JPS591811B2 - Fiber sheet for molding - Google Patents

Fiber sheet for molding

Info

Publication number
JPS591811B2
JPS591811B2 JP54122299A JP12229979A JPS591811B2 JP S591811 B2 JPS591811 B2 JP S591811B2 JP 54122299 A JP54122299 A JP 54122299A JP 12229979 A JP12229979 A JP 12229979A JP S591811 B2 JPS591811 B2 JP S591811B2
Authority
JP
Japan
Prior art keywords
molding
fibers
fabric
fiber
fiber sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54122299A
Other languages
Japanese (ja)
Other versions
JPS5580537A (en
Inventor
善明 宮川
健 三戸見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP54122299A priority Critical patent/JPS591811B2/en
Publication of JPS5580537A publication Critical patent/JPS5580537A/en
Publication of JPS591811B2 publication Critical patent/JPS591811B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は各種曲面を有する立体形状に熱成形することが
でき、かつ成形後も表面が繊維形態を保持し、優れた外
観、風合を呈する成形布帛を与える成形用繊維シートに
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a molded fabric that can be thermoformed into three-dimensional shapes with various curved surfaces, retains its fibrous form even after molding, and has an excellent appearance and feel. Regarding fiber sheets.

従来、自動車用、建物類等の凹凸床部に沿うように立体
成形された布帛からなるカーペットを用いることは実公
昭48−27761号公報、実公昭50−48339号
公報等により公知である。
BACKGROUND ART Conventionally, the use of carpets made of fabric three-dimensionally formed to conform to the uneven floors of automobiles, buildings, etc. is known from Japanese Utility Model Publications No. 48-27761 and Japanese Utility Model Publication No. 50-48339.

すなわち、該公報にはパイル布帛の裏面に合成樹脂バッ
キング層を設けた積層体からなる成形用布帛および成形
マットが開示されている。しかしながら、成形に過大な
圧力と高温加熱を要したり、成形後に布帛が大きな回復
力をもつため剥離したり成形物が変形したりする欠点を
有している。また曲面に沿つて充分に伸長することがで
きずコーナー部または曲率の大きい成形部位において破
れを生じたり、目むき(他の透け現像)を生じる等の欠
点も有している。このような欠点は成形加工温度での繊
維シートの加可塑性、熱時伸長性が小さいためと考えら
れる。本発明者等は各種曲面を有する立体形状に熱成形
することができ、かつ成形後優れた外観、風合を有し、
しかも成形後変形の原因となる歪を内在することのない
易成形用布帛を得るべく鋭意研究の結果本発明に到達し
た。
That is, this publication discloses a molding fabric and a molding mat made of a laminate in which a synthetic resin backing layer is provided on the back side of a pile fabric. However, it has disadvantages in that excessive pressure and high-temperature heating are required for molding, and that the fabric has a large recovery force after molding, resulting in peeling and deformation of the molded product. It also has drawbacks such as not being able to stretch sufficiently along curved surfaces, resulting in breakage or peeling (other see-through development) at corners or molded areas with large curvature. Such defects are thought to be due to the low plasticity and heat elongation of the fiber sheet at the molding temperature. The present inventors have found that they can be thermoformed into three-dimensional shapes with various curved surfaces, and have excellent appearance and texture after molding.
Moreover, the present invention was achieved as a result of intensive research in order to obtain a fabric that is easily moldable and does not contain any inherent distortion that would cause deformation after molding.

