JPS607592B2 - Laser irradiation device - Google Patents

Laser irradiation device

Info

Publication number
JPS607592B2
JPS607592B2 JP52136599A JP13659977A JPS607592B2 JP S607592 B2 JPS607592 B2 JP S607592B2 JP 52136599 A JP52136599 A JP 52136599A JP 13659977 A JP13659977 A JP 13659977A JP S607592 B2 JPS607592 B2 JP S607592B2
Authority
JP
Japan
Prior art keywords
laser beam
optical member
laser
welding
scanning optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52136599A
Other languages
Japanese (ja)
Other versions
JPS5470060A (en
Inventor
建二 牛見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP52136599A priority Critical patent/JPS607592B2/en
Publication of JPS5470060A publication Critical patent/JPS5470060A/en
Publication of JPS607592B2 publication Critical patent/JPS607592B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】 本発明はしーザ照射装置に係り、特に複数点の同時加工
を複数個所行なうレーザ照射装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a laser irradiation device, and more particularly to a laser irradiation device that simultaneously processes multiple points.

一例を2点同時溶接を3個所で行なう場合の従来のレー
ザ照射装置について説明する。
As an example, a conventional laser irradiation device for simultaneous two-point welding at three locations will be described.

第1図aに示すように、図示しないレーザ発振器から放
出されたレーザ光1は、このレーザ光1の光軸に沿って
一定の姿勢で移動可能に設置され、1個所の反射位置a
に位置決めされた走査光学部材であるレーザ光反射ミラ
ー2によって方向を変えられこのレーザ光1を分割する
光学部材である屋根形プリズム3に入射する。この屋根
形プリズム3は第1図bに示すようにその稜線が形成す
る分割線4において上記しーザ光1を2分割するように
作られており、この分割線4から図の左側に入ったレー
ザ光1は屈折後集光レンズ5に入り、溶接部材6,7の
表面に位置する集光点8に集光される。分割線から図の
右側に入ったレーザ光は同様にして溶接部材6,7の表
面に位置する集光点9に集光される。レーザ光1が溶接
部村6,7の表面に集光されると、この表面でレーザ光
1の吸収が起り、溶接部材6,7は溶融し集光点8,9
で溶接される。こうして1個所目における2点同時溶接
が完了すると、レーザ光反射ミラー2は図示しないガイ
ドと駆動機構によって一定の姿勢で移動し第2の反射位
置bに位置決めされる。この位置決めと同期してレーザ
発振器からしーザ光が放出され、上記同様の過程を経て
2個所目の2点同時溶接が行なわれる。ついでレーザ光
反射ミラー2は3個所目の反射位置cに移動し、レーザ
光が放出されて全溶接部材の溶接が完了する。ところが
この照射装置を使用すると、レーザ光反射ミラー2の各
反射位置a,b,c,における停止位置精度を高くしな
ければならなくなる。すなわち、レーザ光反射ミラー2
は、このミラー2によって方向を変えられたレーザ光1
のパターンが屋根形プリズム3によって正確に2等分さ
れる位置に位置決めされなければならない。さもないと
分割されたレーザ光のヱネルギ量が異なることになり、
2点同時溶接ができず、たとえば1点は穴があき、他点
は溶接不能になる等の製造不良をつくる。一例として、
直径6脚のレーザ光の中心位置が上記分割線4から0.
1肋ずれると、分割された一方は他方に対し1割近く異
なるエネルギー量を有することになる。このようにレー
ザ光反射ミラー2の僅かな位置ずれにより不都合が生ず
るので、レーザ光放出に先立ってレーザ光反射ミラー2
の停止位置の検出が必要になる。また、このような装置
では、生産能率向上のためのレーザ光反射ミラー2を停
止させずに複数個所で溶接を行なう要請には応えられな
かった。本発明は分配光学部材と分割光学部材とを対に
し、複数の照射箇所に向けてその対にしたものを各別に
設ける一方、レーザ光を所望する箇所に導くために一方
向に移動駆動される走査光学部材を設け、さらに分動光
学部村の分割線方向に定めることにより、走査光学部材
の分配光学部材に対する反射位置がずれた場合でも分割
光学部材におけるレーザ光の分割割合が常に等分となる
ように、均一なしーザ照射が行える装置を提供するもの
である。
As shown in FIG. 1a, a laser beam 1 emitted from a laser oscillator (not shown) is installed movably in a fixed posture along the optical axis of the laser beam 1, and is set at one reflection position a.
