JPS6071711A - Molding fiber - Google Patents

Molding fiber

Info

Publication number
JPS6071711A
JPS6071711A JP17823183A JP17823183A JPS6071711A JP S6071711 A JPS6071711 A JP S6071711A JP 17823183 A JP17823183 A JP 17823183A JP 17823183 A JP17823183 A JP 17823183A JP S6071711 A JPS6071711 A JP S6071711A
Authority
JP
Japan
Prior art keywords
fibers
fiber
molding
elongation
fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17823183A
Other languages
Japanese (ja)
Inventor
Hideo Takase
高瀬 秀男
Tadashi Tomita
冨田 忠
Toshiji Nakae
利治 中江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP17823183A priority Critical patent/JPS6071711A/en
Publication of JPS6071711A publication Critical patent/JPS6071711A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

PURPOSE:The titled fibers, consisting of a polymer having main repeating structural units consisting of butylene terephthalate, and capable of developing a peak due to the partial melting and recrystallizing in a heating DSC curve by heat treatment and improving the durability of deep-draw molded articles. CONSTITUTION:Molding fibers, consisting of a polymer having >=80mol% butylene terephthalate in repeating structural units, capable of developing a peak due to partial melting and recrystallizing in a heating DSC curve of the fibers by heat treatment, and preferably having the tensile stress x (g/denier) at 20% elongation at 25 deg.C and the tensile stress z (g/denier) at 150% elongation under heating at 130 deg.C satisfying the following relation; x>=0.7 and z<=0.85. USE:Laminated composites on plastic sheets are particularly suitable to facing materials of automotive instrument panels having a high draw ratio.

Description

【発明の詳細な説明】 イ1本発明の技術分野 本発明は成形用繊維に関するものである。さらに詳しく
は、プラスチックスシートと複合させた状態で曲面を有
する構造体に成形するだめのものであシ、特に絞り比の
大きな深絞シ成形体用として好適彦成形用繊維に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION A1 Technical Field of the Invention The present invention relates to moldable fibers. More specifically, the present invention relates to a molding fiber that is suitable for forming into a structure having a curved surface when combined with a plastic sheet, and is particularly suitable for deep drawing molded products with a large drawing ratio.

口、従来技術とその問題点 車輌や家庭用の内装材として、プラスチックスシートを
曲面を有する構造体に成形することはよく知られている
。しかし、プラスチックスシート単独の成形物は外観が
平面的で、かつ冷たく硬い感触を与えるため、その表面
に布帛を貼りつけることも行なわれている。この場合2
曲面に対して貼りつけるためには布帛を型に合わせて裁
断縫製する必要があるが、このような方法は工程的に非
能率であるために、上記布帛をプラスチックスシートに
貼り合わせた複合シートにし、この複合シートを熱成形
あるいは真空成形により一挙に所望の形状に成形してし
まうことが提案されている。
2. Description of the Prior Art and its Problems It is well known that a plastic sheet is formed into a structure having a curved surface as an interior material for vehicles and homes. However, since molded products made of plastic sheets alone have a flat appearance and a cold, hard feel, fabrics are sometimes pasted on the surface of the molded products. In this case 2
In order to attach it to a curved surface, it is necessary to cut and sew the fabric according to the shape, but since this method is inefficient in terms of process, we have developed a composite sheet in which the above fabric is attached to a plastic sheet. It has been proposed to form this composite sheet into a desired shape all at once by thermoforming or vacuum forming.

しかし、この能率的な成形法を採用する場合の問題は、
布帛自身の伸長性が十分でないことから。
However, the problem with adopting this efficient molding method is that
This is because the fabric itself does not have sufficient stretchability.

特に絞シ比(展開倍率)の大きい成形品になると適用し
にくくなるとか、タテ・ヨコ方向の伸びのバランスが悪
くて成形が難しくなるということである。また、たとえ
伸長性を大きいものにしだとしても、絞シ比の大きい成
形品の場合は、成形後に布帛が元の形に戻ろうとするカ
のためにコーナ部において布帛が浮き上ってはく離した
り、また成形時の伸びの大きい部位と小さい部位とで厚
さ・密度の変化が生じ、いわゆる熱成形性が不良で。
In particular, molded products with a large drawing ratio (deployment magnification) are difficult to apply, or the elongation in the vertical and horizontal directions is unbalanced, making molding difficult. Furthermore, even if the extensibility is increased, if the molded product has a large drawing ratio, the fabric will lift up at the corners and peel due to the force of the fabric trying to return to its original shape after forming. In addition, changes in thickness and density occur between areas where elongation is large and areas where elongation is small during molding, resulting in poor thermoformability.

これが外観を悪くしてその商品価値を低下せしめること
になるのである。
This deteriorates the appearance and reduces its commercial value.