すなわち、本発明はポリエチレンテレフタレートもしく
はエチレンテレフタレート繰返し単位を主体としたポリ
エステルを溶融紡糸し、て得られた複屈折率(△n)が
0.02〜0.08の高配向未延伸繊維をグランド部に
配し、該繊維より高軟化点を有する繊維をパイル部に配
してなる成形用繊維シートである。本発明の繊維シート
はポリエステルを特定の紡糸条件下で紡糸して得られた
高配向度未延伸繊維を布帛のグランド部に使用すること
により、工程操作が簡単で、かつ低温低圧で成形加工で
きるほか、曲率の大きい成形部位においても破れや目む
きを生じたり外観を損うことがない。また、高配向未延
伸繊維は安定かつ大きな伸度を有することから応力が均
一に配分され歪を内蔵しないため成形後変形を生じたり
、プラスチックスシートと積層して一体成形したときも
層間剥離を生じる等の欠点もない。更に特定の△nを有
する未延伸ポリエステル繊維は成形前の布帛の貯蔵や染
色加工工程および成形時の加熱に対して安定ですぐれた
伸長性を保持することができ、しかも成形後は熱結晶化
により耐熱性が向上し、よりー層安定化させることがで
きる。また、布帛のパイル部は軟化点の高い繊維を配す
ることにより成形温度に対し安定で成形後も優れた外観
および風合を保持することができる等多くの特徴を有す
る。本発明において用いられるポリエステルはポリエチ
レンテレフタレートもしくはエチレンテレフタレート繰
返し単位を主体とした共重合ポリエステルであり、共重
合成分としては従来公知の酸成分および/またはグリコ
ール成分が広く使用できる。
That is, in the present invention, highly oriented undrawn fibers having a birefringence index (△n) of 0.02 to 0.08 obtained by melt-spinning polyethylene terephthalate or polyester mainly composed of ethylene terephthalate repeating units are used in the ground section. This is a moldable fiber sheet in which fibers having a higher softening point than the fibers are arranged in the pile portion. The fiber sheet of the present invention uses highly oriented undrawn fibers obtained by spinning polyester under specific spinning conditions for the ground part of the fabric, making the process easy to operate and can be molded at low temperature and low pressure. In addition, even in molded parts with large curvatures, there is no tearing, peeling, or deterioration of the appearance. In addition, highly oriented undrawn fibers are stable and have a large elongation, so stress is distributed evenly and there is no built-in strain, so they do not cause deformation after molding, and do not cause delamination when laminated with plastic sheets and integrally molded. There are no drawbacks that arise. Furthermore, undrawn polyester fibers with a specific △n can maintain stable and excellent elongation properties during fabric storage and dyeing processes prior to molding, and during heating during molding, and they do not undergo thermal crystallization after molding. This improves heat resistance and makes it even more stable. In addition, the pile portion of the fabric has many features such as being stable at molding temperatures by disposing fibers with a high softening point, and retaining an excellent appearance and feel even after molding. The polyester used in the present invention is a copolyester mainly composed of polyethylene terephthalate or ethylene terephthalate repeating units, and a wide range of conventionally known acid components and/or glycol components can be used as the copolymer component.

すなわち、酸成分としてはたとえばイソフタル酸、アジ
ピン酸、セバシン酸等が例示でき、グリコール成分とし
てはたとえばプロピレングリコール、ブチレングリコー
ル、ジエチレングリコール、ネオペンチルグリコール、
シクロヘキサンジメタノール等が例示される。またオキ
シエトキシ安息香酸のようなオキシ酸を共重合成分とし
て使用したポリエステルであつてもよい。ポリエステル
中に占めるエチレンテレフタレート繰返し単位は85モ
ル%以上であることがポリエステルの経時安定性、熱安
定性等から好ましい。上記ポリエステルから複屈折率(
△n)が0.02〜0.08、特に好ましくは0.02
5〜0.07の高配向未延伸繊維を製造するには紡止条
件の適切な設定が必要である。
That is, examples of acid components include isophthalic acid, adipic acid, sebacic acid, etc., and examples of glycol components include propylene glycol, butylene glycol, diethylene glycol, neopentyl glycol,
Examples include cyclohexanedimethanol. It may also be a polyester using an oxyacid such as oxyethoxybenzoic acid as a copolymerization component. The content of ethylene terephthalate repeating units in the polyester is preferably 85 mol % or more from the viewpoint of stability over time, thermal stability, etc. of the polyester. From the above polyester, the birefringence (
Δn) is 0.02 to 0.08, particularly preferably 0.02
Appropriate setting of spinning conditions is required to produce highly oriented undrawn fibers of 5 to 0.07.

通常2000〜4000m/分程度の高速紡糸によつて
得ることができる。なお、複屈折率(△n)は日本光学
製のPOH型偏光顕微鏡を用いて光源としてナトリウム
D線(波長589mμ)を用い、フイラメントを対角位
に配置して行い、次式により計算される。但し、 n:ポリマ一分子鎖の配向度による干渉縞γ:干渉縞に
至らない配向をベレツクのコンペンセータ一で求めたレ
ターデーシヨンλ:ナトリウムD線の波長(Mm) α:繊維直径(Mm) また、高配向未延伸繊維は硝酸カルシウム一水系密度勾
配管を用いて30℃で測定した密度が1.35以下であ
ることが好ましい。
It can usually be obtained by high speed spinning of about 2000 to 4000 m/min. The birefringence index (△n) is calculated using a Nippon Kogaku POH type polarizing microscope using sodium D line (wavelength 589 mμ) as a light source and arranging the filaments diagonally, and using the following formula. . However, n: Interference fringes due to the degree of orientation of a single polymer molecular chain γ: Retardation determined using a Beretsk compensator for orientation that does not result in interference fringes λ: Wavelength of sodium D line (Mm) α: Fiber diameter (Mm) Further, it is preferable that the highly oriented undrawn fiber has a density of 1.35 or less when measured at 30° C. using a calcium nitrate monoaqueous density gradient tube.

