JPS5960330A - Temperature measuring device - Google Patents

Temperature measuring device

Info

Publication number
JPS5960330A
JPS5960330A JP16978782A JP16978782A JPS5960330A JP S5960330 A JPS5960330 A JP S5960330A JP 16978782 A JP16978782 A JP 16978782A JP 16978782 A JP16978782 A JP 16978782A JP S5960330 A JPS5960330 A JP S5960330A
Authority
JP
Japan
Prior art keywords
magnetic material
temperature
thermal
thermal anchor
adiabatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16978782A
Other languages
Japanese (ja)
Inventor
Akio Sato
明男 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16978782A priority Critical patent/JPS5960330A/en
Publication of JPS5960330A publication Critical patent/JPS5960330A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/16Special arrangements for conducting heat from the object to the sensitive element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/20Compensating for effects of temperature changes other than those to be measured, e.g. changes in ambient temperature

Abstract

PURPOSE:To prevent the heat input and output of a thermometer and to realize accurate measurement by providing the 2nd thermal anchor made of magnetic material for measuring the temperature of the same magnetic material of adiabatic magnetization and degaussing. CONSTITUTION:Lead wires 6b and 6c between the thermometer 4 in the magnetic material 1 and the 1st thermal anchor 5 are wound around a block made of the same magnetic material in the middle to constitute the 2nd thermal anchor 11, which is fixed close to the magnetic material 1 on adiabatic basis. When the temperature of the magnetic material attains to T2 by adiabatic magnetization after the temperature of a substrate 8 and the magnetic material 1 are in a state T1, the thermal anchor 11 is at a little bit lower T2-DELTAT and the heat input value per time from the magnetic material 1 right after the adiabatic magnetization to the thermal anchor 11 is lambdaA.DELTAT, where lambda, l2, and A are the thermal conductivity, length, and sectional area of the lead wire 6c. It is difficult to extend the lead wires in order to reduce the heat input without the thermal anchor 11, but it is relatively easy to reduce the DELTAT.

Description

【発明の詳細な説明】 [発明の属する技術分野] 本発明は断熱磁化あるいは断熱消磁の際の磁性体の温度
測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to an apparatus for measuring the temperature of a magnetic material during adiabatic magnetization or adiabatic demagnetization.

[従東技術とその問題点] 低温で対象物の温度を測定する時は温度計のリード線か
らの熱浸入の影響を防ぐだめ測温対象物と温度が近い場
所で金属ブロックにリード線を巻きつけて金属ブロック
をサーマル・アンカートシ室温部計測端子からの浸入熱
をサーマル・アンカーで吸収する方法が一般的である。
[Juto technology and its problems] When measuring the temperature of an object at low temperatures, in order to prevent the influence of heat intrusion from the thermometer lead wire, connect the lead wire to a metal block in a place where the temperature is close to that of the object to be measured. A common method is to wrap a metal block around a thermal anchor and use the thermal anchor to absorb the heat that enters from the room temperature measurement terminal.

第1図は断熱Irji化・(断熱消磁の際の磁性体の温
度変化を測定する従来例である。磁性体(1)が真空容
器(2)の中に熱伝導率の低いベーク、 FRP (f
iherreinforced piン+5tics 
)等の支持材(7)で基板(8)に断熱的に固定されて
いる。真空容器(2)の外側に液体ヘリウム(TO)に
υ演された超電導電磁石(3)があり、この電磁石(3
)により11J7熱真空中の磁性体(1)を磁化する。
Figure 1 shows a conventional example of measuring the temperature change of a magnetic material during adiabatic demagnetization/demagnetization. f
iherreinforced pin+5tics
), etc., to the substrate (8) in an adiabatic manner. There is a superconducting electromagnet (3) heated by liquid helium (TO) outside the vacuum container (2), and this electromagnet (3)
) to magnetize the magnetic material (1) in a 11J7 thermal vacuum.