このような欠点は、成形加工温度での布帛の熱可塑性並
びに加熱時の伸長性が小さく、変形応力が高いことに起
因しているものと考えられる。
Such defects are thought to be due to the thermoplasticity of the fabric at the molding temperature, its elongation upon heating, and its high deformation stress.

かかる欠点を解消するため、フロントに非伸ml性繊維
をバックに例えばポリウレタン繊維のような伸縮性繊維
を用いた経編地が提案されている。
In order to eliminate such drawbacks, warp knitted fabrics have been proposed in which stretchable fibers such as polyurethane fibers are used in the front and non-stretchable fibers in the back.

しかし、このものでは二層構造にするためフロントの風
合い2品位を半減し、また手間がががシ。
However, because this product has a two-layer structure, the front texture and quality are halved, and it is also time-consuming.

高価格になるなどの問題があった。またポリウレタン繊
維のような伸縮性繊維ではその耐久性にも問題があった
There were problems such as high prices. Furthermore, elastic fibers such as polyurethane fibers also have problems in their durability.

更に、パイル部に耐熱性繊維、グランド部に高配向未延
伸ポリエステル繊維を用いた成形用布帛も開示されてい
る。高配向未延伸繊維は大きな伸長性を有することから
成形性もかなり改善されるが7曲率の大きい深絞り成形
品等においてはなお鋭角的コーナ一部の外観が不良であ
る。そればかりではなく、高配向未延伸繊維のため1例
えば編立て時の張力変動などの微少変化により、簡単に
伸びたりして断糸しやすく、更に、布帛の染色や樹脂加
工、ラミネート加工条件に耐えられず変形するなど取扱
い性に難点があった。壕だ、成形後の安定再現性に欠陥
を生じ易いなど加工安定性にも問題があった。
Furthermore, a molding fabric using heat-resistant fibers in the pile portion and highly oriented undrawn polyester fibers in the ground portion is also disclosed. Highly oriented undrawn fibers have great extensibility, and therefore formability is considerably improved, but deep-drawn products with large 7 curvatures still have poor appearance at some sharp corners. Not only that, but because the fibers are highly oriented and undrawn, they can easily stretch and break due to minute changes such as changes in tension during knitting, and are also susceptible to fabric dyeing, resin processing, and lamination processing conditions. There were some difficulties in handling, such as unbearable deformation. There were also problems with processing stability, such as holes and easy reproducibility defects after molding.

なお、易成形性付与の目的のためには低融点繊維の使用
も考えられるが、取扱い性に難点があったり、布帛の染
色や樹脂加工条件、ラミネーI・加工条件などの高次加
工中の熱に耐えられず、変形し、外観品位、風合いの低
下が大きく到底商品価値のあるものが得られ彦かった。
Although it is possible to use low-melting point fibers for the purpose of imparting easy moldability, they may have difficulties in handling, or may be difficult to use during higher-order processing such as fabric dyeing, resin processing conditions, lamination I, processing conditions, etc. The product could not withstand heat, was deformed, and had a significant deterioration in appearance quality and texture, making it impossible to obtain a product with any commercial value.

特に、成形品が自動車内装材、とりわけインストルーメ
ンドパネルなどのようにさまざまな気候条件、使用条件
の下で過酷にしかも、6〜7年間以上にもわたって使用
されるため、成形品の耐久性、とくに耐老化性、ヒート
サイクル処理による表面品位の損傷。
In particular, molded products are used as automotive interior materials, especially instrument panels, under various climatic conditions and harsh usage conditions, and for more than 6 to 7 years. resistance, especially aging resistance, and damage to surface quality due to heat cycle treatment.

部分はく離などが問題になる。Partial peeling becomes a problem.

ハ1本発明の目的 本発明者は、上述欠点のない成形用繊維を提供せんとし
て素材、製糸、延伸、熱処理による繊維の熱的性質の変
化について鋭意検討を重ねた結果。
C1 Purpose of the Invention The present inventor has made intensive studies on changes in the thermal properties of fibers due to raw materials, spinning, drawing, and heat treatment, in an effort to provide moldable fibers free of the above-mentioned drawbacks.

熱処理することでその昇温DSCカーブに部分融解再結
晶化に基づくピ=りが発現する特性を付与した熱可塑性
繊維によって、繊維の熱セットの効き易さが飛躍的に向
上し、目的とする成形性のよい繊維が得られかつ、それ
を用いた成形品の耐久性が一挙に改良されることを見い
出し9本発明を完成させた。
By heat-treating thermoplastic fibers, which have been given the characteristic of exhibiting pimples due to partial melting and recrystallization in their temperature-rise DSC curves, the effectiveness of heat-setting of the fibers has been dramatically improved, and it has become possible to achieve the desired results. The present invention was completed based on the discovery that fibers with good moldability can be obtained and the durability of molded products using the fibers can be improved at once.

