JPS607374A - Magnetic flux measuring sensor - Google Patents

Magnetic flux measuring sensor

Info

Publication number
JPS607374A
JPS607374A JP11642083A JP11642083A JPS607374A JP S607374 A JPS607374 A JP S607374A JP 11642083 A JP11642083 A JP 11642083A JP 11642083 A JP11642083 A JP 11642083A JP S607374 A JPS607374 A JP S607374A
Authority
JP
Japan
Prior art keywords
magnetic flux
sensor
transition temperature
rod body
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11642083A
Other languages
Japanese (ja)
Inventor
Yoshio Kashima
義雄 鹿島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP11642083A priority Critical patent/JPS607374A/en
Publication of JPS607374A publication Critical patent/JPS607374A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/035Measuring direction or magnitude of magnetic fields or magnetic flux using superconductive devices
    • G01R33/0354SQUIDS

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To enable an easy measurement of the absolute value of a magnetic flux with a high sensitivity without rotating a magnetic flux measuring sensor by winding a superconductive wire with a superconduction transition temperature on a rod body comprising metal with a low superconduction transition temperature. CONSTITUTION:A rod body 10 of a magnetic flux measuring sensor comprises a metal body with the superconduction transition temperature of T1 while a metal wire 20 is T2 in the superconduction transition temperature. This metal wire 20 insulatedly covered is wound in a proper number of turns. The sensor and squid element 40 are both housed into a Dewar bottle 60 which is filled with a liquid helium 70 to maintain the sensor and the element 40 at a very low temperature. Then, the absolute temperature of the sensor is kept below the transition temperature of the rod body 10 to make the magnetic flux zero inside the rod body 10 and then, shifted to the temperature intermediately between the transition temperatures of the rod body 10 and the metal wire 20 to measure the magnetic flux. In this manner, the absolute value of the magnetic flux can be measured easily with a high sensitivity without rotating the magnetic flux measuring sensor.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は磁束測定用センサに係り、特に超伝導を利用し
て絶対磁束を′/Jtす定する磁束測定用センサに関す
る。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a sensor for measuring magnetic flux, and more particularly to a sensor for measuring magnetic flux that uses superconductivity to determine absolute magnetic flux '/Jt.

(ロ)従来技術 磁束の相対変化を測定するセンサとしては、いわゆるス
キッド型磁束計がある。
(b) Prior Art As a sensor for measuring relative changes in magnetic flux, there is a so-called skid type magnetometer.

これを用いて磁束の相対値だけでなく絶対値を測定する
には磁束/J[lJ定用コイルを回転する必要がある。
In order to measure not only the relative value but also the absolute value of the magnetic flux using this, it is necessary to rotate the magnetic flux/J[lJ measuring coil.

それゆえ、回転のための複雑な機構を要し取り扱いが困
9:IFである上、前記回転時のセンサの振動に基づく
ノイズがあり、そのため、測定感度の向上に限界があっ
た。
Therefore, it requires a complicated mechanism for rotation and is difficult to handle.In addition, there is noise due to the vibration of the sensor during the rotation, and therefore there is a limit to the improvement of measurement sensitivity.

(ハ)目的 本発明は磁束の測定にあたって、磁束測定用センサを回
転しないで磁束の絶対値を1″A1感度で測定しうる取
り扱い容易なる磁束測定用センサを提供することを目的
としている。
(C) Objective The present invention aims to provide a magnetic flux measuring sensor that is easy to handle and can measure the absolute value of magnetic flux with a sensitivity of 1''A1 without rotating the magnetic flux measuring sensor.

(ニ)構成 本発明は高い超伝導転移12jt度からなる超伝導線を
低い超伝導転移温度の金属からなる棒体に巻回し、た磁
束測定用センサである。
(D) Structure The present invention is a magnetic flux measuring sensor in which a superconducting wire having a high superconducting transition temperature of 12 degrees is wound around a rod made of a metal having a low superconducting transition temperature.

(ホ)実施例 第1図は本発明の一実施例たるθシ束測定用センサとこ
のセンサーからの信号にノ1(づいて磁束を測定する磁
束測定回路の概略説明図であイl。
(e) Embodiment FIG. 1 is a schematic explanatory diagram of a sensor for measuring θ flux and a magnetic flux measuring circuit for measuring magnetic flux based on the signal from the sensor, which is an embodiment of the present invention.

すなわち、10はその超伝導転移〆?i!を度がl’ 
l ごある金属体からなる棒体であり、−力2 (l 
l、J超伝導の転移温度がT2である金属線で、この超
伝導金属線20ば絶縁被1模されていて適宜間!3!巻
回されている。磁束測定用センサは前記棒体10と金圧
線20とを含む。
In other words, is 10 the superconducting transition? i! The degree is l'
l is a rod made of a certain metal body, -force2 (l
1, J is a metal wire whose superconducting transition temperature is T2, and this superconducting metal wire 20 is coated with an insulating layer and has an appropriate length of time! 3! It is wrapped. The magnetic flux measurement sensor includes the rod 10 and the gold pressure wire 20.