磁性体(1)tよ、磁気熱量効果により磁化するとta
熱し消磁すると吸熱する。この時の磁性体(1)の温度
変化を、磁性体(1)の中に埋め込んだカーボン・グラ
ス抵抗温度計(イ)の抵抗を4端子〃ミで計測すること
によシ測定する。室温部計測端子につながるリード線(
6a)からの浸入熱をサーマル・アンカー(5)で吸収
することにより、温度側(4)への熱没入を少くし、磁
性体(1)と温度計(4)の温度差を極力小さくしてい
る。
Magnetic material (1) t, when magnetized by magnetocaloric effect, ta
When heated and demagnetized, it absorbs heat. The temperature change of the magnetic body (1) at this time is measured by measuring the resistance of a carbon glass resistance thermometer (a) embedded in the magnetic body (1) using four terminals. Lead wire connected to the room temperature measurement terminal (
By absorbing the heat penetrating from 6a) with the thermal anchor (5), the heat sinking into the temperature side (4) is reduced, and the temperature difference between the magnetic material (1) and the thermometer (4) is minimized. ing.

変動磁場中での交流損失による発熱を避けるため、サー
マル・アンカー(5)および基板(8)は電気抵抗の大
きいステンレスでつくらtl、磁場の小さい場所に置か
れている。
In order to avoid heat generation due to alternating current loss in a fluctuating magnetic field, the thermal anchor (5) and substrate (8) are made of stainless steel with high electrical resistance and placed in a location with a small magnetic field.

川、−ヒの構Iノ(で断熱磁化・断熱消磁の際の磁性体
(1)の温度を測定する古、サーマル・アンカー(51
の働きで室温部からの直接の熱浸入はおさえられるが、
断熱磁化・断熱消磁させる磁場を大きくする吉、磁性体
(1)の温度変化も大きくなり、必然的に161’に体
(1)と温度一定のサーマル・アン−/7− (51t
eの温度差も大きくなる。
A thermal anchor (51) that measures the temperature of a magnetic material (1) during adiabatic magnetization and adiabatic demagnetization in the structure of Kawa, - Hi.
Direct heat penetration from the room temperature area is suppressed by the function of
By increasing the magnetic field for adiabatic magnetization and adiabatic demagnetization, the temperature change of the magnetic body (1) will also increase, and inevitably a thermal ann-/7- (51t
The temperature difference in e also increases.

例えばGGG (ガドリニウム・ガリウノ、・ガーネッ
ト)では、磁性体(1)の温度が4.2J(の状態から
磁場4,6テスラで断熱磁化するさ磁性体の温度は5K
にな’) 、Jt’fi Fi (81とサーマル・ア
ンカー(5)の温度を5にとするとサーマル・アンカー
(5)と磁性体(1)の間には20 Kもの温度差がで
き、この温度差に従って磁性体(1)からサーマル・ア
ンカー(5)に熱が流れるから正確な温度測定はできな
い。J5板(8)の温度を5にとすると、逆に磁性体(
1)の最初のス4度が1r:、確に測定できない1、 断熱消磁の1合も事情は同じである。
For example, in GGG (gadolinium galiuno, garnet), the magnetic material (1) is adiabatically magnetized in a magnetic field of 4.6 Tesla from a state where the temperature is 4.2 J (the temperature of the magnetic material is 5 K).
), Jt'fi Fi (If the temperature of 81 and the thermal anchor (5) is 5, there will be a temperature difference of 20 K between the thermal anchor (5) and the magnetic material (1), and this Accurate temperature measurement is not possible because heat flows from the magnetic material (1) to the thermal anchor (5) according to the temperature difference.If the temperature of the J5 plate (8) is set to 5, the magnetic material (
The situation is the same for 1) where the first 4 degrees is 1r: 1, which cannot be measured accurately, and 1, which is adiabatic demagnetization.

[発明の目的] Mllv3ii ;にJ−bυ局υ (乙)本発明は−
にυ((シた<rf=来の測定装置aの欠点を改畏、l
〜だもので、断熱磁化・断熱消磁で磁性体の温度が急激
に変化するときでも磁性体のC11度を正C俗に測定で
きる温度測定装置を提供することを目的とする。
[Object of the invention] Mllv3ii ; to J-bυ station υ (B) The present invention is -
niυ((shi<rf=Revising the shortcomings of the previous measuring device a, l
To provide a temperature measuring device capable of measuring the C11 degree of a magnetic material in a normal C manner even when the temperature of the magnetic material changes rapidly due to adiabatic magnetization and adiabatic demagnetization.

