JPS6074480A - Manufacture of iii-v semiconductor device - Google Patents

Manufacture of iii-v semiconductor device

Info

Publication number
JPS6074480A
JPS6074480A JP16732583A JP16732583A JPS6074480A JP S6074480 A JPS6074480 A JP S6074480A JP 16732583 A JP16732583 A JP 16732583A JP 16732583 A JP16732583 A JP 16732583A JP S6074480 A JPS6074480 A JP S6074480A
Authority
JP
Japan
Prior art keywords
layer
type
semiconductor region
conductivity type
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16732583A
Other languages
Japanese (ja)
Inventor
Junichi Nishizawa
潤一 西澤
Kaoru Mototani
本谷 薫
Yuichi Kado
勇一 門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Research Foundation
Original Assignee
Semiconductor Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Research Foundation filed Critical Semiconductor Research Foundation
Priority to JP16732583A priority Critical patent/JPS6074480A/en
Publication of JPS6074480A publication Critical patent/JPS6074480A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To lower operating voltage and to upgrade the efficiency of a III-V semiconductor device by a method wherein a first conductive-type low-resistance region is epitaxially grown on a high-resistance region and second conductive- type impurities are diffused in the low-resistance region. CONSTITUTION:A high resistive i-layer or v-layer 11 and a p<+> type layer 12 are grown on a substrate 10 by a liquid-phase growth method. During the growing time, S of n type impurities is diffused in the i.v-layer 11 and a thin n<+> type layer 20 is formed. then, Zn is diffused in the p<+> type layer 12, a diffusion layer 13 is formed, the n<+> type substrate 10 is made thinner, the thickness of the total of the epitaxially grown layer and the n<+> type substrate 10 is formed in less than 10mum or thereabouts, and an ohmic contact is respectively formed at the n<+> type substrate 10 and the p<+> type diffusion layer 13.

Description

【発明の詳細な説明】 pn接合を形成する2つの低抵抗領域のうl′)の一方
が極めて薄い半導体装置の製造ノ゛j法に門りるpn接
合の逆方向ハイデス下の1一ンネル汀入と走行時間効果
による負性抵抗ダイΔ−ド、タイyわらタンネッ1〜ダ
イA一ド(特公昭/l ’l−1 10 9 5 8 
)は、なだれ注入を用いた走行時間負性抵抗タイオード
(インバラ1〜グイ71−1〜)J、りも高周波で動作
し、低パイ7ス雷圧、lI(hl ?”1であることが
知られている。
[Detailed description of the invention] One of the two low resistance regions forming the pn junction is a 11 channel under the reverse direction high density of the pn junction, which is based on the method for manufacturing extremely thin semiconductor devices. Negative resistance die Δ-de due to immersion and transit time effect, tie y straw tongue 1 to die A-do (Special Public Show/l'l-1 10 9 5 8
) is a transit time negative resistance diode using avalanche injection (Inbara 1 ~ Gui 71-1 ~) J, which can also operate at high frequency and have low lightning pressure, lI (hl?"1) Are known.

第1図はタンネットタイオードの理想的な電界分布を示
リムのである。1(ま1−ンンルン1人を生起させるた
めに十分に電界強麿を強くした領域であり、2はトンネ
ル注入されたキャリアが飽和)中度以上で走行りるにう
な電界強度とした走行領域である。
Figure 1 shows the ideal electric field distribution of a tannet diode. 1 (This is a region where the electric field strength is strong enough to cause one person to occur, and 2 is a region where the electric field strength is strong enough to cause the tunnel-injected carriers to be saturated). It is.

第1図の電界分布を実現するダイ刺−ド構造としては、
11”−n+−i (ν) =n+型が理想的であるが
、トンネル注入に要り−る厚さはおおよそ100Å以下
であり、製作が困難であつlこ 。
The die needle structure that realizes the electric field distribution shown in Figure 1 is as follows:
11''-n+-i (ν) = n+ type is ideal, but the thickness required for tunnel implantation is approximately 100 Å or less, making it difficult to manufacture.

本願発明者は既に特願昭55−15135号、特願昭5
5−1750/4@にJ:す、p+ 。
The inventor of this application has already filed Japanese Patent Application No. 55-15135,
5-1750/4 @J:su, p+.

−1(し)−1) 型のタンネッ1−タイA−ド、ない
しはバラクタダイオード等に関づる容易な製造方法を提
供し−Cいる。
-1(shi)-1) Provides an easy manufacturing method for a Tannet type 1-tie A-de, varactor diode, etc.

