JPS607176A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS607176A
JPS607176A JP11539783A JP11539783A JPS607176A JP S607176 A JPS607176 A JP S607176A JP 11539783 A JP11539783 A JP 11539783A JP 11539783 A JP11539783 A JP 11539783A JP S607176 A JPS607176 A JP S607176A
Authority
JP
Japan
Prior art keywords
region
collector
voltage
emitter
depletion layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11539783A
Other languages
Japanese (ja)
Inventor
Hiromichi Kuwano
桑野 宏道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Japan Ltd
Original Assignee
Texas Instruments Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Japan Ltd filed Critical Texas Instruments Japan Ltd
Priority to JP11539783A priority Critical patent/JPS607176A/en
Publication of JPS607176A publication Critical patent/JPS607176A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To provide a switching element having high withstand voltage, by selecting impurity concentration and intervals so that depletion layers extending to a collector region, become a pinch-OFF state before the occurrence of breakdown phenomenon. CONSTITUTION:The concentration of impurities and the thickness of an epitaxial layer 2 are selected as follows: a low resistivity embedded region is not provided in a well; depletion layers are extended from a collector region 21 in the inside under an emitter region 4 toward a collector contact region 5; and a collector voltage is not directly applied to the collector region 21 in the inside. Namely, when the collector voltage is high, the depletion layers extended from a base region 3 and from a substrate 1 are contacted each other. The depletion layers are further extended and the voltage drop is generated between the collector contact region 5 and the collector region 21 in the inside by the depletion layers. Therefore, the potential of the collector region 21 in the inside becomes lower than the collector voltage by the amount of the voltage drop due to the depletion layers. Even though a high voltage is applied to the collector, avalanche breakdown in not generated at the lower part of the emitter region.

Description

【発明の詳細な説明】 本発明は半導体装置に関し、特に高耐圧スイッチング素
子に適した半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and particularly to a semiconductor device suitable for a high voltage switching element.

多くのバイポーラ型集積回路用半導体装置は基板上にエ
ピタキシャル層を形成した半導体ウェーハ内に作られる
。エピタキシャル層は基板と逆導電型であ、り、I)n
接合によシ基板と電気的に分離される。二−タキシャル
層内にはさらに基板と同導電型の分離(アイソレーショ
ン)領域や絶縁物分離領域が設けられて周囲から電気的
に分離された各素子用領域ないしウェルが形成される。
Many bipolar integrated circuit semiconductor devices are fabricated within a semiconductor wafer with an epitaxial layer formed on the substrate. The epitaxial layer is of opposite conductivity type to the substrate, I)n
It is electrically isolated from the substrate by bonding. In the bi-taxial layer, an isolation region and an insulator isolation region of the same conductivity type as the substrate are further provided to form regions or wells for each element electrically isolated from the surroundings.

各ウェルは下面(基板との界面)および側面がpn接合
等によって電気的に分離されるので、バイポーラ接合ト
ランジスタのエミッタ電極、ベース電極、コレクタ電極
はすべて上面(工ぎタキシャル層表面)に形成する。こ
のためエミッタ電極からコレクタ電極に流れるキャリア
はエピタキシャル層内で横方向(エピタキシャル層表面
と平行な方向)にも流れなくてはならない。ウェルを高
抵抗率(低不純物濃度)の領域で形成すると、ウェル内
の横方向抵抗(コレクタ直列抵抗等)が高くなる。
Since the bottom surface (interface with the substrate) and side surfaces of each well are electrically isolated by a p-n junction, etc., the emitter electrode, base electrode, and collector electrode of the bipolar junction transistor are all formed on the top surface (the surface of the engineered taxial layer). . Therefore, carriers flowing from the emitter electrode to the collector electrode must also flow laterally (in a direction parallel to the surface of the epitaxial layer) within the epitaxial layer. When a well is formed in a region with high resistivity (low impurity concentration), lateral resistance (collector series resistance, etc.) within the well increases.

コレクタ直列抵抗の増大はRO時定数の増大による動作
速度低下等を招くことになる。このため多〈のバイポー
ラ集積回路においては、各トランジスタ用ウェル内で基
板表面ないしは基板とエピタキシャル層の界面付近に工
ぎタキシャル層と同導電型で電気的に連続した高不純物
濃度の局在埋込領域(サブコレクタ領域)を設けている
。サブコレクタ領域は高不純物濃度(低抵抗率)でウェ
ル内で横方向に延びるのでウェル内の横方向抵抗を実質
的に低減し、トランジスタの高速動作等を可能にする。
An increase in the collector series resistance causes a decrease in operating speed due to an increase in the RO time constant. For this reason, in many bipolar integrated circuits, in each transistor well, a localized implant with a high impurity concentration that is electrically continuous and of the same conductivity type as the epitaxial layer is implanted on the substrate surface or near the interface between the substrate and the epitaxial layer. An area (sub-collector area) is provided. Since the sub-collector region has a high impurity concentration (low resistivity) and extends laterally within the well, it substantially reduces the lateral resistance within the well, enabling high-speed operation of the transistor, etc.

このような埋込領域のあるバイポーラ接合トランジスタ
のエミッタ・コレクタ耐圧は、ペース・コレクタ接合の
耐圧すなわち主、としてエミッタ領域の下部でペース領
域とサブコレクタ領域とにはさまれたエピタキシャル領
域の不純物濃度と厚さくペース・サブコレクタ間距離)
とによって定まる。ペース領域の形状(曲率等)も耐圧
に影響する。不純物温度約1018cm−3以下のシリ
コン領域の降伏現象は主としてなだれ降伏による。なだ
れ降伏は通常臨界電界強度で説明でき、臨界電界強度は
105〜10’ V/crn程度と言われる。トランジ
スタ内で臨界電界強度を超える部分があるとそこで降伏
現象が起る。高耐圧を得るためには、臨界電界強度を超
えないようにしかつ電圧降下を大きくする必要がある。
The emitter-collector breakdown voltage of a bipolar junction transistor with such a buried region is mainly determined by the breakdown voltage of the pace-collector junction, that is, the impurity concentration of the epitaxial region sandwiched between the pace region and the sub-collector region below the emitter region. and thick pace/subcollector distance)
It is determined by The shape (curvature, etc.) of the pace area also affects the pressure resistance. The breakdown phenomenon in the silicon region below the impurity temperature of about 1018 cm-3 is mainly due to avalanche breakdown. Avalanche breakdown can usually be explained by critical electric field strength, which is said to be about 105 to 10' V/crn. If there is a portion within a transistor where the critical electric field strength is exceeded, a breakdown phenomenon occurs there. In order to obtain a high breakdown voltage, it is necessary to prevent the critical electric field strength from being exceeded and to increase the voltage drop.