The direction of the laser beam 1 is changed by a laser beam reflecting mirror 2, which is a scanning optical member positioned at , and enters a roof-shaped prism 3, which is an optical member that splits the laser beam 1. As shown in FIG. 1b, this roof-shaped prism 3 is made so as to divide the laser beam 1 into two at a dividing line 4 formed by its ridgeline, and from this dividing line 4 enters the left side of the figure. After being refracted, the laser beam 1 enters the condenser lens 5 and is condensed at a condensing point 8 located on the surfaces of the welding members 6 and 7. Laser light entering the right side of the figure from the dividing line is similarly focused on a focusing point 9 located on the surfaces of the welding members 6 and 7. When the laser beam 1 is focused on the surface of the welding parts 6 and 7, absorption of the laser beam 1 occurs on this surface, the welding members 6 and 7 are melted, and the focusing points 8 and 9
be welded. When the two-point simultaneous welding at the first location is completed in this way, the laser beam reflecting mirror 2 is moved in a constant posture by a guide and a drive mechanism (not shown) and positioned at the second reflecting position b. Synchronizing with this positioning, a laser beam is emitted from a laser oscillator, and two-point simultaneous welding at the second location is performed through the same process as described above. Next, the laser beam reflecting mirror 2 moves to the third reflection position c, the laser beam is emitted, and welding of all the welding members is completed. However, when this irradiation device is used, it is necessary to increase the accuracy of the stopping position of the laser beam reflecting mirror 2 at each of the reflection positions a, b, and c. That is, the laser beam reflecting mirror 2
is the laser beam 1 whose direction is changed by this mirror 2
must be positioned at a position where the pattern is accurately bisected by the roof-shaped prism 3. Otherwise, the amount of energy of the divided laser beams will be different,
It is not possible to weld two points at the same time, resulting in manufacturing defects such as a hole being formed at one point and the other points being unable to be welded. As an example,
The center position of the six diameter laser beams is 0.0 mm from the dividing line 4.
If there is a shift of one axis, one of the divided parts will have an energy amount that differs by nearly 10% from the other. In this way, a slight positional shift of the laser beam reflecting mirror 2 may cause an inconvenience, so the laser beam reflecting mirror 2 should be adjusted before emitting the laser beam.
It is necessary to detect the stopping position of the Moreover, such an apparatus cannot meet the demand for welding at multiple locations without stopping the laser beam reflecting mirror 2 in order to improve production efficiency. In the present invention, a distribution optical member and a division optical member are paired, and each pair is provided separately for a plurality of irradiation locations, and is driven to move in one direction in order to guide the laser beam to a desired location. By providing a scanning optical member and further setting it in the dividing line direction of the dividing optical member, even if the reflection position of the scanning optical member with respect to the distributing optical member is shifted, the division ratio of the laser beam in the dividing optical member is always divided into equal parts. The present invention provides an apparatus that can perform uniform laser irradiation.