本発明は発振に要する電力を低減できるタンネットタイ
オード、効率の良いバラクタダイオード等の■−v半導
体装首の製造方法を提供りるものである。
The present invention provides a method for manufacturing 1-v semiconductor devices such as tannet diodes and efficient varactor diodes that can reduce the power required for oscillation.

以下図面を参照して本発明の詳細な説明りる。第2図(
a)乃至(e)は本発明のタンネットダイオードの製造
方法に関Jる一実施例である。
The present invention will be described in detail below with reference to the drawings. Figure 2 (
A) to (e) are examples of the method for manufacturing a tannet diode of the present invention.

10は3i ドープのII Ga A S j、<IF
l、(ある。基板10上に高抵抗<、−i層イ了いしは
V層′11及び一層12を蒸気圧制り11温1α差法に
J、る液相成長法によりおおよそ800°Cて成長させ
る+ 。1〕 層の成長用のQa融液中にIJ、 p型の不純
物どしてGe 、n型の不純物どじ(はGa2 s3乃
至はAs、s3を浪人さUた。成長中に11型不純物の
Sはi (し)層11へ拡散し、薄い11−1一層20
を形成づる(第2図(c))、、次にp″〜層12へ閉
管法により711を600 ’C(例えば15分・〜1
時間位拡散し、拡散層13を形成し、(第2図(d))
、n 基板をノフルミナ粉にJ:るラッピングと化学研
ρ1等により’、;((1(L、エピタキシ1フル成長
層と11塁板の全体の厚さを101.t m以下程度に
しで、II ↓1を板へは、Δu−Qe合金15 、l
)+拡散層13へは△り一、Zn合金14にJ:すΔ−
ミックニIンタク1へを形成した後に、金層17を真空
蒸77法乃〒はメッキ法により形成覆る(第2図(+り
)。i(ν)層11の厚さWdはタンネッ1〜グイA−
ドの場合はおd3よイ Wd=3″Us/=1.f と゛りれば良い。ここでVSは主1アリアの飽和速B 
(cm/sec ) 、fは動作周波数(Hz)である
。’lis = 1 x 10 cm/seeどした場
合、[を100GI−1z 、200Gl−12,30
0Gl−1z、500Gl−(zとづるどきに、W (
Iはそれぞれ0.75μl++ 、0.38t1m 、
0.25μm、0 、 1511m位にすればよい。1
)+層12の厚さは熱抵抗を小さくするためにはJ3お
よそ1μ■以下に覆ればよく、拡散層13の厚ざ(、J
]−ビタキシャル成長によるp+層12の厚さよりもλ
9くJれば良い。
10 is 3i doped II Ga A S j, <IF
1, (There is a high resistance <, -i layer on the substrate 10, and the V layer 11 and the first layer 12 are grown at approximately 800°C by a liquid phase growth method using a vapor pressure 11 temperature 1α difference method. 1) In the Qa melt for layer growth, IJ, p-type impurities are added to Ge, and n-type impurities (Ga2, s3 to As, s3 are added). The 11-type impurity S diffuses into the i layer 11 and forms a thin 11-1 layer 20.
(Fig. 2(c)), and then heated 711 to 600'C (for example, 15 min.~1
Diffusion for about an hour to form a diffusion layer 13 (FIG. 2(d))
, n substrate with Noflumina powder and lapping with Kagakuken ρ1 etc.; II ↓1 to the plate, Δu-Qe alloy 15, l
) + Δri to the diffusion layer 13, J to the Zn alloy 14: Δ−
After forming the Mikini I contact 1, the gold layer 17 is formed and covered by vacuum vaporization method or plating method (Fig. 2 (+)). A-
In the case of d3, it is sufficient to write Wd=3″Us/=1.f.Here, VS is the saturation speed B of the main 1 aria.
(cm/sec), f is the operating frequency (Hz). 'lis = 1 x 10 cm/see, [100GI-1z, 200Gl-12,30
0Gl-1z, 500Gl-(Z and Zurudoki, W (
I is 0.75μl++, 0.38t1m, respectively.
It may be set to about 0.25 μm, 0.1511 m. 1
) + The thickness of the layer 12 should be J3 approximately 1 μ■ or less in order to reduce the thermal resistance, and the thickness of the diffusion layer 13 (, J
] - λ than the thickness of the p+ layer 12 by bitaxial growth
9 J is enough.