従ってペース・サブコレクタ間の領域(すなわちエピタ
キシャル層)の不純物濃度を下げ厚さを増加させること
が有効となる。
Therefore, it is effective to lower the impurity concentration in the region between the pace and the subcollector (ie, the epitaxial layer) and increase the thickness.

しかし低不純物濃度の工ぎタキシャル層を厚く成長させ
ることはプロセスの制御等に困難な点があシ、歩留シを
低くし易い。また、エピタキシャル層の厚さは通常ウェ
ーハ内で均一のため、集積回路の他の部分のエピタキシ
ャル層さも増加させる。
However, growing a thick engineered taxial layer with a low impurity concentration poses difficulties in process control and tends to lower the yield. It also increases the thickness of the epitaxial layer in other parts of the integrated circuit, since the thickness of the epitaxial layer is typically uniform within the wafer.

又、分離領域の深さや巾も増加させることが必要となシ
、集積度の低下、プロセスの複雑化につながる。このた
めエピタキシャル層はあま)厚くできず、実用上得られ
るバイポーラ・トランジスタの耐圧は60V程度であっ
た。
Furthermore, it is necessary to increase the depth and width of the separation region, which leads to a decrease in the degree of integration and a complicated process. For this reason, the epitaxial layer cannot be made very thick, and the breakdown voltage of bipolar transistors that can be practically obtained is about 60V.

本発明の目的の1つは高耐圧のスイッチング素子に適し
た半導体装置を提供することである。
One of the objects of the present invention is to provide a semiconductor device suitable for a high voltage switching element.

本発明の1実施例によれば、ウェル内に低抵抗率埋込領
域を設けず、エミッタ領域下の内部コレクタ領域からコ
レクタ接触領域に向う方向に空乏層が延びコレクタ電圧
が内部コレクタ領域に直接印加されな・いように、該工
ぎタキシャル層の不純物濃度と厚さとが選択される。す
なわち、コレクタ電圧が高い時に、ペース領域と基板と
から延びる空乏層が互に接しさらに延びてコレクタ接触
領域と内部コレクタ領域との間に空乏層による電圧降下
を発生させる。従って、内部コレクタ領域の電位は、コ
レクタ電圧よりも空乏層による電圧降下分は低くなシ、
コレクタに高電圧を印加してもエミッタ領域下部でのな
だれ降伏は生じなくなる。
According to one embodiment of the invention, a low resistivity buried region is not provided in the well, and the depletion layer extends from the internal collector region under the emitter region toward the collector contact region, so that the collector voltage is directly applied to the internal collector region. The impurity concentration and thickness of the engineered taxial layer are selected such that no voltage is applied. That is, when the collector voltage is high, the depletion layer extending from the space region and the substrate touch each other and extend further, creating a voltage drop across the depletion layer between the collector contact region and the internal collector region. Therefore, the potential of the internal collector region is lower than the collector voltage by the voltage drop caused by the depletion layer.
Even if a high voltage is applied to the collector, avalanche breakdown will not occur below the emitter region.

本発明の他の目的、特徴、利点等は以下の説明よシ明ら
かになるであろう。
Other objects, features, advantages, etc. of the present invention will become apparent from the following description.

第1A図は埋込領域を設けた集積回路用バイポーラ接合
トランジスタの概略断面を示す。p−型基板1上に高抵
抗率コレクタ領域として働くn−型工tタキシャル層2
が形成され、エピタキシャル層2内にp型ベース領域3
、n++コレクタ接触領域5、p++分離領域11が形
成され、p型ベース領域3内にはn++エミッタ領域4
が形成される。エミッタ領域4下のn−型内部コレクタ
領′域21とn+型゛コレクタ接触領域5との間の直列
抵抗を減らすため、p−型基板1表面にはn++埋込(
サブコレクタ)領域13が形成されている。工ぎタキシ
ャル成長中等の不純物再分布によってD+型型埋領領域
13エピタキシャル層2内にも入p込んでいる。12は
絶縁保護膜3’ 、 4’ 、5’はペース、エミッタ
、コレクタの各電極である。
FIG. 1A shows a schematic cross-section of a bipolar junction transistor for an integrated circuit with a buried region. N-type taxial layer 2 serving as a high resistivity collector region on p-type substrate 1
is formed, and a p-type base region 3 is formed in the epitaxial layer 2.
, an n++ collector contact region 5, a p++ isolation region 11, and an n++ emitter region 4 within the p-type base region 3.
is formed. In order to reduce the series resistance between the n-type internal collector region 21 under the emitter region 4 and the n+-type collector contact region 5, the surface of the p-type substrate 1 is filled with n++ (
A sub-collector region 13 is formed. Due to impurity redistribution during mechanical taxial growth, etc., the impurities have also entered the D+ type buried region 13 into the epitaxial layer 2. 12 is an insulating protective film 3', 4', and 5' are electrodes of a pace, an emitter, and a collector.

第1B、1(、、ID図は、エミッタ領域4直下のn−
型内部コレクタ領域21での不純物分布、電界強度分布
、電位分布を概略的に示す。
1B, 1(,, ID diagram shows the n- right below the emitter region 4)
The impurity distribution, electric field strength distribution, and potential distribution in the collector region 21 inside the mold are schematically shown.

