーキング温度が180」に補
正する。 (9)同第8頁1行目から6行目にかけての「而にわた
って一様に・・・・・・できた。」を[面にわたって感
光剤の形成パターンが悪化しなかった。」に補正する。 以上
@ Figure 1 is a front sectional view of an embodiment of the present invention, and Figure 2 is a side sectional view. 1... Equipment box 2... Main mirror 6... Secondary mirror 4... Ultraviolet lamp 4a... Light emitting part 4b... Bulb part surrounding the electrode part 5... Front glass 6... Irradiated object (semiconductor wafer) 7...Cooling fan 8...Duct Applicant USHIO INC. Patent attorney Toranosuke Tahara procedural amendment (voluntary) November 17, 1981 Commissioner of the Japan Patent Office Kazuo Wakasugi Tono 1 , Display of the incident 1981 Patent Application No. 181831 2 Title of the invention Ultraviolet irradiation device for semiconductor wafers 3
Relationship with the case of the person making the amendment Patent applicant representative “Yoge University Collection 4, Agent address: Win Seihaku 4, 2-2-15 Minami-Aoyama, Minato-ku, Tokyo
No. 22 No. 6 Number of inventions increased by amendment None 7, Detailed explanation column 8 of the three inventions in the specification subject to the amendment, Contents of the amendment as per attached sheet - C (1) Page 2, line 5 of the specification [...Photochemical vapor deposition method-
Add 1 etc. after 1. (2) ``Deposit l-Si thin film'' in line 4 of the same as above is corrected to ``form oxide film, denitridation, metal film, etc.''. (3) Same as above, line 8, line 11 to line 12, 1
"S r Ot thin film" at six locations on the third line is corrected to "-oxide film, etc.". (4) Delete "Sin and thin film remaining in the next etching process" from the 17th line to the 18th line j of the above. (5) Delete "r S t Ot thin film" in the third negative fifth line. (6) From the 5th line to the 6th line of the above, [...the formed pattern is known...J (i = I-... it is known that the formed pattern will not deteriorate]) (7) Correct ``1-shikashi'' in line 7 of the same to ``shikamo.'' (8) 1 of ``16th to 17th lines of the 7th line'' of the same...baking, ...The baking temperature is 180J.
When baking, the baking temperature was corrected to 180℃. (9) From the 1st line to the 6th line of page 8, ``It was formed uniformly over the entire area.'' was changed to ``The formation pattern of the photosensitive agent did not deteriorate over the surface.'' ”. that's all

Claims (1)

【特許請求の範囲】[Claims] 直管型紫外線ラングを並設するか、もしくはランプの発
光部を屈曲させて形成される面光源の前方に直径4イン
チ以上の円形もしくは一辺4インチ以上の方形の前面ガ
ラスが配置され、この面光源の前方の1〜2−5crn
離れた位置における波長200〜60D nm+7)紫
外11J(7)照射強[カ10 ”W/d以上に保たれ
、面光源の直径または一辺の長さLが被照射物の直径り
と面光源と被照射物との距離Hの和より犬きく、かつ面
光源の発光部のバルブの間隔Sが面光源と被照射物との
距離Hより小さくして照射強度のバラツキを±20%以
内に規制されてなる半導体ウェハー用紫外線照射装置。
A circular front glass with a diameter of 4 inches or more or a rectangular glass with a side of 4 inches or more is placed in front of a surface light source formed by arranging straight UV lamps in parallel or by bending the light emitting part of the lamp, and this surface 1-2-5 crn in front of the light source
Wavelength at a distance: 200-60D nm + 7) Ultraviolet 11J The variation in irradiation intensity is controlled within ±20% by making the distance S between the bulbs of the light emitting part of the surface light source smaller than the distance H between the surface light source and the object being irradiated. Ultraviolet irradiation equipment for semiconductor wafers.
JP58181831A 1983-10-01 1983-10-01 Ultraviolet ray irradiation device for semiconductor wafer Pending JPS6076116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58181831A JPS6076116A (en) 1983-10-01 1983-10-01 Ultraviolet ray irradiation device for semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58181831A JPS6076116A (en) 1983-10-01 1983-10-01 Ultraviolet ray irradiation device for semiconductor wafer

Publications (1)

Publication Number Publication Date
JPS6076116A true JPS6076116A (en) 1985-04-30

Family

ID=16107578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58181831A Pending JPS6076116A (en) 1983-10-01 1983-10-01 Ultraviolet ray irradiation device for semiconductor wafer

Country Status (1)

Country Link
JP (1) JPS6076116A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101041173B1 (en) 2009-07-16 2011-06-14 현수건설 주식회사 Street lamp and fence for foundation structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101041173B1 (en) 2009-07-16 2011-06-14 현수건설 주식회사 Street lamp and fence for foundation structure

Similar Documents

Publication Publication Date Title
US5803975A (en) Microwave plasma processing apparatus and method therefor
US4732842A (en) Exposure method of semiconductor wafer by rare gas-mercury discharge lamp
JP2001035803A (en) Lamp unit and light irradiating system heating device
JPH0987851A (en) Microwave plasma treating device and method thereof
JPS6076116A (en) Ultraviolet ray irradiation device for semiconductor wafer
US5681394A (en) Photo-excited processing apparatus and method for manufacturing a semiconductor device by using the same
JPS6114724A (en) Irradiation of semiconductor wafer by ultraviolet ray
US6897609B2 (en) Plasma lamp and method
JPH0356045Y2 (en)
US5368647A (en) Photo-excited processing apparatus for manufacturing a semiconductor device that uses a cylindrical reflecting surface
JP2854255B2 (en) Dielectric barrier discharge lamp device
JP3876665B2 (en) Light irradiation type heat treatment equipment
JPS6059733A (en) Device for exposing semiconductor
US4768464A (en) Chemical vapor reaction apparatus
JPH055183A (en) Photoexcitation processing device and production of semiconductor device for using this device
JPH05206022A (en) Semiconductor production device
JP3214154B2 (en) Cleaning method using dielectric barrier discharge lamp
JPH05283346A (en) Semiconductor manufacturing device
JPS5928159A (en) Mask for exposure and its material
JPH0447454B2 (en)
JPH0477416B2 (en)
JPH11223707A (en) Optical member and its production
JPS61164640A (en) Optical cvd apparatus
JPS6384019A (en) Semiconductor processor
JPH07105346B2 (en) Radical beam photo CVD equipment