以下本発明を図面を参照し、実施例に基づいて説明する
。第2図は2点同時溶接を3個所で行なう場合を示した
もので、第2図aに示すように図示せぬレーザ発振器か
ら放出されるレーザ光1の光軸に対して45o傾斜し上
記光軸上を一定の姿勢で移動するミラーで作られた走査
光学部材11が設けられる。
The present invention will be described below based on embodiments with reference to the drawings. Figure 2 shows a case where two-point welding is performed at three locations at the same time. A scanning optical member 11 made of a mirror that moves in a constant posture on the optical axis is provided.

上記しーザ光1はこのミラーで反射され、a,b,cで
示す溶接するための位置において停止したミラーにより
、図中左方向に90o屈折される。このレーザ光1の屈
折方向には発振器から放出されるレーザ光1の照射方向
と平行に整列した溶接部材6の溶接位置に合せて、マイ
クロメータヘッドに類似の微少位置調整機構(図示せず
)によって、この屈折方向に位置移動可能に支持され、
この屈折したレーザ光1′の光軸に対して、450煩斜
し、、このレーザ光1′を受けて溶接部村6,7方向に
反射する同じくミラーで作られた分配光学部材12が設
けられる。すなわち、レーザ光1′は第2図bに示すよ
うに分配光学部材12によって図中下方向に900屈折
される。この屈折したレーザ光1″方向には、レンズを
切断してなるレンズ片13a,13bを接合して作った
分割光学部材13が設けられる。この分割光学部材13
は第2図aに示すように、上記しンズ片13a,13b
の接合部が形成する分割線4が前記発振器から放出され
たレーザ光1の照射方向に平行になると共に、走査光学
部材11によって反射されたレーザ光1′の光軸に直交
する方向に向けられ、上記しーザ光1″のパターンをほ
ぼ2等分する位置に設置される。そみて溶接部材6,7
はその表面がこれらのレンズ片13a,13bのそれぞ
れの集光点8,9に一致する位置に設置されている。上
述の構成において、分配光学部材12の位置を上記微少
位置調整機構を用いて、上託しーザ光1′照射方向に微
細(0.01肋単位)に調整し、上記しーザ光1″のパ
ターンが等分に、上記各レンズ片13a,13bに入る
ようにしておく。
The laser light 1 is reflected by this mirror, and is refracted 90° to the left in the figure by the mirrors stopped at welding positions indicated by a, b, and c. In the refraction direction of the laser beam 1, a minute position adjustment mechanism (not shown) similar to a micrometer head is used to adjust the welding position of the welding member 6 aligned parallel to the irradiation direction of the laser beam 1 emitted from the oscillator. is supported so as to be movable in this refraction direction,
A distributing optical member 12, which is also made of a mirror and is made of a mirror, is provided at an angle of 450 degrees with respect to the optical axis of this refracted laser beam 1', and receives this laser beam 1' and reflects it in the direction of welding areas 6 and 7. It will be done. That is, the laser beam 1' is refracted 900 degrees downward in the figure by the distributing optical member 12, as shown in FIG. 2b. A split optical member 13 made by joining lens pieces 13a and 13b obtained by cutting a lens is provided in the direction of the refracted laser beam 1''.This split optical member 13
As shown in FIG. 2a, the lens pieces 13a and 13b
A dividing line 4 formed by the joint portion of is parallel to the irradiation direction of the laser beam 1 emitted from the oscillator, and is directed in a direction perpendicular to the optical axis of the laser beam 1' reflected by the scanning optical member 11. , is installed at a position that approximately divides the pattern of the laser beam 1'' into two equal parts.
are installed at positions where their surfaces coincide with the respective condensing points 8 and 9 of these lens pieces 13a and 13b. In the above configuration, the position of the distributing optical member 12 is finely adjusted (by 0.01 units) in the irradiation direction of the supercharged Caesar light 1' using the fine position adjustment mechanism, The pattern is arranged to be equally divided into each of the lens pieces 13a and 13b.

