JPS6384019A - Semiconductor processor - Google Patents

Semiconductor processor

Info

Publication number
JPS6384019A
JPS6384019A JP22925886A JP22925886A JPS6384019A JP S6384019 A JPS6384019 A JP S6384019A JP 22925886 A JP22925886 A JP 22925886A JP 22925886 A JP22925886 A JP 22925886A JP S6384019 A JPS6384019 A JP S6384019A
Authority
JP
Japan
Prior art keywords
light source
ultraviolet light
lamp
reaction chamber
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22925886A
Other languages
Japanese (ja)
Inventor
Shigenori Hayashi
茂則 林
Naoki Hirose
直樹 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP22925886A priority Critical patent/JPS6384019A/en
Priority to US07/097,188 priority patent/US4768464A/en
Priority to US07/154,290 priority patent/US4803095A/en
Publication of JPS6384019A publication Critical patent/JPS6384019A/en
Priority to US07/190,355 priority patent/US4974542A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain a wide substrate irradiation area thereby to reduce the size of a semiconductor processor by providing a non-light-emitting unit in a lamp profile in an ultraviolet light source used for an optical CVD unit to obtain a uniform surface to be irradiated. CONSTITUTION:The shape of a lamp is so constructed that a non-light-emitting unit is surrounded by a light emitting unit, such as a spiral shape. The thus constructed ultraviolet light source lamp is mounted as an ultraviolet light source in a reaction chamber. A wider substrate irradiation area than a conventional one can be taken by using the lamp of such a shape. Accordingly, since wider irradiation area can be taked by a relatively small processor, the size of the processor can be reduced.

Description

【発明の詳細な説明】 (イ)発明の利用分野 本発明は、産業分野、特に半導体装置作製技術分野にお
いて利用可能な半導体処理装置を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Application of the Invention The present invention provides a semiconductor processing apparatus that can be used in the industrial field, particularly in the field of semiconductor device manufacturing technology.

(ロ)従来の技術 産業分野、特に半導体装置作製技術分野において、紫外
光を用い5tnllzn*z(n=1+2+3 4 H
+ )のシラン類を分解反応させ、薄膜を形成する光C
VO法、また、半導体表面の有機物を取り除く光洗浄法
、光エツチング法が超LSI製造において注目されてい
る。特に大面積に均一に薄膜を形成しようとする時や、
大面積の半導体基板もしくはガラス基板等を同時に処理
しようとする時、基板面および薄膜の形成面への光の入
射量、即ち放射照度は基板上での膜厚もしくは処理の均
一性に対し重要なパラメータとなる。
(b) In the conventional technology industry field, especially in the field of semiconductor device manufacturing technology, ultraviolet light is used to perform 5tnllzn*z (n=1+2+3 4
+) Light C that decomposes and reacts the silanes to form a thin film.
The VO method, as well as the optical cleaning method and optical etching method for removing organic matter from the semiconductor surface, are attracting attention in VLSI manufacturing. Especially when trying to form a thin film uniformly over a large area,
When processing large-area semiconductor substrates or glass substrates simultaneously, the amount of light incident on the substrate surface and the thin film formation surface, that is, the irradiance, is important for the film thickness on the substrate or the uniformity of processing. Becomes a parameter.

例えば、第1図に示すように、基板上に形成された被膜
の膜厚と185nmの光の放射照度との間には明らかに
相関係数が存在する。なお、相関係数はこの場合0.7
である。
For example, as shown in FIG. 1, there is clearly a correlation coefficient between the thickness of a film formed on a substrate and the irradiance of 185 nm light. Note that the correlation coefficient is 0.7 in this case.
It is.