複屈折率が0,02未満では成形温度に対して不安定で
あるばかりでなく、成形前の染色加工が不可能であり、
また貯蔵時の経時変化が著しく繊維または糸、繊維シー
トとしての寿命が極めて短かく実用上不適当となる。
If the birefringence is less than 0.02, it is not only unstable with respect to the molding temperature, but also dyeing before molding is impossible.
In addition, the lifespan of the fibers, threads, and fiber sheets is extremely short, making them unsuitable for practical use.

一方0.08を超えると結晶化が急激に進み成形時の繊
維の伸びが小さく不適当となる。また、本発明において
パイル部に用いる高軟化点繊維としては通常のポリエス
テル延伸繊維の他、他の熱軟化点の高い繊維またはそれ
ら繊維からなる混用繊維等が例示される。
On the other hand, if it exceeds 0.08, crystallization will rapidly progress and the elongation of the fibers during molding will be small and unsuitable. Further, in the present invention, the high softening point fibers used in the pile portion include, in addition to ordinary drawn polyester fibers, other fibers having a high heat softening point or mixed fibers made of these fibers.

該繊維は高配向未延伸ポリエスデル繊維との軟化点の差
が5゜C以上であることが好ましく、更には20℃以上
であることが特に好ましい。高配向未延伸ポリエステル
繊維と高軟化点繊維とを用いて繊維シートが形成される
が、織編物、不織布等任意でよい。
The difference in softening point between the fiber and the highly oriented undrawn polyester fiber is preferably 5°C or more, more preferably 20°C or more. A fiber sheet is formed using highly oriented undrawn polyester fibers and high softening point fibers, but any fabric such as woven or knitted fabric or nonwoven fabric may be used.

ここで重要なことは高配向未延伸ポリエステル繊維をグ
ランド部に配し、高軟化点繊維をパイル部に配して繊維
シートが製造される。そのような例として、たとえばパ
イル組織のパイル糸、浮組織の浮糸等に高軟化点繊維を
配し、該繊維等が布帛組織内で屈曲状に配置され、成形
時におけるグランド部の伸長に伴つてパイル部が組織的
に伸長されることが好ましい。繊維シートは着色または
捺染されていてもよく、また難燃性、防汚性、撥水撥油
性、ポリウレタン弾性加工等の処理が施されていてもよ
い。
What is important here is that the fiber sheet is manufactured by disposing highly oriented undrawn polyester fibers in the ground part and distributing high softening point fibers in the pile part. As an example of such a method, high softening point fibers are arranged in the pile threads of a pile structure, the floating threads of a floating structure, etc., and the fibers are arranged in a bent shape within the fabric structure, and the elongation of the ground part during molding. Accordingly, it is preferable that the pile portion is systematically elongated. The fiber sheet may be colored or printed, and may also be subjected to treatments such as flame retardancy, stain resistance, water and oil repellency, and polyurethane elasticity processing.

かくして得られた繊維シートは通常プラスチツクスのシ
ートもしくは板と積層するか、あるいは両者を貼着して
所望形状に熱成形される。
The fibrous sheet thus obtained is usually laminated with a plastic sheet or plate, or both are adhered and thermoformed into the desired shape.

プラスチツクスのシートもしくは板としては、塩化ビニ
ール樹脂、ABS樹脂、ポリオレフイン樹脂など通常の
熱可塑性プラスチツクス材料からなるシートもしくは板
が挙げられる。プラスチツクス材料には可塑剤、難燃剤
、制電剤、無機充填剤、核剤、安定剤等を所望により配
合することができる。なな、プラスチツクス材料として
は高軟化点繊維が繊維形態を損わな(・成形条件で熱成
形できる材料から選ばれる。また、プラスチツクスシー
トと繊維シートを貼り合わせるために用いられることの
ある接着剤としては繊維およびプラスチツクと親和性が
大きく、充分に接着強度を有するもので、しかも貼着成
形後にも適度な熱町塑性をもつものが好ましい。接着の
方法としてはドライラミネート、ウエツトラミネートな
どの方式が考えられ、また熱溶融型のフイルム状、粉末
状の接着剤を使用することもできる。
Examples of the plastic sheet or board include sheets or boards made of common thermoplastic plastic materials such as vinyl chloride resin, ABS resin, and polyolefin resin. Plasticizers, flame retardants, antistatic agents, inorganic fillers, nucleating agents, stabilizers, etc. can be added to the plastic material as desired. As a plastic material, high softening point fibers are selected from materials that do not damage the fiber morphology (・Materials that can be thermoformed under molding conditions.Also, adhesives that are sometimes used to bond plastic sheets and fiber sheets together) It is preferable that the agent has a high affinity with fibers and plastics, has sufficient adhesive strength, and has appropriate hot plasticity even after adhesive molding.Adhesive methods include dry lamination, wet lamination, etc. It is also possible to use a heat-melting adhesive in the form of a film or powder.