第1B図において、p+ n−r n+は各領域3.2
1.13の不純物濃度を示す。以下n+)p〉Σ−とす
る。埋込領域13はコレクタ接触領域5と同導電型領域
で電気的に接続されているのでコレクタ電流が大きくな
い限シはぼ同電位と考えられる。
In Figure 1B, p+ n-r n+ is 3.2 for each region.
It shows an impurity concentration of 1.13. Hereinafter, n+)p>Σ-. Since the buried region 13 and the collector contact region 5 are electrically connected to each other by the same conductivity type region, they are considered to have approximately the same potential as long as the collector current is not large.

ペース電極3′に対し正の電圧をコレクタ電極5′に印
加するとペース・コレクタ間pn接合は逆バイアスされ
、空乏層が該pn接合の両側に拡がる。
When a positive voltage with respect to the pace electrode 3' is applied to the collector electrode 5', the pace-collector pn junction is reverse biased, and a depletion layer spreads on both sides of the pn junction.

但し、電荷中性の法則によυベース領域3.内の空乏層
巾W2はコレクタ領域21内の空乏層中W1よりきわめ
て狭い。空乏層が拡がると、空乏層内の電荷に応じて第
1C図の実線E1で示すような電界強度分布が生じる。
However, due to the law of charge neutrality, υ base region 3. The width W2 of the depletion layer inside the collector region 21 is much narrower than the width W1 of the depletion layer inside the collector region 21. When the depletion layer expands, an electric field intensity distribution as shown by the solid line E1 in FIG. 1C occurs depending on the charge within the depletion layer.

逆バイアスが大きくなると。As the reverse bias increases.

空乏層は埋込領域13に達し、その内部に入る。The depletion layer reaches the buried region 13 and enters therein.

この時、電界強度は破線]1ii2.E3のような形と
なる。最大電界強度がなだれ降伏の臨界電界強度Ecr
に達するとその部分からなだれ降伏が起ると考えられる
。第1C図の電界強度分布E2に対応する電位分布を第
1D図に示す。印加電圧のほとんどは、高抵抗率の内部
コレクタ領域21に印加されることになる。内部コレク
タ領域21の不純物密度n−が低くなるほど、その巾W
21を大きくとってその領域での電圧降下を太き(して
、耐圧を上げることができる。たとえば、アブラプトな
平面接合として、n−x 10]5am−3、W21〜
20 timとすれば300v程度の耐圧が可能であろ
う。
At this time, the electric field strength is a broken line]1ii2. It will look like E3. Critical electric field strength Ecr at which the maximum electric field strength is avalanche breakdown
When it reaches , avalanche surrender is thought to occur from that part. A potential distribution corresponding to the electric field intensity distribution E2 in FIG. 1C is shown in FIG. 1D. Most of the applied voltage will be applied to the high resistivity internal collector region 21. The lower the impurity density n- of the internal collector region 21, the wider its width W.
21 can be made large to increase the voltage drop in that region (thus increasing the withstand voltage. For example, as an abrasive planar junction, n-x 10]5am-3, W21~
If it is 20 tim, it will be possible to withstand a voltage of about 300v.

しかし、工ぎタキシャル層2、従って内部コレクタ領域
21の不純物濃度n−や巾w21がプロセス等の条件で
制限されると、空乏層の巾も制限され耐圧が制限される
。たとえば1μmの巾に30vの電圧を印加すると均一
な電界が生じる場合でもE=3X10δv/c1nとな
り、なだれ降伏を生じるのに十分となる。不純物濃度が
n−=10” cm−3になると厚さをいくら厚くして
も100■以下の耐圧しか得られないであろう。不純物
分布の不均一やpn接合面の曲率は耐圧をさらに低下さ
せ得る。
However, if the impurity concentration n- and width w21 of the engineered taxial layer 2, and thus the internal collector region 21, are limited by process conditions, the width of the depletion layer is also limited, and the breakdown voltage is limited. For example, when a voltage of 30 V is applied to a width of 1 μm, even when a uniform electric field is generated, E=3×10 δv/c1n, which is sufficient to cause avalanche breakdown. When the impurity concentration becomes n-=10" cm-3, no matter how thick the thickness is, a breakdown voltage of less than 100cm will be obtained. Uneven impurity distribution and curvature of the pn junction surface will further reduce the breakdown voltage. It can be done.

従来の集積回路用バイポーラ接合トランジスタの通常の
耐圧約60■は上述のような理由で説明できる。
The usual withstand voltage of about 60 mm for conventional bipolar junction transistors for integrated circuits can be explained by the above-mentioned reasons.

第1A図の構造で高耐圧を得るには内部コレクタ領域2
1の不純物濃度を低く、厚さを厚くすることが不可欠で
あり、製造コストの上昇や他の不都合も止むを得ないこ
とになる。
In order to obtain a high breakdown voltage with the structure shown in Figure 1A, the internal collector region 2
It is essential to lower the impurity concentration of No. 1 and increase the thickness, which inevitably increases manufacturing costs and other inconveniences.

しかしながら上記の議論はコレクタとサブコレクタ間に
ほとんど電圧降下が生じない場合である。
However, the above discussion is for the case where there is almost no voltage drop between the collector and subcollector.

内部コレクタ領域21がコレクタ接触領域5から電気的
に分離できれば、コレクタ接触領域5に高電圧が印加さ
れても内部フレフタ領域21を降伏から防ぐことは十分
可能である。
If the internal collector region 21 can be electrically isolated from the collector contact region 5, it is sufficiently possible to prevent the internal frefter region 21 from breakdown even if a high voltage is applied to the collector contact region 5.

第2A図に上記の考えに基づくバイポーラ接合トランジ
スタの1実施例を示す。第1A図と同一の符号は第1A
図のものと同一ないし類似のものを示す。本実施例では
低・抵抗率の埋込領域が存在せず、n−型内部コレクタ
領域21はp型ベース領域とp−型基板とにはさまれた
形になっている。
FIG. 2A shows an embodiment of a bipolar junction transistor based on the above idea. The same symbols as in Figure 1A are in Figure 1A.
Indicates something that is the same as or similar to the one in the figure. In this embodiment, there is no low resistivity buried region, and the n-type internal collector region 21 is sandwiched between the p-type base region and the p-type substrate.