従来、大面積基板上を均一に被膜を形成もしくは処理し
ようとする場合、成膜もしくは処理しようとする面積よ
りも広い面積の発光体、理想的には面発光体が得られる
ことを前提として発光体の形、配置等が考えられてきた
。例えば、300mm x300mmの面積に均一に成
膜もしくは処理するには発光長400mmの直管形の低
圧水銀ランプを400mmの巾に等ピッチに配置すると
いうようにである。
Conventionally, when trying to uniformly form or process a film on a large-area substrate, it is assumed that a light-emitting body with an area larger than the area to be formed or treated, ideally a surface light-emitting body, can be obtained. Consideration has been given to the shape and placement of the body. For example, in order to uniformly form or process a film on an area of 300 mm x 300 mm, straight tube-shaped low-pressure mercury lamps with a light emission length of 400 mm are arranged at equal pitches over a width of 400 mm.

これならば疑似的な面発光体が得られるわけであるが、
理論的には面発光体面積は無限大でなければならず、有
限の面積をもつ発光体の場合、照射面での放射照度分布
が発生してくる。
If this is the case, a pseudo surface light emitter can be obtained,
Theoretically, the area of a surface light emitter must be infinite, and in the case of a light emitter with a finite area, an irradiance distribution will occur on the irradiation surface.

そのため、実際には照射面積即ち成膜もしくは処理しよ
うとする面積に比べ発光体面積が十分大きいとみなせる
条件で用いることになる。ところが成膜もしくは処理し
ようとする面積を大きくとろうとすれば相対的に発光体
面積もそれに伴って大きくしなければならず、成膜もし
くは処理しようとする面積が小面積の時には問題となら
なかった発光体からの発熱、発光体面積増大による装置
寸法の拡大及びコスト高等の問題が生じてきた。
Therefore, in reality, it is used under conditions where the area of the light emitter can be considered to be sufficiently larger than the irradiation area, that is, the area to be deposited or processed. However, if the area to be coated or processed is to be increased, the area of the light emitter must be increased accordingly, which did not pose a problem when the area to be coated or processed was small. Problems have arisen, such as heat generation from the light emitter, increased device size due to an increase in the area of the light emitter, and increased cost.

そこでできるだけ成膜もしくは処理しようとする面積に
対する発光面積の小さな、かつ照射面における放射照度
分布の少ない紫外光源用ランプが求められていた。
Therefore, there has been a need for an ultraviolet light source lamp that has a light emitting area as small as possible relative to the area to be film-formed or processed and has a small irradiance distribution on the irradiation surface.

(ハ)発明の目的 本発明は、上記の要求を満たすものであり、従来の半導
体処理装置では得られなかった広い成膜もしくは処理し
ようとする面積の得られる半導体処理装置を提供するも
のである。
(c) Purpose of the Invention The present invention satisfies the above-mentioned requirements and provides a semiconductor processing device that can provide a wide area for film formation or processing, which was not possible with conventional semiconductor processing devices. .

(ニ)発明の構成 上記目的を達成するために、本発明は特許請求の範囲に
記載されているように、 「大気圧より減圧状態に保持された光源用バルブ内に水
銀のみ、もしくは水銀及びAr、 Kr等の希ガスを封
入した紫外光源用ランプにおいて、前記ランプ外形中に
非発光部を有しており、前記ランプを2次元的に見た場
合、非発光部を発光部が取り囲む構造を有することを特
徴とする紫外光源用ランプを反応室内もしくは反応室に
隣接した光源室内に紫外光源として設置し、咳紫外光源
を用いて半導体被膜形成もしくは半導体表面の処理を行
う時、該光源を用いることによって均一な照射面積を広
くとることを特徴とする半導体処理装置。」である。
(d) Structure of the Invention In order to achieve the above object, the present invention, as stated in the claims, provides that ``Mercury only or mercury and A lamp for an ultraviolet light source filled with a rare gas such as Ar or Kr has a structure in which the lamp has a non-light-emitting part in its outer shape, and the light-emitting part surrounds the non-light-emitting part when the lamp is viewed two-dimensionally. An ultraviolet light source lamp characterized by having a A semiconductor processing device characterized by a wide uniform irradiation area when used.