こうしておいて上記走査光学部材11を溶接位置aに移
動し、レーザ光1を放出すると、この走査光学部村11
の位置が溶接位置aから多少外れていても分配光学部材
12からのレーザ光1″のパターンは各レンズ片】3a
,13bに0.01柳単位の正確さで等分に入りその結
果レーザ光1は正確に2等分されて溶懐部村6,7の表
面上の集光点8,9に集光され2点均等な溶接が行なわ
れる。なお、この溶接点の位置は上記走査光学部材11
の位置ずれ量に応じて変動することになるが溶接部村6
,7は面積を有するので両部材を溶接することができる
。たとえば分割レンズ13の有効径を2物廠とし、レー
ザ光1′のパターン隆を6側として場合、走査光学部材
11の位置ずれ量は原理的に土7柵あつてもよいことに
なる。したがって、従来装置では必要としたレーザ光放
出前の位置検出が本発明では不要になる。また、レーザ
光1のパターン直径を、たとえば6欄とし分割精度を0
.01柵としたとき、分割エネルギー間のエネルギー配
分誤差は互いに1%以下にでき、したがって均等な溶接
が可能である。更にまた、前述のごとく走査光学部材1
1の停止位置ずれ量が±7畑近く許されるので走査光学
部村11を、各反射位置a,b,cで停止させることな
く移動させながら溶接することも可能になり、生産能率
を向上することができる。上誌実施例では、走査光学部
材11および分配光学部村12にミラーを使用している
がtプリズムを用いても同機の効果が得られる。
In this way, when the scanning optical member 11 is moved to the welding position a and the laser beam 1 is emitted, this scanning optical member 11
Even if the position of the laser beam 1'' from the distributing optical member 12 is slightly off from the welding position a, the pattern of the laser beam 1'' from the distributing optical member 12 is the same as that of each lens piece]3a.
, 13b into equal parts with an accuracy of 0.01 Yanagi unit.As a result, the laser beam 1 is accurately divided into two parts and focused on the convergence points 8 and 9 on the surface of the Wekaibemura 6 and 7. Welding is performed evenly at two points. Note that the position of this welding point is the same as that of the scanning optical member 11.
Although it will vary depending on the amount of positional deviation, welding part village 6
, 7 have an area, so both members can be welded. For example, if the effective diameter of the splitting lens 13 is set to 2 mm and the pattern ridge of the laser beam 1' is set to the 6 side, the amount of positional deviation of the scanning optical member 11 may be 7 mm in principle. Therefore, the present invention does not require position detection before emitting laser light, which was required in the conventional device. Also, set the pattern diameter of laser beam 1 to 6 columns, for example, and set the division accuracy to 0.
.. 01 fence, the energy distribution error between the divided energies can be kept to 1% or less, and therefore uniform welding is possible. Furthermore, as described above, the scanning optical member 1
Since the stop position deviation amount of 1 is allowed to be close to ±7 fields, it becomes possible to weld while moving the scanning optical unit 11 without stopping it at each reflection position a, b, and c, which improves production efficiency. be able to. In the above embodiment, mirrors are used for the scanning optical member 11 and the distributing optical member 12, but the same effect can be obtained even if a T-prism is used.

更にまた、分割レンズ13の代り}こ屋根形プリズムと
集光レンズとを用いても同様の効果が得られる。更にま
た、実施例では2点の同時溶接の場合を示しているが3
点以上も可能である。更に、溶接部材が発振器から放出
されるレーザ光1の照射方向と平行に整列していない場
合でも分配光学部材12および分割光学部材13を、こ
れらの溶接部材の位置に対応させて配置すれ;ま走査光
学部材は実施例同様に走査して加工を行なうことが可能
である。更にまた、加工内容は溶接のみならず、穴あげ
、切断等レーザ光を使用するすべての加工に利用できる
。上述のように本発明は走査光学部材と分配光学部材と
を別々に設けたもので、走査光学部材11の位置が不正
確であってもしーザ光のエネルギーが所定の割合に正確
に分割されて所要の加工ができるものである。
Furthermore, the same effect can be obtained by using a roof-shaped prism and a condensing lens instead of the splitting lens 13. Furthermore, although the example shows the case of simultaneous welding at 2 points, 3
More than one point is also possible. Furthermore, even if the welding members are not aligned parallel to the irradiation direction of the laser beam 1 emitted from the oscillator, the distribution optical member 12 and the dividing optical member 13 can be arranged in correspondence with the positions of these welding members; The scanning optical member can be processed by scanning in the same manner as in the embodiment. Furthermore, the processing content is not limited to welding, but can be used for all processing that uses laser light, such as drilling and cutting. As described above, in the present invention, the scanning optical member and the distributing optical member are provided separately, so that even if the position of the scanning optical member 11 is inaccurate, the energy of the laser light can be accurately divided into predetermined proportions. It is possible to perform the required processing.