二1本発明の構成 すなわち1本発明は、くり返し構造単位の少なくとも8
0モル係がブチレンテレフタレートであるポリマからな
る繊維であって、熱処理することによりその繊維の昇温
DSCカーブに部分融解再結晶化に基づくピークが発現
することを特徴とする成形用繊維および上記成形用繊維
であって、かつ25”Cにおける20qb伸長時の引張
応力X (g/d )と100℃加温下での150%伸
長時の引張応力Z(g/d )が各々下式を満たしてい
ることを特徴とする成形用繊維。
21 Structure of the present invention, that is, 1 the present invention comprises at least 8 repeating structural units.
A fiber for molding comprising a polymer whose 0 molar ratio is butylene terephthalate, characterized in that upon heat treatment, a peak based on partial melting recrystallization appears in the temperature-rise DSC curve of the fiber, and the above-mentioned molding. A fiber for use, and the tensile stress X (g/d) at 20qb elongation at 25"C and the tensile stress Z (g/d) at 150% elongation under heating at 100°C satisfy the following formulas. A molding fiber characterized by:

X2O3 Z≦085 に係るものである。X2O3 Z≦085 This is related to.

本発明に使用される素材はポリブチレンテレフタレート
に限定されるものではなく、イソフタル酸、アジピン酸
などとの共重合体ポリブチレンテレフタレート、ポリブ
チレン/テレフタレートと他の熱可塑性重合体との混合
紡糸品、他の熱可つQ】性重合体との複合紡糸品、他種
素材との混燃り品などでちってもよい。共重合割合、混
合割合などは、共重合または混合する素材の種類によっ
て本発明の目的を植なわない範囲で適宜決定すればよ<
+通常1dブチレンテレフタレート成分が80モル係以
上であることが望ましい。
The materials used in the present invention are not limited to polybutylene terephthalate, but include copolymers of polybutylene terephthalate with isophthalic acid, adipic acid, etc., mixed spun products of polybutylene/terephthalate and other thermoplastic polymers, It may also be a composite spun product with other thermoplastic polymers or a mixed combustible product with other types of materials. The copolymerization ratio, mixing ratio, etc. may be determined as appropriate depending on the type of materials to be copolymerized or mixed within a range that does not affect the purpose of the present invention.
+Usually, it is desirable that the 1d butylene terephthalate component has a mole ratio of 80 or more.

また1本発明の繊維を用いて布帛状物が作られるが、そ
の形態は編織物、不織布など任意でよい。
Further, a fabric-like article can be made using the fiber of the present invention, and the form thereof may be arbitrary, such as a knitted fabric or a non-woven fabric.

また、その布帛構造はポリブチレンチレフタレ−MOO
%からなる一層構造あるいはフロントにポリブチレンテ
レフタレート繊維を用い、バックにポリウレタン弾性糸
で例示される伸縮性繊維を用いたいわゆる二層構造であ
る経編地、あるいはその逆使いの編地でもよい。なお、
布帛の組織は成形時にバランスした伸長を与える経編地
とするのが好ましい。
In addition, its fabric structure is polybutylene lentil thalai-MOO
%, a warp knitted fabric with a so-called two-layered structure using polybutylene terephthalate fibers in the front and stretchable fibers such as polyurethane elastic yarn in the back, or a knitted fabric using the reverse method. In addition,
The structure of the fabric is preferably a warp-knitted fabric that provides balanced elongation during molding.

経編地の編成性の点から長繊糺であることが好ましいが
、もちろん短繊維でちってもよい。
From the viewpoint of knitting properties of the warp knitted fabric, long fiber glue is preferable, but short fibers may also be used.

また、成形上での効果を阻害しない量および用法で他の
繊維と混用してもよい。例えばポリエステル、ポリアミ
ド、ポリアクリル、ポリプロピレン、ポリウレタン弾性
繊維との混用が例示される。
It may also be mixed with other fibers in amounts and usage methods that do not impede the molding effect. For example, mixed use with polyester, polyamide, polyacrylic, polypropylene, and polyurethane elastic fibers is exemplified.

経編地は、特にその地組織はバック糸が成形時に容易に
伸長できるように粗ゲージで編成することが望ましい。
It is preferable that the warp knitted fabric is knitted with a coarse gauge so that the back yarn can be easily stretched during forming.