そして、両金属の転移温度はTl<T2の関係になって
いる。
The transition temperatures of both metals have a relationship of Tl<T2.

本発明の好ましい実施例は棒体10としては錫、金属線
20としてはニオブが挙げられる。すなわち、錫の転移
温度は3.7度にであり、一方二オブの転移温度は9.
3度にである。
In a preferred embodiment of the present invention, the rod 10 is made of tin and the metal wire 20 is made of niobium. That is, the transition temperature of tin is 3.7 degrees, while the transition temperature of niobium is 9.7 degrees.
This is the third time.

40は例えば一点接触型のジョセフソン素子からなる公
知のスキッド素子であり、この素子は図示する如く、あ
れい伏のくりぬき部が形成してあり、一方のくりぬき部
41にはニオブ線からなる捲線42があり、この捲線4
2はニオブ線でもって前記金属線20と連結されている
Reference numeral 40 denotes a known skid element made of, for example, a single-point contact type Josephson element, and as shown in the figure, this element has a hollowed-out portion formed therein, and one hollowed-out portion 41 has a winding made of niobium wire. 42, this winding 4
2 is connected to the metal wire 20 by a niobium wire.

なお、前記また、他方のくりぬき部43には前記1合線
42と変成器結合した捲線44により、スキット測定回
路50に入力している。
The other hollowed out portion 43 is connected to a winding 44 which is connected to the first combination wire 42 through a transformer, and is inputted to the skit measuring circuit 50.

しかして、前記磁束測定用センサとスキッド素子はとも
にジュワー壜60に収納されており、ジュワー壜60に
は液体へリュウム70が充填されていて、磁束測定用セ
ンサとスキッド素子とを超低温に維持するように構成さ
れる。
Both the magnetic flux measuring sensor and the skid element are housed in a dewar bottle 60, and the dewar bottle 60 is filled with liquid helium 70 to maintain the magnetic flux measuring sensor and the skid element at an ultra-low temperature. It is configured as follows.

なお、前記スキット測定回路とし°Cは、例えは、RF
イi号発生器51、I<12イを号発生器51の出力側
に結合されたタンク回路53、RF増幅器54、及びR
F増幅器54の出力を検波する検波器55を具備した公
知のものである。
Note that in the skit measurement circuit, °C is, for example, RF
A tank circuit 53, an RF amplifier 54, and an R
This is a known device that includes a detector 55 that detects the output of the F amplifier 54.

第2図は本発明の詳細な説明するだめの説明図である。FIG. 2 is an explanatory diagram for explaining the present invention in detail.

同図(A)はジュワー壜60内の絶り・j温度Tが錫の
転移?A&度′1゛1より低温に維持された場合で沙)
って、従って錫である棒体10はいわゆる完全反磁性の
状態にあり、磁束は棒体内には胃jJ13 L、ない故
、金属線20のコイルにも貫通しないこととなり、零θ
ダ場の状態である故、スキット測定回路の出力端子は零
(6束を検出している。
In the same figure (A), is the temperature T at the end of the dewar bottle 60 the transition of tin? When maintained at a temperature lower than A&degrees;1゛1)
Therefore, the rod 10 made of tin is in a so-called completely diamagnetic state, and since there is no magnetic flux inside the rod, it does not penetrate the coil of the metal wire 20, and the magnetic flux is zero θ.
Since it is in a normal state, the output terminal of the skit measurement circuit is zero (6 bundles are detected).

一方、同1ンI(B)はジ1−ワー壜(i 0内の絶対
/A!+度Tが錫の転移温度Tl と金属線20の転移
温度T2の中間に維持された場合であって、)メLっで
棒体10内には磁束が貫通ずるので、この場合には磁束
測定用センサの回転をしないでも磁束の変化が生じる結
果、スキッド測定回路の出力&iii子にば零磁束から
の磁束の変化分の値としての信号力ぐ検出される。
On the other hand, the same case I(B) is the case where the absolute /A! Since magnetic flux passes through the rod 10, in this case, a change in magnetic flux occurs even without rotation of the magnetic flux measurement sensor, resulting in zero magnetic flux at the output of the skid measurement circuit &iii. The signal force is detected as the value of the change in magnetic flux from the magnetic field.