なお、本発明は上記実施例に限定されるものでなく、そ
の要旨を変更しない範囲において任意に変更することが
できる。
Note that the present invention is not limited to the above-mentioned embodiments, and can be arbitrarily modified without changing the gist thereof.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のレーザ照射装置を示し、第1図aはその
側面図、第亀図bはそのb−b矢印方向に見た平面図、
第2図は本発明のレーザ照射装置の−実施例を示し、第
2図aはその平面図、第2図bはそのb−b矢印方向に
見た側面図である。 Y,1′,1″……レーザ光、2・・・・・・レーザ光
反射ミラー、3……屋根形プリズム「 4・・…・分割
線「 6,7…・・・溶接部材、8,9…・・・集光点
、11…・・・走査光学部村、翼2・・・…分配光学部
村、13・・・…分割光学部材、13a,13b・…・
・レンズ片。第1図 菊2図
FIG. 1 shows a conventional laser irradiation device, FIG. 1a is a side view thereof, and FIG.
Fig. 2 shows an embodiment of the laser irradiation device of the present invention, Fig. 2a is a plan view thereof, and Fig. 2b is a side view thereof as seen in the direction of arrow bb. Y, 1', 1''... Laser light, 2... Laser light reflecting mirror, 3... Roof prism 4... Parting line 6, 7... Welding member, 8 , 9... Focusing point, 11... Scanning optical section, Wing 2... Distributing optical section, 13... Division optical member, 13a, 13b...
・Lens piece. Figure 1 Chrysanthemum Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1 レーザ発振器と、このレーザ発振器から放出される
レーザ光の光軸に沿つて一定の姿勢で移動され上記レー
ザ光を反射する走査光学部材と、複数の照射箇所に対応
して各別に配置され上記走査光学部材で反射されたレー
ザ光を上記照射箇所方向へ反射させる複数の分配光学部
材と、これら分配光学部材による反射光を分割して二以
上の箇所に集光する機能を有し上記各反射光の光路に各
別に配置され分割線が一平面上で上記走査光学部材の入
射するレーザ光の光軸と平行になりかつ上記走査光学部
材で反射されたレーザ光の光軸に直交する方向に向けら
れた複数の分割光学系とを備えたことを特徴とするレー
ザ照射装置。
1 a laser oscillator, a scanning optical member that is moved in a fixed posture along the optical axis of the laser beam emitted from the laser oscillator and reflects the laser beam, and a scanning optical member that is separately arranged corresponding to a plurality of irradiation points and that is A plurality of distributing optical members that reflect the laser beam reflected by the scanning optical member toward the irradiation location, and a function of dividing the reflected light from these distributing optical members and focusing it on two or more locations. The dividing lines are arranged separately in the optical path of the light, and the dividing lines are parallel to the optical axis of the laser beam incident on the scanning optical member on one plane, and are perpendicular to the optical axis of the laser beam reflected by the scanning optical member. A laser irradiation device characterized by comprising a plurality of divided optical systems directed toward each other.
JP52136599A 1977-11-16 1977-11-16 Laser irradiation device Expired JPS607592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52136599A JPS607592B2 (en) 1977-11-16 1977-11-16 Laser irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52136599A JPS607592B2 (en) 1977-11-16 1977-11-16 Laser irradiation device

Publications (2)

Publication Number Publication Date
JPS5470060A JPS5470060A (en) 1979-06-05
JPS607592B2 true JPS607592B2 (en) 1985-02-26

Family

ID=15179057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52136599A Expired JPS607592B2 (en) 1977-11-16 1977-11-16 Laser irradiation device

Country Status (1)

Country Link
JP (1) JPS607592B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5124496A (en) * 1990-11-01 1992-06-23 Ethyl Corporation Process for decabromodiphenylalkane predominant product

Also Published As

Publication number Publication date
JPS5470060A (en) 1979-06-05

Similar Documents

Publication Publication Date Title
US7223315B2 (en) Method and apparatus for heating plastics by means of laser beams
EP0781622B1 (en) Process and apparatus for welding workpieces with two or more laser beams whose spots are oscillated across welding direction
US7473867B2 (en) Laser machining apparatus
US4636611A (en) Quiescent circle and arc generator
US20060289412A1 (en) Laser beam irradiation apparatus and pattern drawing method
US4383168A (en) Automatic focusing apparatus
CN110695521A (en) Light beam scanning system for laser micropore machining
JPS629211A (en) Optical measuring instrument
CN210548826U (en) Light beam scanning system for laser micropore machining
JPS607592B2 (en) Laser irradiation device
JP2019084542A (en) Beam superposition optical system and laser processing device
JPS59218292A (en) Laser working device
US11353660B2 (en) Optical delay line device with fixed or variable delay
JPS605394B2 (en) Laser irradiation device
JPH03184687A (en) Laser beam machining apparatus
JP2001205469A (en) Optical system for laser beam emission
US5473586A (en) Optical pickup for an optical disc
KR101728504B1 (en) Laser cutting device
JP2749712B2 (en) Workpiece positioning method in laser processing
JPS59218293A (en) Laser working device
KR102397685B1 (en) Laser processing apparatus
JPS62203117A (en) Scanning device for light beam
US4501962A (en) Method of focusing optical apparatus
JPH02235593A (en) Laser beam machine
JPH0356155B2 (en)