従来の思想、即ち面発光体を基本としてランプを設計し
た場合の185r+mの光の放射照度を計算によって求
め、3次元グラフ化したものの基板面放射照度を第2図
に示す。この発光体の大きさは、150mm X 15
0mmとした場合である。X軸、Y軸は照射面の位置を
示し、Z軸は発光体からある距離剤れた位置での185
 nmの光の放射照度を任意スケールで示す。同図より
明らかなように、基板面の中心部分の185nmの光の
放射強度が強く、中心部分から離れ照射面の周辺に近い
ほど放射強度は弱くなり、160mm x 160mm
の基板面内で、185r+mの光の放射強度が±10%
の範囲に入る面積は発光体面積の18%に満たない。そ
こで基板面での放射照度を均一にしようとすれば、中心
部分の放射照度を下げ、周辺部の照度と等しくなるよう
に発光体の形状及び配置を設計すればよい。基板面の中
心部分の照度は主に発光体の中心部分の照射に支配され
るから、中心部に発光部のない発光体を考える。実用的
には一本のバルブで構成することのできるらせん状の発
光体が望ましい。らせん状のランプであれば、ランプを
真空室内に設置する場合が多いため、真空室に設ける電
流導入端子の数を最少にし、冷却も容易になるからであ
る。
The irradiance of light of 185r+m when the lamp is designed based on the conventional idea, that is, a surface light emitter, is calculated, and the substrate surface irradiance is shown in FIG. 2 as a three-dimensional graph. The size of this light emitter is 150mm x 15
This is the case where it is 0 mm. The X-axis and Y-axis indicate the position of the irradiation surface, and the Z-axis indicates the position at a certain distance from the light emitter.
The irradiance of light in nm is shown on an arbitrary scale. As is clear from the figure, the radiation intensity of 185 nm light is strong at the center of the substrate surface, and the radiation intensity becomes weaker as you move away from the center and get closer to the periphery of the irradiation surface.
Within the plane of the substrate, the radiation intensity of 185r+m light is ±10%
The area falling within this range is less than 18% of the area of the light emitter. Therefore, in order to make the irradiance uniform on the substrate surface, the shape and arrangement of the light emitters should be designed so that the irradiance at the center is lowered and the illuminance at the periphery is equal to that at the periphery. Since the illuminance at the center of the substrate surface is mainly controlled by the illumination at the center of the light emitter, consider a light emitter without a light emitting part at the center. Practically speaking, a spiral light emitter that can be constructed from a single bulb is desirable. This is because in the case of a spiral lamp, since the lamp is often installed in a vacuum chamber, the number of current introduction terminals provided in the vacuum chamber can be minimized and cooling can be facilitated.

上記設計条件を満たす発光体形状を第3図に、該発光体
で照射した時の185nmの光の照度計算結果を第4図
に示す。第4図より明らかなように、185nmの光の
放射照度が均一となる部分が認められ、±10%の範囲
に入る基板面積は85%に広がる。
FIG. 3 shows the shape of the light emitter that satisfies the above design conditions, and FIG. 4 shows the calculation results of the illuminance of 185 nm light when irradiated with the light emitter. As is clear from FIG. 4, there are parts where the irradiance of 185 nm light is uniform, and the area of the substrate within the range of ±10% expands to 85%.

従来は均一な照射面を得るためには、均一な面発光体が
理想とされていたにもかかわらず、本発明は、このよう
に、均一な面発光体ではなく、ランプ外形中に非発光部
を設けることで均一な照射面を得た点において非常に大
きな特徴を有する。
Conventionally, a uniform surface light emitter was considered ideal in order to obtain a uniform irradiation surface. It has a very significant feature in that a uniform irradiation surface can be obtained by providing a section.