内部コレクタ領域21の不純物密度n−と厚さtはコレ
クタに所定値■。以上の電圧が印加されたときベース領
域3および基板1から延びる空乏層が接するように選ぶ
。今ベース領域3と基板1とが接地されているとすると
、上記の条件を満足するためにはそれぞれの空乏層の巾
Wdが大略となることが必要である。8oは真空の誘電
率、Ksは比誘電率、qは、素電荷、nは不純物濃度で
ある。シリコン(xs;12)の場合、nn=1015
C罰、t=、6μmとすると空乏層を互に接触させるの
に必要な電圧は約8Vとなる。
The impurity density n- and the thickness t of the internal collector region 21 are set to a predetermined value (■) for the collector. The base region 3 and the depletion layer extending from the substrate 1 are selected so as to be in contact with each other when the above voltage is applied. Assuming that the base region 3 and the substrate 1 are now grounded, the width Wd of each depletion layer must be approximately the same in order to satisfy the above conditions. 8o is the dielectric constant of vacuum, Ks is the relative dielectric constant, q is the elementary charge, and n is the impurity concentration. For silicon (xs; 12), nn=1015
If C, t=6 μm, the voltage required to bring the depletion layers into contact with each other is approximately 8V.

n= 101’ am−3であれば、vo;50vで空
乏層は互に接触することになる。
If n=101' am-3, the depletion layers will come into contact with each other at vo; 50V.

空乏層はいいかえれば電位勾配の存在する領域である。In other words, a depletion layer is a region where a potential gradient exists.

ベース領域3下の内部コレクタ領域21とコレクタ接触
領域5との間を空乏層が横切ることになると、当然内部
コレクタ領域21内の最大電位はコレクタ接触領域5の
電位よりも低くなる。
If a depletion layer crosses between the internal collector region 21 under the base region 3 and the collector contact region 5, the maximum potential in the internal collector region 21 will naturally be lower than the potential in the collector contact region 5.

従って内部コレクタ領域21の電圧と内部コレクタ領域
21からコレクタ接触領域5までの間の電圧降下との和
が、この複合トランジスタのコレクタ電圧となる。内部
コレクタ領域21の電位が従来の値と同程度に制限され
ていても、空乏層による電圧降下が大きくなればコレク
タ電圧は高くできる。
The sum of the voltage in the internal collector region 21 and the voltage drop between the internal collector region 21 and the collector contact region 5 is therefore the collector voltage of this composite transistor. Even if the potential of the internal collector region 21 is limited to the same level as the conventional value, the collector voltage can be increased if the voltage drop due to the depletion layer is increased.

なお、ベース領域3とコレクタ接触領域5との間の距離
W。又はコレクタ接触領域5と基板1との間の距離dが
短かいとそこでなだれ降服を起すことに々るのは自明で
あろう。Woは少なくともy2以上であることが必要で
ある。Woとdの値は所望の耐圧からまる。
Note that the distance W between the base region 3 and the collector contact region 5. Alternatively, it is obvious that if the distance d between the collector contact area 5 and the substrate 1 is short, avalanche precipitation may occur there. Wo needs to be at least y2 or more. The values of Wo and d depend on the desired breakdown voltage.

エピタキシャル層2の比抵抗を約306In(n−に1
.5 x’10’5crn−” )、ベース領域と基板
との間の距離tz7μm1ベース拡散深さ約1.6pm
 (表面濃度約1018cm−”、表面でのベース巾約
5μm)とした時、ベース・コレクタ間耐圧BVo、。
The specific resistance of the epitaxial layer 2 is set to about 306In (1 to n-
.. 5x'10'5crn-"), distance between base region and substrate tz7μm1 base diffusion depth approximately 1.6pm
(Surface concentration approximately 1018 cm-'', base width at the surface approximately 5 μm), the base-collector breakdown voltage BVo.

を210v以上にすることができた。従来、BvoBo
が6’ OV程度であったこととくらべ、大巾に改善さ
れた。なお、耐圧に主に関係する横方向に並んだ部分で
のエミッタ領域4〜ベース領域3−コレクタ領域2,5
は実質的にバイポーラトランジスタを形成せス、(β<
0.1)、BV 〜BV となる。従来つ、BVo、。
I was able to increase the voltage to over 210v. Traditionally, BvoBo
Compared to the previous case, which was about 6' OV, this was a huge improvement. Note that the emitter region 4 to base region 3 to collector regions 2 and 5 in the horizontally arranged portions mainly related to breakdown voltage.
substantially forms a bipolar transistor, (β<
0.1), BV to BV. Conventionally, BVo.

ヒ比較するCEON CBO 時その差はさらに大きい。Compare CEO and CBO The difference is even bigger.

第2B図にコレクタ電圧が低い場合と高い場合の空乏層
形状を概略的に示す。破線がコレクタ電圧が低い場合、
点線が高い場合である。なお図示の形状は説明のため簡
略化しておシ、抵抗成分による電圧降下工R等によシ変
化する。よシ正確には電流連続の式と6次元ポアッソン
男根式を解くことによ請求められよう。
FIG. 2B schematically shows the shape of the depletion layer when the collector voltage is low and when it is high. When the dashed line shows low collector voltage,
This is the case where the dotted line is high. Note that the illustrated shape is simplified for the sake of explanation, and changes depending on the voltage drop R due to the resistance component, etc. More precisely, it can be determined by solving the equation of current continuity and the 6-dimensional Poisson phallic equation.