し発明の概要“1 本発明は、従来断熱磁化・断熱消磁で磁性体の温IIt
が急激に変化してサーマル、アンカーとの間に大へな温
度差が生じることにより磁性体からサーマル・アンカー
にあるいはサーフ 1/L、・−T y カーから磁性
体に流れこんでいた熱を減少させるため磁性体に埋めこ
まれた温度泪とサーマル・アンカーを接続するリード線
を途中で同じ磁性体でできたブロックに熱接触よく巻き
つけて第2の一ザーーマル・アンカーとし、温度計への
直接的な熱の出入を防ぐことにより断熱磁化・断熱消磁
過程およびその直後の磁性体の温度を(正確に測定する
装置である。
Summary of the Invention "1" The present invention is a method for increasing the temperature of magnetic materials by conventional adiabatic magnetization and adiabatic demagnetization.
The sudden change in temperature causes a large temperature difference between the thermal and the anchor, causing the heat that had flowed from the magnetic material to the thermal anchor or from the surf 1/L, -T y car to the magnetic material. In order to reduce the temperature drop, the lead wire that connects the thermal anchor to the temperature drop embedded in the magnetic material is wrapped halfway around a block made of the same magnetic material in good thermal contact to form a second thermal anchor, and then connected to the thermometer. This device accurately measures the temperature of the magnetic material during the adiabatic magnetization/demagnetization process and immediately after that by preventing direct heat input and output.

第2の゛す°−マル・アンカーすなわち磁性体サーマル
・アノカーは電磁石の中心にある測定対象の磁性体に近
い位置に断熱的に固定rる。
A second thermal anchor, ie, a magnetic thermal anode, is adiabatically fixed at a position near the magnetic material to be measured at the center of the electromagnet.

第1のサーマル・アンカーと磁性体サー−−7/1.・
アンカーが設iitされた基板の温度、磁性体の温度が
共に′v4の仄態から1折熱磁化i〜、磁性1本・])
湛度がT2にな、徳きする。この時、磁性体リーーマル
・−アノカも磁性体と同様の温度変化をするが、磁場中
心かられずかに離れだ位11にあるからその到−a!温
度はT2よりもわずかに△Tだけ低いT2−1へ′1゛
である。従ってリード線の熱伝導率をλ、磁性体サーマ
ル・アンカーと温度計を結ぶリード線の長さを12、リ
ード線の全断面積全人とすると断熱磁化過程終了直後の
磁性体から磁性体サーマ/し・アンカーへの単位時間あ
たりの熱浸入門、は2人・ //zとなる。
First thermal anchor and magnetic body 7/1.・
When the temperature of the substrate on which the anchor is installed and the temperature of the magnetic material are both 'v4, thermal magnetization i~ and magnetic one piece])
When the degree of immersion becomes T2, it becomes virtuous. At this time, the temperature of the magnetic material Real-Anoka also changes in the same way as the magnetic material, but since it is located at a distance of 11 from the center of the magnetic field, it will not reach that temperature. The temperature is '1' to T2-1, which is slightly ΔT lower than T2. Therefore, assuming that the thermal conductivity of the lead wire is λ, the length of the lead wire connecting the magnetic thermal anchor and the thermometer is 12, and the total cross-sectional area of the lead wire is the whole person, the magnetic thermal conductivity from the magnetic material immediately after the adiabatic magnetization process is completed. The introduction to heat immersion per unit time for /shi/anchor is 2 people//z.

一方、磁性体サーマル アンカーを使J)なかった場合
の熱浸入数は、第1のサーマル・アンカーから温度計ま
でのリード線の長さを双方の場合で長さを11として、
λA(T2−T1)/(l!+12)みなる。
On the other hand, the number of heat penetrations when no magnetic thermal anchor is used is as follows, assuming that the length of the lead wire from the first thermal anchor to the thermometer is 11 in both cases.
λA(T2-T1)/(l!+12).

11を長くしC11→−125ゴ2の10陪以北の長さ
にとるのは、多くの局舎断熱真空容器の限られた空間で
はむずかしいが、磁注体−リ゛−マル・アンカーのf1
″L置を磁1易中心に近5けることによゆΔ′1゛をT
2−′■゛1の大きさの1/io以Fにするこ吉(」[
[−較的容易−Cある。さらに、リード線を長くすれば
交流損失の影響も無視でへ、tくなる。
It is difficult to lengthen C11 to a length north of 10 degrees from C11 to -125 Go2 in the limited space of many station insulated vacuum vessels, but it is f1
By placing the ``L position near the center of the magnetic field, Δ'1゛ can be calculated as T.
2-′■゛Kokichi (”[
[-Relatively easy-C. Furthermore, if the lead wire is made longer, the effect of AC loss can be ignored and the result will be reduced to t.