上記ランプを利用した半導体処理装置では、従来18%
程度しか利用できなかった基板面を85%程度利用でき
ることになり、装置コスト、利用する反応ガス、電力等
を大幅に節約することができる。
In semiconductor processing equipment using the above lamps, conventionally 18%
Approximately 85% of the substrate surface, which could previously only be used, can now be used, making it possible to significantly save equipment costs, reactive gases, electric power, etc.

以下に実施例を示す。Examples are shown below.

実施例1 第3図に示した形状の光源用パルプを作製し、両端に電
極部を設け、所定の水銀およびAr、Kr等のバッファ
ガスを封入して紫外光源用ランプとし、に設置して光C
VD装置を構成した。ランプ外形は150mmφ、管径
4mmΦ、発光長900mmとなる。前記光CVD装置
の反応室内に反応ガスとして5il14および02、キ
ャリアガスとしてN2を導入し、光化学反応を行わせ、
SiO□膜を形成した。その結果、形成された被膜の膜
厚が±10%の範囲となる面積は130mmφなり、従
来ランプ場合、外形が150mmΦと同じであったにも
かかわらず、膜厚が±10%の範囲となる面積が65m
mΦであったのに比べ大きく広がったことが確認された
Example 1 A pulp for a light source having the shape shown in Fig. 3 was prepared, electrodes were provided at both ends, and a specified amount of mercury and a buffer gas such as Ar or Kr were sealed to make a lamp for an ultraviolet light source. light C
The VD device was configured. The external shape of the lamp is 150mmφ, the tube diameter is 4mmφ, and the light emitting length is 900mm. Introducing 5il14 and 02 as reaction gases and N2 as a carrier gas into the reaction chamber of the photoCVD apparatus to perform a photochemical reaction,
A SiO□ film was formed. As a result, the area where the film thickness of the formed film falls within the range of ±10% is 130 mmφ, and in the case of a conventional lamp, the film thickness falls within the range of ±10% even though the outer diameter is the same as 150 mmφ. Area is 65m
It was confirmed that it had expanded significantly compared to the previous mΦ.

本実施例で採り上げたのは光CVO装置であるが、本発
明は紫外光源を用いた装置において、基板面に均一に1
85nmの光を照射できることに特徴を有するため、光
CVO装置に限らず、光洗浄装置、光エツチング装置等
巾広い応用が期待できる。また紫外光、特に185nm
の光のように透過率の低い波長域の光ではレンズを用い
て光を集光させることが困難な場合には特に有効である
。現実には大面積例えばへ4判等の基板を照射する場合
にはレンズを構成することは技術的にもコスト的にも不
可能に近いが、本発明を利用すれば大面積の照射も容易
となる。
Although an optical CVO device was adopted in this example, the present invention is applicable to a device using an ultraviolet light source.
Since it is characterized by the ability to irradiate light with a wavelength of 85 nm, it can be expected to have a wide range of applications, including not only optical CVO equipment but also optical cleaning equipment, optical etching equipment, etc. Also, ultraviolet light, especially 185 nm
This is particularly effective when it is difficult to condense the light using a lens, such as light in a wavelength range with low transmittance. In reality, when irradiating a large area, such as a 4-size substrate, it is almost impossible to construct a lens from both technical and cost standpoints, but by using the present invention, it is easy to irradiate a large area. becomes.

実施例2 大型の反応室内に6インチウェハを4枚設置し、該ウェ
ハの各々を照射するよう実施例1で記したランプを1つ
のウェハに対しランプが1つとなるよう4個配置し、反
応室内に実施例1と同様に反応ガスおよびキャリアガス
を導入し、紫外光(185nm)を照射してSiO□膜
を成膜した。各ウェハの膜厚の分布は実施例1と同様±
10%以内となり、各ウェハ間の平均膜厚のばらつきも
±5%以内となった。
Example 2 Four 6-inch wafers were installed in a large reaction chamber, and the four lamps described in Example 1 were arranged so that each wafer was irradiated, one lamp per wafer. A reaction gas and a carrier gas were introduced into the chamber in the same manner as in Example 1, and ultraviolet light (185 nm) was irradiated to form a SiO□ film. The film thickness distribution of each wafer is the same as in Example 1.
It was within 10%, and the variation in average film thickness between each wafer was also within ±5%.