第3図は本発明の更に別の実施例であって、第2図どの
相違は、1 (ν)層11の形成前に+ n 図18を形成づる点のみが異なっている(第3図<
13))。以下は第2図の実施例と同じである。11 
層18の不純物密度をたとえば°5X10cm とする
ことにより、第2図の実施例Jζりも直列抵抗を減少で
きるという利点が生じた。
FIG. 3 shows yet another embodiment of the present invention, and the difference from FIG. <
13)). The following is the same as the embodiment shown in FIG. 11
By setting the impurity density of the layer 18 to, for example, 5.times.10 cm.sup.2, the embodiment J.sub.Z of FIG. 2 also has the advantage of reducing the series resistance.

第3図に示したつTハをおJりよぞ10 (’) L/
 Il+四角に切り出し、ミリ波間路用パッ/7−ジに
ホンディングした実施例を第4図に承り、、 30は本
発明のタンネッ1−ダイオ−1〜、31は石英台、32
は金テープ、33は金メツ1−シた銅のステムである。
Please take a look at the T shown in Figure 3.10 (') L/
Fig. 4 shows an example in which the Il+ square is cut out and bonded to a millimeter wave path pad/7-, 30 is the Tannet 1-diode 1~ of the present invention, 31 is a quartz stand, 32
33 is a gold tape, and 33 is a gold-plated copper stem.

タンネットダイA−ド(、L例えは6Aj酸、過酸化水
素水、水の程δ々にJ、る1ツfンク液により接合直径
を小さくづる。このようにして製造したタンネッ1ヘタ
イA−1−を一ミリ波の(ヤヒティ(110〜170G
l−1z帯、110−・・260 G l−1z帯)に
挿入し、発振fill Iil′i 71’= Itを
調へたどころ、従来の発振閾値電圧7〜℃)\/J、り
も低い5.3V位の値が1「ノられだ、(1”11”接
合は、1)+層12を成長さぜるどきのGaFAl!液
中に投入覆るG aっ S3乃〒△s’usJの串を変
えることによって調整てき、タンネッ1へタイA−Fば
かりては4I:クバラククタイ)Y−1〜′−9の製造
に適応できることは言うまでもイ1い。111表面の拡
散層13は211ではなく伯の1)ハリ小鈍物でb良い
ことは言うまでしない3.成長方法は徐冷法による液相
成長であってし良い。
The diameter of the joint is made smaller using a tannet dye (for example, 6Aj acid, hydrogen peroxide solution, water, etc.). -1- is one millimeter wave (Yahiti (110~170G)
However, the conventional oscillation threshold voltage 7~℃)\/J, Rimo The low value of about 5.3V is 1", (1"11" junction is 1) + layer 12 is grown, GaFAAl is poured into the solution and covered. It goes without saying that it can be adjusted by changing the skewer of usJ, and can be applied to the production of tannet 1, ties A-F, as well as 4I: Kubaraku tie) Y-1 to '-9.111 Diffusion layer 13 on the surface It is not 211, but 1) It is not a good thing to say that it is a small and dull material. 3. The growth method may be liquid phase growth using a slow cooling method.