また、同様に表面のフロント糸も表面外観の均一性付与
のために行なう起毛処理のためにルーズな編成にし、起
毛時に掻取されることによシ編地のループを締め2編地
の伸縮性を減殺することがないようにすることが望まし
い。また、上記の起毛処理ではバック糸の伸縮性繊維が
掻き出されることもあるので、このような掻き出し防止
のために、バック糸は他糸を巻きつけたコアヤーンまた
は合撚糸よりも、むしろ採糸のままの方が好適である。
Similarly, the front yarns on the surface are knitted loosely due to the raising treatment that is performed to give a uniform surface appearance, and when the yarn is scraped off during raising, the loops of the knitted fabric are tightened and the second knitted fabric expands and contracts. It is desirable to avoid reducing sexuality. In addition, the elastic fibers of the back yarn may be scraped out during the above-mentioned raising process, so to prevent such scraping, the back yarn is used as a yarn rather than a core yarn wrapped with other yarns or a plied yarn. It is preferable to leave it as is.

上述のような繊維は、その特性として、熱セット性が優
れ、かつ低応力で高感度に均一に伸長し得る必要がある
。したがって繊維特性として種々の特性を具備しなけれ
ばならない。
The above-mentioned fibers must have excellent heat setting properties and be able to be stretched uniformly with low stress and high sensitivity. Therefore, the fiber must have various properties.

特性の第1条件として、加熱処理時9部分融解再結晶化
に基づくピークが発現することが必要である。
The first characteristic condition is that a peak based on 9-part melt recrystallization should appear during heat treatment.

四に詳細には、低応力で高感度に斐形に追従するために
加熱処理による部分融解温度範囲(TR)および部分融
解再結晶化によって生じた微結晶の融解熱量(ΔH)が
各々114−175℃、 0.15cal/g以上(た
だし2gは繊維重量)であることが必要である。この熱
的特性を満足することにより、深絞り成形をする場合に
低温低圧で再現性よく均一なバランスのとれた伸長を与
えることができる。
Fourth, in detail, in order to follow the shape with low stress and high sensitivity, the partial melting temperature range (TR) by heat treatment and the heat of fusion (ΔH) of the microcrystals generated by partial melting recrystallization are each 114- It is necessary that the temperature is 175° C. and 0.15 cal/g or more (however, 2 g is the fiber weight). By satisfying these thermal characteristics, it is possible to provide uniform and balanced elongation with good reproducibility at low temperature and low pressure when deep drawing is performed.

すなわち、TRができるだけ広範囲でかつ融解熱量もで
きるだけ大きい熱的特性が好ましい。TR範囲が大きけ
れば比較的低い温度で部分融解かはじ捷り、更に成形時
の若干の温度バラツキによる影響もほとんどなく工程管
理が容易である。一方。
That is, it is preferable that the TR be as wide as possible and the heat of fusion be as large as possible. If the TR range is large, partial melting or breaking occurs at a relatively low temperature, and there is little influence from slight temperature variations during molding, making process control easier. on the other hand.

融解熱量が大きいことは熱成形性が良いことを示す。す
々わち、熱成形時における展開倍率が増加すると共に応
力低下を生じて易成形性が付与されるものである。
A large amount of heat of fusion indicates good thermoformability. In other words, the expansion magnification during thermoforming increases, stress decreases, and easy moldability is imparted.

なお2本発明においてTRおよび△Hとは次のように測
定されたものである。すなわち、繊維を150℃で30
分間乾熱処理後、5mgを採取し、示差走査型熱量計(
測定機器はPerkin −E1mer社DSC−2型
)を用い、40°O/min (D昇温速度なる条件下
で吸熱−発熱曲線をめ、この曲線上の熱処理によって生
じた微結晶の融解ピークから各々TRおよび△Hをめる
Note that in the present invention, TR and ΔH are measured as follows. That is, the fibers were heated at 150°C for 30
After dry heat treatment for a minute, 5 mg was collected and measured using a differential scanning calorimeter.
The measuring device was a Perkin-E1mer DSC-2 model), and an endothermic-exothermic curve was measured under the conditions of 40°O/min (D heating rate). Calculate TR and ΔH, respectively.

また、上述の繊維は、その特性の第2条件として、大き
な伸長性を有し、加温n’!J’ + 低応力で均一な
伸びが行な得るような特性を付与する必要がある。
Moreover, the above-mentioned fiber has large extensibility as a second condition of its properties, and when heated n'! J'+ It is necessary to impart properties that allow uniform elongation with low stress.

すなわち、繊維の130°C加温条件下での150チ伸
長時の引張応力は少なくとも0.85 g/d以下。
That is, the tensile stress of the fiber when elongated to 150 cm under heating conditions of 130°C is at least 0.85 g/d or less.