なお、エミッタ・ベース間pn接合とベース・コレクタ
間pn接合との横方向距離は十分大きく、バイポーラト
ランジスタはエミッタ領域4とその下部でのみ形成され
る。たとえばベース領域3が表面濃度pz1018cm
″″3、縦方向ベース巾約0.4μmの時表面での接合
間距離は5μm以上とする。
Note that the lateral distance between the emitter-base pn junction and the base-collector pn junction is sufficiently large, and the bipolar transistor is formed only in the emitter region 4 and its lower part. For example, base region 3 has a surface concentration pz of 1018 cm.
3. When the longitudinal base width is about 0.4 μm, the distance between the joints on the surface is 5 μm or more.

第2B図のように、基板1、ベース3は共に接地ないし
低電位にされる。以下、両者とも接地されているとする
。コレクタ電圧V。を増加させるとコレクタ電流が零の
限シ内部コレクタ領域21も■。となり、基板1および
ベース領域3との間のpn接合を逆バイアスし空乏層を
成長させる。
As shown in FIG. 2B, both the substrate 1 and the base 3 are grounded or at a low potential. In the following, it is assumed that both are grounded. Collector voltage V. When increasing , the internal collector region 21 also decreases as long as the collector current is zero. Therefore, the pn junction between the substrate 1 and the base region 3 is reverse biased to grow a depletion layer.

この時の電界強度分布の例を第2o図に示す。An example of the electric field strength distribution at this time is shown in Fig. 2o.

コレクタ電圧V。が高くなると、空乏層も延びやがてベ
ース領域3と基板1とから延びる空乏層は接しさらにコ
レクタ接触領域5に向って延びる。
Collector voltage V. As becomes higher, the depletion layer also lengthens, and eventually the depletion layers extending from the base region 3 and the substrate 1 touch and further extend toward the collector contact region 5.

電位分布の例を第2D図に示す。内部コレクタ領域21
とコレクタ接触領域5との間は、ベース領域3と基板1
とから張シ出した空乏層が谷間のような電位分布形状を
作シ、さらにコレクタ接触領域5に向って第2D図破線
で示すように続く。すなわち接合FITと同様の構造、
動作となる。内部コレクタ領域21がソースとして、基
板1とベース領域3がデートとして、コレクタ接触領域
5が「レインとして働くわけである。接合FFtTのド
レイン電圧を変化させてもソース側はあまり変化がなく
定電流が流れることから理解されるように、空乏層が互
に接した(ピンチオフ)後は内部コレクタ領域21の電
位はコレクタ電位V0の変化にあまシ影響されなくなる
。との疑似接合FIICTのチャンネル長は上述の横方
向EB −BC接合間距離と考える仁とができ、上述の
例の場合チャンネル長は5μm以上となる。々だれ降伏
は主としてp型ベース(デート)領域3(又はp−型、
基板1)とn−型エピタキシャル層2との関係で定めら
れる。不純物濃度の比p/n−は通常100以上はある
ので、耐圧は主としてエピタキシャル層2の不純物濃度
及びベース領域3とコレクタ接触領域5との間の横方向
距離とによって定まる。なお、コレクタ接触領域5の周
囲に必要以上に高抵抗率の中性領域を残すことはコレク
タ抵抗の増大にっながシ、トランジスタ寸法を大きくす
るので必要十分な値にするのがよい。
An example of the potential distribution is shown in FIG. 2D. Internal collector area 21
and the collector contact area 5 are the base area 3 and the substrate 1
The depletion layer extending from the top creates a valley-like potential distribution shape and continues toward the collector contact region 5 as shown by the broken line in FIG. 2D. In other words, the structure is similar to that of junction FIT,
It becomes an action. The internal collector region 21 acts as a source, the substrate 1 and base region 3 act as a date, and the collector contact area 5 acts as a drain.Even if the drain voltage of the junction FFtT changes, the source side does not change much and maintains a constant current. As can be understood from the flow of , after the depletion layers touch each other (pinch-off), the potential of the internal collector region 21 is not affected by changes in the collector potential V0.The channel length of the pseudo junction FIICT is In the above example, the channel length is 5 μm or more. The droop breakdown mainly occurs in the p-type base (date) region 3 (or p-type,
It is determined by the relationship between the substrate 1) and the n-type epitaxial layer 2. Since the impurity concentration ratio p/n- is usually 100 or more, the breakdown voltage is mainly determined by the impurity concentration of the epitaxial layer 2 and the lateral distance between the base region 3 and the collector contact region 5. Note that leaving a neutral region with a higher resistivity than necessary around the collector contact region 5 will increase the collector resistance and increase the transistor dimensions, so it is preferable to set the value to a necessary and sufficient value.

第3図に多エミッタ構造とした実施例の上面図を示す。FIG. 3 shows a top view of an embodiment having a multi-emitter structure.

互に対向する細長いp型ベース領域3とn+型コレクタ
領域5とを作シ、p型ベース領域3内に5つのn+型エ
ミッタ領域4を形成する。
An elongated p-type base region 3 and an n+-type collector region 5 that face each other are formed, and five n+-type emitter regions 4 are formed in the p-type base region 3.

多山カニミッタ フォロア回路等に有効である。Effective for multi-mounted crab mitter follower circuits, etc.

第4図は集積回路の実施例の回路図を示す。論理回路4
1の論理出力が負荷駆動回路42に供給され出力端子を
介して負荷43を駆動する。負荷43の他端は電圧源に
接続される。負荷駆動回路42はバイポーラトランジス
タTR−1と接合FIT、rFmT−1との第1直列接
続とバイポーラトランジスタTR−2と接合FBT :
rFmr−2との第2直列接続とを含み、ダーリントン
接続を形成する。
FIG. 4 shows a circuit diagram of an embodiment of an integrated circuit. logic circuit 4
A logic output of 1 is supplied to the load drive circuit 42 and drives the load 43 via the output terminal. The other end of load 43 is connected to a voltage source. The load drive circuit 42 includes a first series connection of bipolar transistor TR-1, junction FIT, and rFmT-1, and bipolar transistor TR-2 and junction FBT:
a second series connection with rFmr-2 to form a Darlington connection.