従っテ磁性ザー7ル・アンカーを利用した用台の方が熱
浸入111をはるかに小さくできる。
Therefore, the heat infiltration 111 can be much smaller in a stand that utilizes a magnetic thermal anchor.

μ上の構成で1でη熱磁化過程およびその直後の磁性体
の温度を畢定常的に測定することが可能上なる0 断熱消磁のjl、j自′でも、断熱消磁過程およびその
直後に磁1イ1:体、に磁性体サーマ7し・アンカーの
温度差は十分小さくでへるから従来装置に比べて正確な
温度測定が1]]゛能である0 [発明の効果1 本発明による温度測定装置を用いれば、断熱磁化・断熱
消磁で磁性体の温度が急激に変る時でもリード線を通し
ての温度計への熱浸入を小さくでき、従来装面に比べて
測定誤差の極めて小さい温度計測ができるようになった
With the configuration on μ, it is possible to constantly measure the temperature of the magnetic material during the thermal magnetization process and immediately after the η thermal magnetization process. 1-1: Since the temperature difference between the magnetic body and the anchor is sufficiently small, it is possible to measure temperature more accurately than conventional devices.0 [Effect of the invention 1 According to the present invention By using a temperature measurement device, even when the temperature of the magnetic material changes rapidly due to adiabatic magnetization and adiabatic demagnetization, it is possible to reduce the amount of heat that enters the thermometer through the lead wire, allowing temperature measurement with extremely small measurement errors compared to conventional devices. Now you can.

[発明の実施例] 本発明の代表的実施例を第2図にtill Lで説明す
る。従来例を示した第1図のサーマル・アンカー(5)
と温度計(4)を接続するリード線の途中部分を磁性体
(1)と同じ磁性体でできた円柱形のブロック01)に
巻きつけ、8g2のサーマル・アンカーとする。
[Embodiments of the Invention] A typical embodiment of the present invention is illustrated in FIG. 2 until L. Thermal anchor (5) in Figure 1 shows a conventional example
Wrap the middle part of the lead wire connecting the thermometer (4) and the magnetic material (1) around a cylindrical block 01) made of the same magnetic material as the magnetic material (1) to form an 8g2 thermal anchor.

この磁性体サーマル・アンカー(11〕は熱伝導率の低
いFRPの支持棒(121で基板(8)に断熱的に固定
する。
This magnetic thermal anchor (11) is adiabatically fixed to the substrate (8) using an FRP support rod (121) with low thermal conductivity.

磁性体サーマル・アンカーに巻きつけるリード線は磁性
体との熱接触を良くするために絶縁被覆のできるだけ薄
いもの、交流損失の影響を避けるだめできるだけ細いも
のを使用する。
The lead wires to be wound around the magnetic thermal anchor should have as thin an insulating coating as possible to improve thermal contact with the magnetic material, and should be as thin as possible to avoid the effects of AC loss.

磁性体サーマル・アンカーのf〜r置装よ測定対象磁性
体のうける磁場に近い磁場を感じる場所とする。
The f to r device of the magnetic thermal anchor should be located in a place where it can sense a magnetic field close to the magnetic field experienced by the magnetic material to be measured.

他の構成は第1図の従来例と同一である。The other configurations are the same as the conventional example shown in FIG.