好ましくは0.7g/d以下、かつ25℃における20
チ伸長時の引張応力が0.7 g/d以上、好ましくは
08g//d以上になるよう設定される。130°Cに
おける引張応力が上述範囲をはずれると成形性が不良に
寿る欠点を生じ、′!!た25℃における引張応力が0
.7 g/a未満では成形前の布帛の形態安定性が不十
分であり9強度の低下全も伴ない耐久性も劣る。
Preferably 0.7 g/d or less and 20 at 25°C
The tensile stress during elongation is set to be 0.7 g/d or more, preferably 08 g//d or more. If the tensile stress at 130°C is out of the above range, there will be a drawback that the moldability will be poor. ! The tensile stress at 25℃ is 0.
.. If it is less than 7 g/a, the morphological stability of the fabric before molding is insufficient, and the durability is also poor, accompanied by a decrease in strength.

上述した熱的特性並びに伸長物理特性の両方を満足する
ことにより、最大絞り比が0.25以上、さらには04
0以上に及ぶ深絞り成形する場合に布帛の均一なバラン
スのとれた伸長を与えることができる。ここで絞υ比と
は直径DI 1mさHの円筒成形穴において、H/Dに
よって与えられる値のことである。
By satisfying both the thermal properties and elongation physical properties described above, the maximum drawing ratio is 0.25 or more, and even 0.4
Uniform and balanced elongation of the fabric can be provided when deep drawing is performed to a depth of 0 or more. Here, the drawing ratio is a value given by H/D in a cylindrical molded hole with a diameter DI of 1 m and a length H.

なお、上述の本発明の繊維は2重合体組成1重合条件、
紡糸条件の特定化、糸の加工における乾熱仕上げ条件(
乾熱温度)などを調節することにより、上述した成形用
繊維の熱的特性並びに伸長物理特性を具備せしめること
ができる。特に熱履歴が小さいことが好捷しい。
The fiber of the present invention described above has a two-polymer composition, one polymerization condition,
Specification of spinning conditions, dry heat finishing conditions for yarn processing (
By adjusting the dry heat temperature), the above-mentioned thermal properties and elongation physical properties of the forming fiber can be provided. In particular, it is advantageous that the heat history is small.

本発明の成形用繊維はそれを用い布帛状化せしめ、それ
をプラスチックスシートなどに貼りつけ積層複合体にし
た状態で熱成形まだは真空成形される。加熱手段は湿熱
、乾熱いずれでもよい。相手となるプラスチックスシー
トとしてはポリプロピレン発泡体シート! ポリエチレ
ン発泡体シート。
The molding fiber of the present invention is made into a fabric, which is then attached to a plastic sheet or the like to form a laminated composite, which is then thermoformed or vacuum formed. The heating means may be either wet heat or dry heat. The compatible plastic sheet is polypropylene foam sheet! Polyethylene foam sheet.

塩化ビニールシートなど成形可能なものであればいずれ
も適用可能である。
Any material that can be molded, such as a vinyl chloride sheet, can be used.

本発明は絞り比の大きい深絞9成形用として特に好適で
あるが、絞り比の小さい成形用にも適用できることは勿
論である。したがって、絞り比(展開率)の大きい自動
車用インストルーメンドパネルの表皮材として特に好適
であるが、これに限らずカーシート、ドアトリム、コン
ソールボックス、天井などの自動車内装態は勿論、電車
などの他の車輌用、航空機、船舶用等の内装利、家具。
Although the present invention is particularly suitable for deep drawing 9 forming with a large drawing ratio, it is of course also applicable to forming with a small drawing ratio. Therefore, it is particularly suitable as a skin material for automobile instrument panels with a large drawing ratio (expansion ratio), but it is not limited to this, but is also suitable for automobile interiors such as car seats, door trims, console boxes, ceilings, etc. Interior decoration and furniture for other vehicles, aircraft, ships, etc.

家電品用外装材、玩具など広く適用することができる。It can be widely applied to exterior materials for home appliances, toys, etc.

上述したように本発明の成形用繊維は、ポリブチレンテ
レフタレートからなり、熱セットされ易いように熱的特
性が特定され、更に低応力で変形に追従するように伸長
物理特性も特定されていることにより、成形時には低温
、低圧で成形でき。
As mentioned above, the molding fiber of the present invention is made of polybutylene terephthalate, and has specified thermal properties so that it can be easily heat set, and also has specified elongation physical properties so that it can follow deformation with low stress. This allows molding to be performed at low temperatures and pressures.

かつ、大きな伸長性を有するため、深絞りであっても全
面に均一に伸長される。したがって、成形が低温ででき
ることから成形品は表面の繊841形態を保持するため
外観、風合がすぐれ、また一方。
In addition, since it has great extensibility, it can be uniformly expanded over the entire surface even when deep drawing is performed. Therefore, since the molding can be done at low temperatures, the molded product retains the fiber 841 form on the surface, giving it an excellent appearance and feel.