なお、TR−2および、rpmT−2はそれぞれ複数設
けられておシ、1つの第1直列接続には複数の第2直列
接続が並列に接続されている。TR−1のエミッタ(T
R−2のベース)は抵抗R−iを介してTR−2のエミ
ッタに接続され、接地端子に接続される。ダーリントン
接続は論理回路41からの微弱な信号電流でTR−2を
動作可能にするため設けられている。
Note that a plurality of TR-2s and a plurality of rpmT-2s are provided, and a plurality of second series connections are connected in parallel to one first series connection. Emitter of TR-1 (T
The base of R-2) is connected to the emitter of TR-2 via a resistor Ri, and is connected to the ground terminal. The Darlington connection is provided to enable the TR-2 to operate with a weak signal current from the logic circuit 41.

また、集積回路上に形成されているTR−1とTR−2
および、TFET−1とJF′ET−2はそれぞれ同一
性能であl)、TR−1のエミッタは複数のT’R−2
ノヘースに並列接続されているので、1つのTR−1に
接続されるTR−2の数を適宜選択するととKよシ各T
R−2のペースに供給される電流値を所定値に設定する
ととができる。このように各TR−2のペースに供給さ
れる電流値を所定値に設定できるので、後述するように
各TR−2の動作速度の低下が防止できる。
In addition, TR-1 and TR-2 formed on the integrated circuit
And, TFET-1 and JF'ET-2 each have the same performance l), and the emitter of TR-1 has multiple T'R-2
Since they are connected in parallel to each other, if the number of TR-2s connected to one TR-1 is selected appropriately, each T
The current value supplied to the R-2 pace can be set to a predetermined value. Since the current value supplied to the pace of each TR-2 can be set to a predetermined value in this way, a decrease in the operating speed of each TR-2 can be prevented, as will be described later.

また、負荷43をTR−2のエミッタに接続することも
できる。エミッタ負荷の場合は、第6図に示すような多
エミッタ構造を用いると複数の出力を取るのに便利であ
る。
Moreover, the load 43 can also be connected to the emitter of TR-2. In the case of an emitter load, it is convenient to use a multi-emitter structure as shown in FIG. 6 to obtain a plurality of outputs.

論理回路41、負荷43は公知の種々のものとすること
ができる。集積回路としては論理回路41と駆動回路4
2とを含むのがよいが、論理回路41の一部を外付部品
とできること等は自明であろう。トランジスタの導電型
を全て逆にできること等も自明であろう。回路として見
た時:rF′wT−1および2を設けた1つの目的は、
負荷上流の電源の電圧値を高く設定できるようにするた
めである。言いかえれば、負荷駆動回路42の耐圧を向
上させるために設けられている。TR−1゜TR−2の
コレクタはJFKT−1、JFBT−2を介して高電位
に接続されているので、JFKT−1゜JFII−2内
の電圧降下分だけ負荷(電源)端子電圧をTR−1,T
R−2のコレクタ耐圧よυも高くできる。
The logic circuit 41 and the load 43 can be of various known types. The integrated circuit includes a logic circuit 41 and a drive circuit 4.
2, but it is obvious that part of the logic circuit 41 can be an external component. It is also obvious that the conductivity types of the transistors can all be reversed. When viewed as a circuit: One purpose of providing rF'wT-1 and 2 is to
This is to enable the voltage value of the power supply upstream of the load to be set high. In other words, it is provided to improve the withstand voltage of the load drive circuit 42. The collectors of TR-1゜TR-2 are connected to a high potential via JFKT-1 and JFBT-2, so the load (power supply) terminal voltage is reduced by the voltage drop within JFKT-1゜JFII-2. -1,T
The collector breakdown voltage of R-2 can also be increased.

TR−1と、rFI!iT−1との第1直列回路および
TR−2と、TFET−2との第2直列回路の各々は第
2A図の実施例の複合トランジスタ1個で形成できる。
TR-1 and rFI! Each of the first series circuit with iT-1 and the second series circuit with TR-2 and TFET-2 can be formed by one composite transistor of the embodiment of FIG. 2A.

従って等価回路的にはバイポーラ接合トランジスタと接
合FETとの2つのトランジスタであっても半導体ウェ
ーハ内では1つのトランジスタ構造で実現でき、かつ高
耐圧が得られる。マルチエミッタとすれば、複数の直列
回路間等のものが1つのウェル内で実現できる。
Therefore, in terms of an equivalent circuit, even two transistors, a bipolar junction transistor and a junction FET, can be realized in a single transistor structure within a semiconductor wafer, and a high breakdown voltage can be obtained. If a multi-emitter is used, a plurality of series circuits, etc. can be realized within one well.

抵抗R−1はトランジスタTR−2のペース電流の調整
とトランジスタTR−1がオフするときのトランジスタ
TR−2からのキャリア引抜きに役立つ。R−1がな(
TR−1のエミッタ電流がTR−2の駆動に必要な電流
より2以上の場合、いわゆる飽和スイッチング状態とな
シ、過剰のペース電流がTR−2に流れ込む。この場合
TR−2のペース等に過剰キャリアが蓄積される。第4
図の場合、TR−1のn型エミッタにおいて電子が欠乏
し、TR−2のp型ベース内の過剰正孔となってペース
を正に帯電させる。TR−2のコレクタ電流が制限され
るとペース内の過剰正孔はコレクタにも流れる。TR−
2をオフにする時は、この過剰キャリアがなくならなけ
ればTR−2のコレクタ電流は零にならなt”oLかし
ながら、前述のように、1つの第1直列接続に複数の第
2直列接続を並列に設けることにより、TR−2のペー
スに供給される電流はTR−2のペースに過剰キャリア
が多量に蓄積されないよう所定値に選定されているうえ
、R−1が設けられているのでオフ時にはペース領域の
過剰正孔はエミッタに流れることなく、ペース蓄積キャ
リアが速やかに接地に引抜かれる。
The resistor R-1 serves to adjust the pace current of the transistor TR-2 and to extract carriers from the transistor TR-2 when the transistor TR-1 is turned off. R-1 Gana (
When the emitter current of TR-1 is two or more times larger than the current required to drive TR-2, a so-called saturated switching state occurs and an excessive pace current flows into TR-2. In this case, excess carriers are accumulated at the pace of TR-2. Fourth
In the case shown, electrons are depleted in the n-type emitter of TR-1 and become excess holes in the p-type base of TR-2, positively charging the pace. When the collector current of TR-2 is limited, excess holes in the pace also flow to the collector. TR-
When the TR-2 is turned off, the collector current of the TR-2 will not become zero unless this excess carrier disappears. However, as mentioned above, if a plurality of second By providing series connections in parallel, the current supplied to the pace of TR-2 is selected to a predetermined value so as not to accumulate a large amount of excess carriers in the pace of TR-2, and R-1 is provided. Therefore, during off-time, excess holes in the pace region do not flow to the emitter, and the pace accumulated carriers are quickly drawn to ground.