本実施例で用いた装置ならば光源室内に電流導入端子を
多く設けなければならないが、大型のランプを作製する
必要がなくコストが下がり、また多数枚を同時に処理で
きることから、材料ガス、時間の節約を図ることができ
た。
Although the device used in this example requires many current introduction terminals to be installed in the light source chamber, it is not necessary to manufacture large lamps, which reduces costs, and the ability to process many lamps at the same time saves material gas and time. We were able to save money.

即ち、反応室の大きさに紫外光ランプの大きさを揃える
必要はな(、照射面の大きさにランプの大きさを合わせ
、必要に応じて同ランプを複数段けばよいのである。
In other words, it is not necessary to match the size of the ultraviolet light lamp to the size of the reaction chamber (it is sufficient to match the size of the lamp to the size of the irradiation surface, and use the same lamp in multiple stages as necessary).

(ホ)効果 本発明による半導体処理装置を用いることによって、従
来よりも広い基板照射面積をとることができた。即ち、
処理する基板の単位当たりのコストを大幅に削減するこ
とができた。また、比較的小さな装置でも広い照射面積
をとることができるので、装置の小型化を図ることがで
きた。
(E) Effect By using the semiconductor processing apparatus according to the present invention, a wider substrate irradiation area than before can be obtained. That is,
We were able to significantly reduce the cost per unit of processed substrate. Furthermore, since a relatively small device can cover a wide irradiation area, the device can be downsized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は照度対膜厚(Si(h)の相関関係を示す。 第2図は従来ランプの放射照度分布を示す。 第3図は本発明で用いたランプの一例である。 第4図は本発明で用いたランプの放射照度分布を示す。 FIG. 1 shows the correlation between illuminance and film thickness (Si(h)). FIG. 2 shows the irradiance distribution of a conventional lamp. FIG. 3 shows an example of a lamp used in the present invention. FIG. 4 shows the irradiance distribution of the lamp used in the present invention.

Claims (1)