成形時において過大な圧力を必要とせず容易に成形する
ととができることから、歪を内在せず、もとの形に戻ろ
うとする力も?1とんとゼロに近く成形後に変形したシ
アコーナ部での浮き上pなく。
Because it can be easily molded without the need for excessive pressure during molding, there is no inherent distortion and there is no force to return to the original shape. There is no floating p at the shear corner that is deformed after molding, which is close to zero.

外観が均一でかつ風合の優れ、四に耐久性も優れた成形
品を得ることが可能となる。
It becomes possible to obtain a molded product with a uniform appearance, excellent texture, and fourth, excellent durability.

実施例1 75デニール、66フイラメントのポリブチレンチシフ
クレート長繊8.IIを3200m/分の高速下で紡糸
し、引続き195°Cで0.8secの熱履歴下で加工
糸加工を11なった。その繊維を150°Cで30分間
乾熱処理し、昇温DSCカーブを測定した。繊8イLの
吸熱−発熱曲線は、第1図の階1のように。
Example 1 75 denier, 66 filament polybutylene lenticulate long fiber 8. II was spun at a high speed of 3200 m/min, and then processed into threads for 11 minutes under a thermal history of 0.8 sec at 195°C. The fibers were subjected to dry heat treatment at 150°C for 30 minutes, and a temperature-rising DSC curve was measured. The endothermic-exothermic curve of fiber 8L is like floor 1 in Figure 1.

微結晶の融解ピーク(A)かはっきシ発現し2部分融解
温度範囲(TR)114−175°C2部分融解再結晶
化によって生じた微結晶の融解熱量(△H)0、64 
cal/gであった。TRが低温度からはじ一!シ。
The melting peak (A) of the microcrystals clearly appears and the heat of fusion of the microcrystals (△H) 0, 64 is generated by the two-part melting temperature range (TR) 114-175°C and the two-part melting recrystallization.
It was cal/g. TR is the best at low temperatures! Sh.

広範囲であった。It was wide-ranging.

乾熱処理前の上述加工糸を用い9編成密度4゜コース/
インチの経編地を編成した。この編地を130℃で染色
、乾燥後、起毛し、180℃の乾熱温度で仕上加工した
。該染色起毛編地を塩化ビニルペーストを800g、/
m2の割合で編地裏面に下引きし、加熱キュアし、複合
シートを得た。
Using the above-mentioned processed yarn before dry heat treatment, 9 knitting density 4° courses/
An inch warp knitted fabric was knitted. This knitted fabric was dyed at 130°C, dried, raised, and finished at a dry heat temperature of 180°C. The dyed raised knitted fabric was coated with 800g of vinyl chloride paste.
The undercoat was applied to the back side of the knitted fabric at a ratio of m2, and heat-cured to obtain a composite sheet.

この複合シートを163℃に加熱後、最大展開率約29
5%の複雑な曲面形状を有するABS (アクリルニト
リル−ブタジェン−スチレン共重合ポリマー)樹脂から
なる自動車用インストルーメンドパネルコアー真空成形
を実施した。l+1?、形は曲面形状に沿って無理なく
成形でき、成形後も最大展開率を有する部位にスケがな
く、展開率が最小(0)の部位との外観、風合も大差な
く、美しい仕上り品を得た。最大絞り比及びはく離強度
を測定した結果を表1に示す。
After heating this composite sheet to 163℃, the maximum development rate is approximately 29
An automobile instrument panel core made of ABS (acrylonitrile-butadiene-styrene copolymer) resin having a complex curved shape of 5% was vacuum formed. l+1? The shape can be formed easily along the curved shape, there is no sagging in the area with the maximum expansion rate after molding, and the appearance and texture are not much different from the area with the minimum expansion rate (0), resulting in a beautiful finished product. Obtained. Table 1 shows the results of measuring the maximum drawing ratio and peel strength.

なお、上述の染色起毛前の繊維の25゛Cにおける20
チ伸長時応力(X)は2.0 g/d 、 130°C
における150%伸長時応力(Z)は0.80 g/d
であった。
In addition, the above-mentioned fiber before dyeing and raising at 20
The stress during elongation (X) is 2.0 g/d, 130°C
The stress (Z) at 150% elongation is 0.80 g/d
Met.

本発明品は、成形加工性に優れ、成形品としての耐久性
にも優れた性能を有するものであった。
The product of the present invention had excellent moldability and excellent durability as a molded product.

実施例2 70デニール、24フイラメントのポリブチレンテレフ
タレート長繊維を用い編成、染色、乾燥後。
Example 2 After knitting, dyeing, and drying using polybutylene terephthalate long fibers of 70 denier and 24 filaments.

起毛し、仕上げ温度185’aで仕上加工した。It was brushed and finished at a finishing temperature of 185'a.