(へ)効果 前記棒体と金属線とで構成した磁束測定用センサの絶対
温度を棒体の転移温度以下にして棒体の内部を零磁場と
した後、棒体と金属線の転移温度の中間の温度にして磁
束の測定をするものである故、本発明に係る磁束測定用
センサを用いれば磁束の’d(+J定にあたって磁束測
定用コイルを回転する必要がなくなり、機構を簡単にす
ることが可能となる。また回転に基づくノイズが全くな
い故、Δ(り定感度の向上が期待できる。
(f) Effect After the absolute temperature of the magnetic flux measurement sensor composed of the rod and the metal wire is lower than the transition temperature of the rod and the inside of the rod is set to zero magnetic field, the transition temperature of the rod and the metal wire is Since the magnetic flux is measured at an intermediate temperature, if the magnetic flux measuring sensor according to the present invention is used, there is no need to rotate the magnetic flux measuring coil to determine the magnetic flux 'd (+J), which simplifies the mechanism. In addition, since there is no noise due to rotation, an improvement in the Δ(r constant sensitivity) can be expected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例たる磁束測定用センナとこの
センサーからの信号に基づいて磁束を測定する磁束測定
回路の概略説明図、第2図は本発明の詳細な説明するた
めの説明図である。 10・・・棒体、2o・・・絶縁被映超伝導線、40・
・・スキッド素子、50・・・スキッド/!!!J定回
路、60・・・ジュワー1仝;。 特許出願人 株式会社島沖ふり作所 代理人 弁理士 大 西 孝 治 (A) i栄 9.3K > T > 3.7に 2図 (B) 患栄 T < 37に
FIG. 1 is a schematic explanatory diagram of a magnetic flux measuring sensor and a magnetic flux measuring circuit that measures magnetic flux based on a signal from this sensor, which is an embodiment of the present invention, and FIG. 2 is a detailed explanation of the present invention. It is a diagram. 10... Rod body, 2o... Insulated coated superconducting wire, 40...
...Skid element, 50...Skid/! ! ! J constant circuit, 60... Dewar 1. Patent Applicant: Shimaoki Furi Seisakusho Co., Ltd. Agent: Patent Attorney: Takaharu Ohnishi (A)

Claims (1)

【特許請求の範囲】[Claims] (1)高い超伝導転移温度からなる絶縁被膜超伝導線を
低い転移温度の金属からなる棒体に巻回したことを特徴
とする磁束測定用センサ。
(1) A sensor for measuring magnetic flux, characterized in that an insulating coated superconducting wire having a high superconducting transition temperature is wound around a rod made of a metal having a low transition temperature.
JP11642083A 1983-06-27 1983-06-27 Magnetic flux measuring sensor Pending JPS607374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11642083A JPS607374A (en) 1983-06-27 1983-06-27 Magnetic flux measuring sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11642083A JPS607374A (en) 1983-06-27 1983-06-27 Magnetic flux measuring sensor

Publications (1)

Publication Number Publication Date
JPS607374A true JPS607374A (en) 1985-01-16

Family

ID=14686637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11642083A Pending JPS607374A (en) 1983-06-27 1983-06-27 Magnetic flux measuring sensor

Country Status (1)

Country Link
JP (1) JPS607374A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0266478A (en) * 1988-08-31 1990-03-06 Shimadzu Corp Magnetic field detecting device
US4978922A (en) * 1989-08-31 1990-12-18 Westinghouse Electric Corp. Superconducting sensor for quench detection in a superconductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0266478A (en) * 1988-08-31 1990-03-06 Shimadzu Corp Magnetic field detecting device
US4978922A (en) * 1989-08-31 1990-12-18 Westinghouse Electric Corp. Superconducting sensor for quench detection in a superconductor

Similar Documents

Publication Publication Date Title
Sullivan et al. Low temperature direct current comparators
JPS63277048A (en) Magnetic flux transmitting circuit
JPS607374A (en) Magnetic flux measuring sensor
US4225818A (en) Cryogenic nuclear gyroscope
JPS6059529B2 (en) Probe for level measurement of paramagnetic and conductive liquids
Andres et al. A Sensitive Magnetometer and its Application to Nuclear Magnetic Thermometry in the Compound AuIn2 at Ultralow Temperatures
Dziuba et al. Cryogenic direct current comparators and their applications
Gallop Use of persistent supercurrents in SQUID current stabilisers and their application to a resistivity measurement on niobium
Richens et al. Strain dependence of critical currents in commercial high temperature superconductors
Hamid et al. Critical current density of superconductors as a function of strain in high magnetic fields
Pereira et al. Simple technique for measuring the superconducting critical temperature of small (≥ 10 μg) samples
Cimberle et al. Simple and very sensitive set-up for superconductivity magnetization measurements on tubular samples
Deaver Jr et al. An experimental demonstration of winding number dependence of the Aharonov-Bohm effect
Gutmann et al. Optimum dc current resolution of a ferromagnetic-core flux transformer coupled SQUID instrument
JPH0682075B2 (en) Temperature measuring device
Enpuku et al. Magnetometer Using Inductance Modulation of High-Critical-Temperature Superconducting Coil for Low-Frequency Field Measurement in Presence of Excitation Fields
JP3021970B2 (en) Functional superconducting magnetic shield and magnetometer using the same
JPH0217475A (en) Device for measuring magnetism
Winter et al. Variable temperature multimode magnetometer.
JPH08220201A (en) Superconducting quantum interferometer
JPS5960330A (en) Temperature measuring device
SU117065A1 (en) Device for measuring magnetic fields
JPS5537975A (en) Superconductive magnetism measuring element
Ocio Squids: principles and basic applications in experimental physics
JPH02126173A (en) Squid element