【特許請求の範囲】 1、大気圧より減圧状態に保持された光源用バルブ内に
水銀のみ、もしくは水銀及びAr、Kr等の希ガスを封
入した紫外光源用ランプにおいて、前記ランプ外形中に
非発光部を有しており、前記ランプを2次元的に見た場
合、非発光部を発光部が取り囲む構造を有することを特
徴とする紫外光源用ランプを反応室内もしくは反応室に
隣接した光源室内に紫外光源として設置し、該紫外光源
を用いて半導体被膜形成もしくは半導体表面の処理を行
う時、該光源を用いることによって均一な照射面積を広
くとることを特徴とする半導体処理装置。 2、特許請求の範囲第1項において、前記紫外光源用ラ
ンプを反応室もしくは反応室に隣接した光源室内に紫外
光源として設置し、該紫外光を用いて光化学反応により
被膜を形成することを目的とする半導体処理装置。 3、特許請求の範囲第1項において、前記紫外光源用ラ
ンプを反応室もしくは反応室に隣接した光源室内に紫外
光源として設置し、該紫外光を用いて半導体表面の洗浄
処理を行うことを目的とする半導体処理装置。 4、特許請求の範囲第1項において、前記紫外光源用ラ
ンプを反応室もしくは反応室に隣接した光源室内に紫外
光源として設置し、該紫外光を用いて半導体のエッチン
グ処理を行うことを目的とする半導体処理装置。
[Claims] 1. In an ultraviolet light source lamp in which only mercury or mercury and a rare gas such as Ar or Kr is sealed in a light source bulb maintained at a reduced pressure than atmospheric pressure, there is no non-containing material in the lamp outer shape. An ultraviolet light source lamp having a light emitting part and having a structure in which the light emitting part surrounds a non-light emitting part when the lamp is viewed two-dimensionally is placed in a reaction chamber or in a light source room adjacent to the reaction chamber. A semiconductor processing apparatus characterized in that the ultraviolet light source is installed as an ultraviolet light source, and when forming a semiconductor film or processing a semiconductor surface using the ultraviolet light source, a wide uniform irradiation area is obtained by using the light source. 2. In claim 1, the object is to install the ultraviolet light source lamp as an ultraviolet light source in a reaction chamber or a light source chamber adjacent to the reaction chamber, and to form a film by a photochemical reaction using the ultraviolet light. semiconductor processing equipment. 3. In claim 1, the object is to install the ultraviolet light source lamp as an ultraviolet light source in a reaction chamber or a light source chamber adjacent to the reaction chamber, and to perform a cleaning process on a semiconductor surface using the ultraviolet light. semiconductor processing equipment. 4. In claim 1, the object is to install the ultraviolet light source lamp as an ultraviolet light source in a reaction chamber or a light source chamber adjacent to the reaction chamber, and to perform an etching process on a semiconductor using the ultraviolet light. semiconductor processing equipment.
JP22925886A 1986-09-26 1986-09-26 Semiconductor processor Pending JPS6384019A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP22925886A JPS6384019A (en) 1986-09-26 1986-09-26 Semiconductor processor
US07/097,188 US4768464A (en) 1986-09-26 1987-09-16 Chemical vapor reaction apparatus
US07/154,290 US4803095A (en) 1986-09-26 1988-02-10 Chemical vapor reaction process by virtue of uniform irradiation
US07/190,355 US4974542A (en) 1986-09-26 1988-05-05 Photochemical vapor reaction apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22925886A JPS6384019A (en) 1986-09-26 1986-09-26 Semiconductor processor

Publications (1)

Publication Number Publication Date
JPS6384019A true JPS6384019A (en) 1988-04-14

Family

ID=16889292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22925886A Pending JPS6384019A (en) 1986-09-26 1986-09-26 Semiconductor processor

Country Status (1)

Country Link
JP (1) JPS6384019A (en)

Similar Documents

Publication Publication Date Title
JP2635021B2 (en) Deposition film forming method and apparatus used for the same
US6150265A (en) Apparatus for forming materials
US10373823B2 (en) Deployment of light energy within specific spectral bands in specific sequences for deposition, treatment and removal of materials
JP3214153B2 (en) Cleaning method using dielectric barrier discharge lamp
JPS6384019A (en) Semiconductor processor
JP3653980B2 (en) UV irradiation equipment
CN102077316A (en) Superimposition of rapid periodic and extensive post multiple substrate uv-ozone clean sequences for high throughput and stable substrate to substrate performance
JP3230315B2 (en) Processing method using dielectric barrier discharge lamp
CA1330601C (en) Apparatus for semiconductor process including photo-excitation process
US4768464A (en) Chemical vapor reaction apparatus
US5990006A (en) Method for forming materials
US4856458A (en) Photo CVD apparatus having no ultraviolet light window
JP3064407B2 (en) Light source for photo-excitation process equipment
JPS60202928A (en) Optical pumping reaction device
JP3214154B2 (en) Cleaning method using dielectric barrier discharge lamp
JPH05283346A (en) Semiconductor manufacturing device
JPH05243138A (en) Ultraviolet ray emitter and processing method using the same
JPH04285173A (en) Light exciting process equipment with mechanism for removind window cloud
JPS6381751A (en) Lamp for ultraviolet light source
JP3139058B2 (en) Photoexcitation process apparatus and semiconductor device manufacturing method using the same
JPS63133444A (en) Light source for photoprocessing equipment and its usage
JPS6273727A (en) Light exciting processor
JPS6381752A (en) Lamp for ultraviolet light source
JP2002110558A (en) Substrate processor and processing method therefor
JPH0352224A (en) Apparatus for photo-excited dryetching