該染色起毛編地を、ポリエチレン発泡体5mm厚さのシ
ートにラミネートのうえ、最大絞り比04ろ(M径10
cm円に対し、凹面の深さ41Cm)の凹部造面体を有
する成形体に加熱成形した。成形は四部形状に沿って無
理なく成形でき、成形後も四部底面の浮きもなく、四部
と平面部(絞り比O)との外観、風合差もほとんどなく
、美しい成形品が得られた。
The dyed raised knitted fabric was laminated onto a 5 mm thick sheet of polyethylene foam, and the maximum drawing ratio was 04 (M diameter 10
It was heat-molded into a molded body having a concave surface having a concave depth of 41 cm for a cm circle. The molding was carried out easily along the shape of the four parts, there was no lifting of the bottom of the four parts after molding, and there was almost no difference in appearance or texture between the four parts and the flat part (drawing ratio O), and a beautiful molded product was obtained.

上記成形前の染色起毛布帛に供試した繊維の150℃で
60分間乾熱処理後の昇温DSCカーブを測定したとこ
ろ、微結晶の融解ピーク(A)がはっきり発現し、TR
118〜172“C2ΔHO,60゜al、/IX。
When we measured the temperature-rising DSC curve after dry heat treatment at 150°C for 60 minutes on the fibers used in the dyed and raised fabric before molding, the melting peak (A) of microcrystals clearly appeared, and the TR
118-172"C2ΔHO, 60°al, /IX.

X = 1.8 g/d 、Z = 0.75 g/d
であった。
X = 1.8 g/d, Z = 0.75 g/d
Met.

実施例6 70デニール、24フイラメントのナイロン長繊維をフ
ロントに、75デニール、66フイラメントのポリブチ
レンテレフタレート長繊維をバック。
Example 6 A 70-denier, 24-filament nylon long fiber was used as the front, and a 75-denier, 66-filament polybutylene terephthalate long fiber was used as the back.

28ゲージ、2枚筬トリコットの各筬にそれぞれフルセ
ットで配置し、フロントに1−’3/バック1−1の振
りを与え、フロント212/バツク゛1019ランナー
比で2編成密度50コース/インチの経編地を編成した
。この編地を98℃で染色、乾燥後、起毛し、仕上温度
175°Cで66ウ工ル/インチ、82コ一ス/インチ
に仕上加工した。
A full set of 28 gauge, two-piece tricot reeds is placed on each reed, giving a swing of 1-'3 to the front/1-1 to the back, and a two-knit density of 50 courses/inch with a front 212/back 1019 runner ratio. A warp knitted fabric was knitted. This knitted fabric was dyed at 98°C, dried, raised, and finished at a finishing temperature of 175°C to 66 wels/inch and 82 coats/inch.

該染色起毛編地を、ポリプロピレン発泡体3InIIl
厚さのシートにラミネートし、複合シート(A)を得た
The dyed raised knitted fabric is made of polypropylene foam 3InIIl.
A thick sheet was laminated to obtain a composite sheet (A).

この複合シートを155℃に加熱後、最大展開率約26
5%の曲面形状を有するカーシート(イス)に一体成形
した。
After heating this composite sheet to 155℃, the maximum development rate is approximately 26
It was integrally molded into a car seat (chair) with a 5% curved surface.

成形は、カーシートの曲面に清って無理なく成形され、
最大展開率を有する部位と展開率の小なる部位との外観
、風合とも大差なく美しいカーシートを得た。上述布帛
の染色起毛前のe、mのTR120〜170℃、 △H
O,57cal/g 、X = 1.7 g/d 。
The molding is done smoothly and smoothly on the curved surface of the car seat.
A beautiful car seat was obtained with no significant difference in appearance and texture between the region with the maximum expansion rate and the region with a small expansion rate. TR120-170℃ of e and m before dyeing and raising of the above fabric, △H
O, 57 cal/g, X = 1.7 g/d.

Z = 0.72 g/dであった。Z = 0.72 g/d.

一方、ポリブチレンテレフタレート繊K、((の代りに
、ポリエチレンテレフタレート繊灯1を1月い、他は全
く同様に加工し、複合シート(B)をイ)また。この複
合シートを前記した曲面形状を有するカーシート(イス
)に一体成形したが、成形性が不良で布帛の“浮き”が
多発し9編地と発泡体シートが部分はく離していた。T
R140〜162℃、△HO,07cal/g、X =
 4.0 g/d、Z ) 2.76/dであった。
On the other hand, polybutylene terephthalate fiber K, ((instead of polyethylene terephthalate fiber lamp 1) was processed in exactly the same manner as above, and the composite sheet (B) was formed into a composite sheet (B)). However, due to poor moldability, the fabric often "lifted" and the knitted fabric and foam sheet were partially peeled off.T
R140-162℃, △HO, 07cal/g, X =
4.0 g/d, Z ) 2.76/d.