以−、L :J、’明しCきたように本発明は従来のタ
ンネッ(−ダイオードよりも少ない電圧で動作し、著し
く効率を改善できるものであり、薄い1)+−11接合
を有する半導体装置の製造に有効である。
As explained above, the present invention operates at a lower voltage than the conventional Tannet (-) diode and can significantly improve efficiency, and is a semiconductor having a thin 1)+-11 junction. Effective for manufacturing equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は理想的なタンネットタイオードの電界分布を示
づグラフ、第2図及び第3図は本発明の実施例、第4図
はミリ波用タンネットタイオードのパッケージされた実
施例である。 特許出願人 慇/図 (CL’) (し ) #!2図 − (b> [ (C) (C) ts、5図
Figure 1 is a graph showing the electric field distribution of an ideal tannet diode, Figures 2 and 3 are examples of the present invention, and Figure 4 is an example of a packaged tannet diode for millimeter waves. It is. Patent applicant / Figure (CL') (shi) #! Figure 2 - (b> [ (C) (C) ts, Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)第1導電型の高抵抗■−■半導体領域」二に、前
記第1導電型の薄い第1低抵抗111−■半導体領域と
逆導電型である第2導電型の第2低抵抗1[1−V半導
体領域とを形成し前記第1、第2低抵抗■−■¥:導体
領域間に1)1)接合を形成づるlII −V半導体装
置の製造方法であって、前記高抵抗■−V半S体領域上
に直接前記第1導電型不純物を含む1)a配第2低抵抗
■−■半導体領域を液相上ピタキシャル成長し、前記第
1導電型の薄い第1低抵抗11− V 2+4導体領域
を、前記3′?1抵抗■−■半導体領域内に形成する工
程と、前記第2低抵抗1−V半導体領域上に第2導電型
の不純物を拡散させる工程を含むことを特徴とする■−
V半導体装置の製造方法。
(1) High resistance of the first conductivity type ■-■ semiconductor region'' Second, a thin first low resistance of the first conductivity type 111-■ A second low resistance of the second conductivity type which is the opposite conductivity type to the semiconductor region. 1 [1-V semiconductor region and forming a 1)1) junction between the first and second low resistance ■-■¥: conductor regions, the method comprising: A 1) a-type second low resistance semiconductor region containing the first conductivity type impurity directly on the resistor ■-V semi-S semiconductor region is epitaxially grown on the liquid phase, and a thin first conductivity type impurity is grown on the liquid phase. The resistor 11-V 2+4 conductor area is connected to the 3'? 1-resistance 1-V semiconductor region; and 1-V semiconductor region.
V semiconductor device manufacturing method.
(2)前記第1導電型の低抵抗■−■半導体基板十に前
記高抵抗■−V半導体領域を液相エピタキシャル成長覆
る工程をざらに含むことを特徴どηる前記1”J a’
t 請求の11む間第1項記載のI[l−V半導体装置
の製造方法、1
(2) Said 1"J a' characterized by roughly including a step of covering said high resistance ■-V semiconductor region on said first conductivity type low resistance ■-■ semiconductor substrate by liquid phase epitaxial growth.
t A method for manufacturing an I[l-V semiconductor device according to claim 11, 1
JP16732583A 1983-09-10 1983-09-10 Manufacture of iii-v semiconductor device Pending JPS6074480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16732583A JPS6074480A (en) 1983-09-10 1983-09-10 Manufacture of iii-v semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16732583A JPS6074480A (en) 1983-09-10 1983-09-10 Manufacture of iii-v semiconductor device

Publications (1)

Publication Number Publication Date
JPS6074480A true JPS6074480A (en) 1985-04-26

Family

ID=15847649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16732583A Pending JPS6074480A (en) 1983-09-10 1983-09-10 Manufacture of iii-v semiconductor device

Country Status (1)

Country Link
JP (1) JPS6074480A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002049117A1 (en) * 2000-12-12 2002-06-20 Qinetiq Limited Semiconductor diode device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56112761A (en) * 1980-02-08 1981-09-05 Semiconductor Res Found Manufacture of 3-5 group element semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56112761A (en) * 1980-02-08 1981-09-05 Semiconductor Res Found Manufacture of 3-5 group element semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002049117A1 (en) * 2000-12-12 2002-06-20 Qinetiq Limited Semiconductor diode device
US6858876B2 (en) 2000-12-12 2005-02-22 Qinetiq Limited Semiconductor diode device

Similar Documents

Publication Publication Date Title
US3579055A (en) Semiconductor laser device and method for it{3 s fabrication
US3495140A (en) Light-emitting diodes and method of making same
US4255755A (en) Heterostructure semiconductor device having a top layer etched to form a groove to enable electrical contact with the lower layer
JP2003142492A (en) 3-5 compound semiconductor and semiconductor device
US3490140A (en) Methods for making semiconductor devices
JPS6074480A (en) Manufacture of iii-v semiconductor device
US3585464A (en) Semiconductor device fabrication utilizing {21 100{22 {0 oriented substrate material
GB1046840A (en) Improvements in or relating to an assembly of semiconductor devices and their formation
GB1057817A (en) Semiconductor diodes and methods of making them
US3535772A (en) Semiconductor device fabrication processes
US3099776A (en) Indium antimonide transistor
JPH05343744A (en) Die bond type light emitting diode and manufacture thereof
US3349476A (en) Formation of large area contacts to semiconductor devices
US3670218A (en) Monolithic heteroepitaxial microwave tunnel die
JPS6412105B2 (en)
JP2948967B2 (en) Semiconductor light emitting device
JP2003133561A (en) Iii-v group compound semiconductor and semiconductor device
JP3353703B2 (en) Epitaxial wafer and light emitting diode
JP3638413B2 (en) Semiconductor light emitting device and manufacturing method thereof
JPS5518010A (en) Semiconductor device
JPH0142144B2 (en)
JPH10181077A (en) Light emitting diode array
JPS5891631A (en) Semiconductor device
JPS5987881A (en) Manufacture of optical semiconductor device
JPS58100480A (en) Semiconductor laser device