第5A図は第4図のフリツプフロツゾ回路等を含む論理
回路41に用いられる基本回路の例を示す。エミッタを
結合されたバイポーラ接合トランジスタTR−5、TR
−6と負荷抵抗IR−5、R−6とがいわゆるlIC0
L論理回路を構成している。
FIG. 5A shows an example of a basic circuit used in the logic circuit 41 including the flip-flop circuit shown in FIG. Emitter-coupled bipolar junction transistor TR-5, TR
-6 and load resistances IR-5 and R-6 are so-called lIC0
It constitutes an L logic circuit.

電源の極性、トランジスタTR−5,TR−6の極性等
は他の回路等との関係で定められる。論理回路の基本回
路はFIOLに限らず、・TTL、エエL。
The polarity of the power supply, the polarity of the transistors TR-5 and TR-6, etc. are determined depending on the relationship with other circuits. The basic logic circuits are not limited to FIOL, but also TTL and EEL.

NTL、5TIJ (ショットキtトランジスタ・ロジ
ック)等の他のバイポーラ論理回路、さらにMO8論理
回路等を含むこともできる。メモリを集積してもよいこ
とも自明であろう。
Other bipolar logic circuits such as NTL, 5TIJ (Schottky t-transistor logic), and even MO8 logic circuits may also be included. It is also obvious that memories may be integrated.

第5B、50,5D図に、これらの論理回路に用いるバ
イポーラ接合トランジスタおよび抵抗の構造例を示す。
Figures 5B, 50, and 5D show examples of structures of bipolar junction transistors and resistors used in these logic circuits.

表面保護膜、電極は省略されている。第1a、2A図と
共通の符号は同−又は類似のものを示す。
A surface protective film and electrodes are omitted. Reference numerals common to FIGS. 1a and 2A indicate the same or similar elements.

p″′型基板1上にn−型工ぎタキシャル層2が形成さ
れ、p++分離領域11によってウェルが形成されてい
る。各ウェル内には基板1とエピタキシャル層2との界
面付近にn+型型埋領領域13形成されている。論理回
路の電源電圧は通常5V以下と低いため、耐圧は問題と
ならない。第5E。
An n-type etched taxial layer 2 is formed on a p''' type substrate 1, and a well is formed by a p++ isolation region 11.In each well, an n+ type layer 2 is formed near the interface between the substrate 1 and the epitaxial layer 2. A mold buried region 13 is formed.The power supply voltage of the logic circuit is usually as low as 5V or less, so the withstand voltage is not a problem.5th E.

50図の埋込領域13はそれぞれコレクタ抵抗、ベース
抵抗を実質的に低減し、高速動作の実現等に役立つ。す
なわち、同一チップ内で駆動回路用トランジスタは埋込
領域のないウェル内に形成されて高耐圧を実現し、論理
回路用トランジスタは低抵抗率埋込領域を備えたウェル
内に形成され低電圧高速動作を実現する。
The buried region 13 shown in FIG. 50 substantially reduces collector resistance and base resistance, respectively, and is useful for realizing high-speed operation. In other words, within the same chip, drive circuit transistors are formed in wells with no buried regions to achieve high breakdown voltage, and logic circuit transistors are formed in wells with low resistivity buried regions to achieve low voltage and high speed. Realize the action.

第5B図のnpn )ランジスタはn++エミッタ領域
4、p型ベース領域3、n−型コレクタ領域2、n+型
型埋領領域13n+型コレクタ接触領域5形成される。
The npn transistor in FIG. 5B is formed with an n++ emitter region 4, a p-type base region 3, an n-type collector region 2, an n+-type buried region 13 and an n+-type collector contact region 5.

第5C図のpnp )ランジスタはラテラル型であシ、
中央のp++エミッタ領域14、その周囲のp++コレ
クタ領域15、中間のn−型ベース領域2、n+型型埋
領領域13n++ペース接触領域16で形成される。
pnp in Figure 5C) The transistor is a lateral type,
It is formed of a central p++ emitter region 14, a surrounding p++ collector region 15, an intermediate n-type base region 2, an n+-type buried region 13 and an n++ space contact region 16.

第5D図の抵抗は、n−型工ぎタキシャル層2内のp型
抵抗領域17とその両端部内に形成されたp++電極接
触領域18.19で形成される。
The resistor of FIG. 5D is formed by a p-type resistance region 17 in the n-type engineered taxial layer 2 and p++ electrode contact regions 18.19 formed in its ends.

上記の如き構成によれば、負荷駆動回路の耐圧を大きく
してもエピタキシャル層の厚さを小さめにすることがで
きる。従って論理回路を構成するトランジスタの部分の
エピタキシャル厚も小さくでき、小さなウェルを可能に
する。このだめ浮遊容量も/ドさくできる。一方埋込領
域の形成でコレクタ直列抵抗又はペース直列抵抗を小さ
くできる。
According to the above configuration, even if the withstand voltage of the load drive circuit is increased, the thickness of the epitaxial layer can be made smaller. Therefore, the epitaxial thickness of the transistor portion constituting the logic circuit can also be reduced, making it possible to form a small well. This stray capacitance can also be reduced. On the other hand, by forming the buried region, the collector series resistance or the space series resistance can be reduced.