上記各々の複合シートの最大絞り比及びはく前強度を測
定した結果を表2に示す。
Table 2 shows the results of measuring the maximum drawing ratio and strength before peeling of each of the above composite sheets.

また、この繊維の乾熱処理後の吸熱−発熱曲線は、第1
図の階2のようになり、TR並びに八が狭範囲、小ピー
クで熱成形性が不良であることが確認された。
In addition, the endothermic-exothermic curve of this fiber after dry heat treatment is the first
As shown in floor 2 in the figure, it was confirmed that TR and 8 had narrow ranges and small peaks, indicating poor thermoformability.

これから明らかなように2本発明の特性を満足する繊維
ではじめて熱成形性並びに耐久性に優れたものが得られ
ることがわかる。
As is clear from this, it is possible to obtain fibers with excellent thermoformability and durability only with fibers that satisfy the two characteristics of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は乾熱処理後の繊維の吸熱−発熱挙動を示すグラ
フである。 1;本発明の成形用繊維 2:従来の繊維 A:微結晶の融解ピーク Tl + T2 ’部分融解温度範囲(TR)特許出願
人 東 し 株 式 会 社
FIG. 1 is a graph showing the endothermic-exothermic behavior of the fiber after dry heat treatment. 1; Molding fiber of the present invention 2: Conventional fiber A: Melting peak of microcrystals Tl + T2' Partial melting temperature range (TR) Patent applicant Toshi Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)くり返し構造単位の少なくとも80モル係がブチ
レンテレフタレートであるポリマからなる繊維であって
、熱処理することによりその繊維の昇温DSCカーブに
部分融解再結晶化に基づくピークが発現することを特徴
とする成形用繊維。
(1) A fiber made of a polymer in which at least 80 moles of repeating structural units are butylene terephthalate, characterized in that upon heat treatment, a peak due to partial melting and recrystallization appears in the temperature-rising DSC curve of the fiber. Fiber for molding.
(2) 25℃における20チ伸長時の引張応力X(g
/d)と160°C加温下での150係伸長時の引張応
力Z(g/d)が各々下式を満たしていることを特徴と
する特許請求の範囲第1項記載の成形用繊維。 X2O3 2≦0.85
(2) Tensile stress X (g
/d) and tensile stress Z (g/d) at 150 modulus elongation under heating at 160°C, each satisfying the following formula. . X2O3 2≦0.85
JP17823183A 1983-09-28 1983-09-28 Molding fiber Pending JPS6071711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17823183A JPS6071711A (en) 1983-09-28 1983-09-28 Molding fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17823183A JPS6071711A (en) 1983-09-28 1983-09-28 Molding fiber

Publications (1)

Publication Number Publication Date
JPS6071711A true JPS6071711A (en) 1985-04-23

Family

ID=16044882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17823183A Pending JPS6071711A (en) 1983-09-28 1983-09-28 Molding fiber

Country Status (1)

Country Link
JP (1) JPS6071711A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6228423A (en) * 1985-06-14 1987-02-06 ヘキスト アクチェンゲゼルシャフト Moldable sheet like structural yarn and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6228423A (en) * 1985-06-14 1987-02-06 ヘキスト アクチェンゲゼルシャフト Moldable sheet like structural yarn and its production

Similar Documents

Publication Publication Date Title
CA1122792A (en) Fiber sheet
JPH04216047A (en) Thermally moldable compound sheet
US3814658A (en) Composite laminate
WO1996037648A1 (en) Corrugated fiberboard knit, and moldings and mouse pad formed of same
JPS6179618A (en) Method of thermoforming styrene group form laminate
CN103987517A (en) Interior finish skin material and interior molding using same
JPS6071711A (en) Molding fiber
JP2557864B2 (en) Molding laminate sheet and manufacturing method thereof
JPH028064B2 (en)
US3652359A (en) Process of forming upholstery
JPS6040537B2 (en) fabric for molding
JPH06198800A (en) Thermoforming composite sheet and manufacture thereof
JPH02112437A (en) Pily cloth
JPS591811B2 (en) Fiber sheet for molding
JPS6212335B2 (en)
JPS646284Y2 (en)
US3207654A (en) Reinforced plastic covering materials
US3759776A (en) Process of forming upholstery
KR20180000887A (en) Non-woven Fabric for Primary Carpet Backing in Carpet Preparing Process, and Method for Manufacturing the Same
JP3704076B2 (en) Car seat fabric
JP3645640B2 (en) Laminated body
JPH0450383A (en) Imitation leather for internal facing of automobile
JP3085548B2 (en) Leather-like sheet laminate and molded product thereof
JPS6321406Y2 (en)
JPS5944989B2 (en) Composite molding method of fiber sheet and plastics