以上の構成により、断熱磁化・断面消磁過程および断熱
磁化・断熱消磁直後の磁性体の温度をIE確に知ると吉
ができる。
With the above configuration, it is possible to accurately know the temperature of the magnetic material during the adiabatic magnetization/cross-sectional demagnetization process and immediately after the adiabatic magnetization/diabatic demagnetization.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は断熱磁化・断熱消磁の際の温度変化を測定する
従来例を示す断面図、第2図は本発明による温度測定法
の実施例を示す断面図である。 (1)・・・磁性体、(2)・・・真空容器、(3)・
・・超伝導心磁石、(4)・・・カーボン・グラス温度
計、(5)・・・サーマル・アンカー、 (6a)・・室温部計測端子につながるリード線、(6
b)、(6c)・・・リード線、(力・・・支持材、(
8)・・・基板、(9)支持パイプ、(10)・・液体
ヘリウム、(+11・・・磁性体サーマル・アンカー。 (lり・・支持棒、) 代理人 弁理士  則 近 意 佑 (ほか1名) 第1図 第2図
FIG. 1 is a sectional view showing a conventional example of measuring temperature changes during adiabatic magnetization and adiabatic demagnetization, and FIG. 2 is a sectional view showing an embodiment of the temperature measurement method according to the present invention. (1)...magnetic material, (2)...vacuum container, (3)...
...Superconducting core magnet, (4)...Carbon glass thermometer, (5)...Thermal anchor, (6a)...Lead wire connected to room temperature measurement terminal, (6
b), (6c)...Lead wire, (force...support material, (
8)...Substrate, (9) Support pipe, (10)...Liquid helium, (+11...Magnetic thermal anchor. (and 1 other person) Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 断熱磁化・断熱消磁により急激に変化する磁性体の試料
のiLA度を測定する温度測定装置において、前記試料
と同じ磁性体材料からなるサーマル・アンカーを用いて
温度H[のリード線からの熱浸入を減少させ、前記磁性
体の試料の温度を測定することを特徴とする温度測定装
置。
In a temperature measuring device that measures the iLA degree of a magnetic sample that changes rapidly due to adiabatic magnetization and adiabatic demagnetization, a thermal anchor made of the same magnetic material as the sample is used to measure heat penetration from the lead wire at a temperature of H. A temperature measuring device for measuring the temperature of the magnetic sample.
JP16978782A 1982-09-30 1982-09-30 Temperature measuring device Pending JPS5960330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16978782A JPS5960330A (en) 1982-09-30 1982-09-30 Temperature measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16978782A JPS5960330A (en) 1982-09-30 1982-09-30 Temperature measuring device

Publications (1)

Publication Number Publication Date
JPS5960330A true JPS5960330A (en) 1984-04-06

Family

ID=15892863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16978782A Pending JPS5960330A (en) 1982-09-30 1982-09-30 Temperature measuring device

Country Status (1)

Country Link
JP (1) JPS5960330A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0262308A2 (en) * 1986-07-10 1988-04-06 Abonyi, Gabrielle Electrical thermometer
US10434574B2 (en) 2016-11-16 2019-10-08 Sodick Co., Ltd. Laminating and shaping apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0262308A2 (en) * 1986-07-10 1988-04-06 Abonyi, Gabrielle Electrical thermometer
EP0262308A3 (en) * 1986-07-10 1989-07-26 Abonyi, Gabrielle Electrical thermometer
US10434574B2 (en) 2016-11-16 2019-10-08 Sodick Co., Ltd. Laminating and shaping apparatus

Similar Documents

Publication Publication Date Title
Lee et al. Heat transport in liquid he 3
Vilches et al. Techniques for using liquid helium in very low temperature apparatus
Rondeaux et al. Thermal conductivity measurements of epoxy systems at low temperature
Ishimoto et al. Two-stage nuclear demagnetization refrigerator reaching 27 µK
Hennel et al. High efficiency direct magnetocaloric effect in Heusler Ni2MnGa microwire at low magnetic fields
Ootuka et al. Static magnetic susceptibility of Si: P across the metal-insulator transition
JPS5960330A (en) Temperature measuring device
JP2011091422A (en) Operation control method for superconducting coil
Zhang et al. Thermal stability of quasi-isotropic strands with different cross-sections and with/without metal sheaths
Giauque et al. Calorimetric Determination of Isothermal Entropy Changes in High Magnetic Fields at Low Temperatures. CoSO4· 7H2O
Krusius et al. Superconducting switch for large heat flow below 50 mK
Parpia et al. Optimization procedure for the cooling of liquid 3He by adiabatic demagnetization of praseodymium nickel
Welander et al. Miniature high-resolution thermometer for low-temperature applications
Tang et al. Nuclear cooling and the quadrupole interaction of indium
Toda et al. Superconducting zinc heat switch for continuous nuclear demagnetization refrigerator and sub-mk experiments
Hata et al. Static magnetization and ordering temperature of solid 3He at various molar volumes
JPS61271804A (en) Superconductive electromagnet
Iwasa et al. Stability and quenching in high-temperature superconductors
JP2788625B2 (en) Meissner effect confirmation device
JPS5938623A (en) Thermometer
Corruccini et al. Demountable 3He melting curve thermometer
Herlach et al. Experimental and theoretical analysis of the heat distribution in pulsed magnets
Loree et al. The Hall effect in oriented α-Pu
Horiike et al. MHD pressure drop of imperfect insulation of liquid metal flow
Bloem Transient heat transfer to supercritical helium at low temperatures