従って論理回路用トランジスタは高速動作することがで
きる。
Therefore, logic circuit transistors can operate at high speed.

又工ぎタキシャル層の厚さが薄くできるのでウェル間の
分離領域の深さも小さくてよく、従って分離領域の巾を
小さくでき、集積密度を向上できる。
Furthermore, since the thickness of the engineered taxial layer can be reduced, the depth of the separation region between the wells can also be reduced, and therefore the width of the separation region can be reduced, and the integration density can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図は埋込領域をもつバイポーラトランジスタの断
面図、第1B図、第1C図、第1D図は第1A図のトラ
ンジスタの動作を説明する概略線図、第2A図、第2B
図は実施例による複合トランジスタの断面図、第20図
、第2D図はその内部の電界強度分布と電位分布を示す
線図、第6図はマルチエミッタ複合トランジスタの上面
図、第の断面図、第5C図、第5D図はpnp トラン
ジスタと抵抗の断面斜視図である。 1・・・基板 2・・・エピタキシャル層、21・・・
内部コレクタ領域、3・・・p型ベース領域、4・・・
n++エミッタ領域、5・・・n中型コレクタ接触領域
、 13・・・低抵抗埋込領域1.14・・・p++エミッ
タ領域、15・・・p++コレクタ領域、41・・・論
理回路、43・・・負荷、 42・・・負荷駆動回路。 代理人 浅 村 皓
FIG. 1A is a cross-sectional view of a bipolar transistor with a buried region, FIGS. 1B, 1C, and 1D are schematic diagrams explaining the operation of the transistor in FIG. 1A, and FIGS. 2A and 2B.
20 and 2D are diagrams showing the electric field strength distribution and potential distribution inside the composite transistor, and FIG. 6 is a top view and a sectional view of the multi-emitter composite transistor, FIGS. 5C and 5D are cross-sectional perspective views of a pnp transistor and a resistor. 1... Substrate 2... Epitaxial layer, 21...
Internal collector region, 3... p-type base region, 4...
n++ emitter region, 5... n medium collector contact region, 13... low resistance buried region 1.14... p++ emitter region, 15... p++ collector region, 41... logic circuit, 43. ...Load, 42...Load drive circuit. Agent Akira Asamura

Claims (1)

【特許請求の範囲】[Claims] (1)第1導電型の半導体基板と、半導体基板上に形成
された所定不純物濃度の第2導電型コレクタ領域と、半
導体基板から所定間隔離隔してコレクタ領域中に設けら
れ、信号電圧が印加される第1導電型のベース領域と、
ペース領域中に設けられた第2導電型のエミッタ領域と
を備えた半導体装置において、 前記信号電圧が低レベル時にコレクタ電圧を増加させた
場合、コレクタ・エミッタ間に降伏現象の発生する前に
半導体基板とペース領域とからコレクタ領域に広がる空
乏層がピンチオフ状態になるよう、前記不純物濃度と間
隔とを選定したことを特徴とする半導体装置。
(1) A semiconductor substrate of a first conductivity type, a collector region of a second conductivity type formed on the semiconductor substrate and having a predetermined impurity concentration, and a collector region provided in the collector region at a predetermined distance from the semiconductor substrate, to which a signal voltage is applied. a base region of a first conductivity type,
In a semiconductor device including an emitter region of a second conductivity type provided in a space region, when the collector voltage is increased when the signal voltage is at a low level, the semiconductor device A semiconductor device characterized in that the impurity concentration and spacing are selected so that a depletion layer extending from the substrate and the space region to the collector region is in a pinch-off state.
JP11539783A 1983-06-27 1983-06-27 Semiconductor device Pending JPS607176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11539783A JPS607176A (en) 1983-06-27 1983-06-27 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11539783A JPS607176A (en) 1983-06-27 1983-06-27 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS607176A true JPS607176A (en) 1985-01-14

Family

ID=14661547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11539783A Pending JPS607176A (en) 1983-06-27 1983-06-27 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS607176A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4912034A (en) * 1972-03-08 1974-02-02
JPS5080778A (en) * 1973-11-14 1975-07-01
JPS5489581A (en) * 1977-12-27 1979-07-16 Sony Corp Composite transistor circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4912034A (en) * 1972-03-08 1974-02-02
JPS5080778A (en) * 1973-11-14 1975-07-01
JPS5489581A (en) * 1977-12-27 1979-07-16 Sony Corp Composite transistor circuit

Similar Documents

Publication Publication Date Title
KR101645769B1 (en) Power semiconductor devices having selectively doped jfet regions and related methods of forming such devices
US5416354A (en) Inverted epitaxial process semiconductor devices
KR100922914B1 (en) Field effect transistor formed on an insulating substrate
JPH0347593B2 (en)
JPH04146674A (en) Semiconductor device and manufacture thereof
JP2021525975A (en) Circuits and devices including transistors and diodes
CA1225164A (en) Integrated field controlled thyristor structure with grounded cathode
JPH0267766A (en) Bipolar-type semiconductor switching device
EP0043007B1 (en) Saturation-limited bipolar transistor circuit structure and method of making
JPH10501103A (en) Semiconductor device having LIGBT element formed
JPH0560263B2 (en)
JPH09181315A (en) Semiconductor device
WO2022085765A1 (en) Semiconductor device
US4987469A (en) Lateral high-voltage transistor suitable for use in emitter followers
US10600898B2 (en) Vertical bidirectional insulated gate turn-off device
JPS607176A (en) Semiconductor device
JPH0732120B2 (en) Semiconductor device
JP2002094046A (en) Semiconductor device
JPH04363068A (en) Semiconductor device
JPS62177968A (en) Gate turn-off thyristor
JP3183037B2 (en) Insulated gate bipolar transistor
US4340827A (en) Semiconductor integrated circuit
JP2629434B2 (en) Semiconductor device with anode short conductivity modulation type MISFET
JPH0416443Y2 (en)
JP3278468B2 (en) Semiconductor device