また、接着剤を使用することなくプラスチツクスシート
の押出しラミネートで貼着することもできる。このよう
にして得られた繊維シートまたは積層シートはプレス成
形、真空成形、圧空成形等の熱成形により所望形状に容
易に成形することができる。
It is also possible to attach by extrusion lamination of plastic sheets without using adhesives. The fiber sheet or laminated sheet thus obtained can be easily formed into a desired shape by thermoforming such as press molding, vacuum forming, pressure forming, etc.

加熱手段は乾熱、湿熱いずれでもよい。本発明の繊維シ
ートから成形された成形品は表面繊維層の繊維形態を保
持するため外観、風合がすぐれ、また成形工程において
過大な圧力を必要とせず容易に成形することができるこ
とから立体構造であつても歪を内在せず、もとの形に戻
ろうとする力も殆んどゼロに近く、変形したり層間剥離
を生じることもない。したがつて、自動車内装品、家具
用化粧板、オモチャその他の成形品として好適である。
以下、実施例により本発明を説明する。
The heating means may be either dry heat or moist heat. Molded products made from the fiber sheet of the present invention retain the fiber morphology of the surface fiber layer, resulting in excellent appearance and texture, and can be easily molded without requiring excessive pressure during the molding process, resulting in a three-dimensional structure. Even if it is, there is no inherent strain, the force to return to the original shape is almost zero, and there is no deformation or delamination. Therefore, it is suitable for automobile interior parts, decorative laminates for furniture, toys, and other molded products.
The present invention will be explained below with reference to Examples.

実施例 1 テトラクロロエタン/フエノール混合溶媒(6/4重量
比)中30℃で測定した極限粘度が0660のポリエチ
レンテレフタレートを溶融温度280℃、紡糸速度30
00m/分で溶融紡糸して複屈折率0.034、密度1
.34の210デニール/30フイラメントの高配向未
延伸マルチフイラメントャーンを得た。
Example 1 Polyethylene terephthalate with an intrinsic viscosity of 0660 measured at 30°C in a tetrachloroethane/phenol mixed solvent (6/4 weight ratio) was melted at a melting temperature of 280°C and a spinning speed of 30°C.
Melt spinning at 00 m/min, birefringence 0.034, density 1
.. 34 highly oriented undrawn multifilament yarns of 210 denier/30 filaments were obtained.

この糸をグランド部として用(・、パイル部を糸状で染
色した210デニール/48フイラメントのナイロン6
・6マルチフイラメントの延伸仮撚捲縮加工糸を用いて
、シングル丸編機によりベロア組織の目付3007/R
rlのパイル編地を編成した。
Use this thread as the ground part (210 denier/48 filament nylon 6 with thread-dyed pile part)
・Using 6 multifilament drawn false twisted crimped yarn, the fabric weight of velor structure is 3007/R with a single circular knitting machine.
A pile knitted fabric of RL was knitted.

この編地は高配向未延伸ポリエステル繊維がグランド部
を形成して編地の寸法安定性を維持すると共に成形時糸
軸方向にすぐれた伸長性を発揮し、凹凸部に充分沿つて
成形され、一方、高軟化点のナイロン糸がパイル部を形
成して組織内で屈−2、曲状態となつているため、熱成
形したとき屈曲した糸が伸長されて直線状に近づくこと
によりグランド繊維の伸長と共にすぐれた伸長性を発揮
することができる。もちろんパイルは高軟化点であり成
形によつて外観、風合が損われることもない。この編地
に、飽和ポリエステル樹脂(バイロン30S、東洋紡績
社)と硬化剤からなる接着剤を固形分で20μの厚さに
塗布した0.7mm厚のABS樹脂板をラミネートし、
乾燥して積層シートを得た。
In this knitted fabric, highly oriented undrawn polyester fibers form a ground part to maintain the dimensional stability of the knitted fabric, and also exhibit excellent elongation in the yarn axis direction during molding, allowing it to be molded well along uneven parts. On the other hand, the nylon yarn with a high softening point forms a pile part and is in a bent state within the tissue, so when thermoforming the bent yarn is stretched and approaches a straight shape, resulting in the formation of ground fibers. It can exhibit excellent extensibility along with elongation. Of course, the pile has a high softening point, so the appearance and texture will not be impaired by forming. This knitted fabric is laminated with a 0.7 mm thick ABS resin plate coated with an adhesive consisting of a saturated polyester resin (Byron 30S, Toyobo Co., Ltd.) and a hardening agent to a solid content of 20 μm.
A laminated sheet was obtained by drying.

この積層シートを170℃に加熱後、曲面形状を有する
真空成形用型を用いて真空成形を実施した。グランド繊
維はこの成形温度のもとで3倍以上の伸びが生じ、しか
もその時に生じる応力は極めて小さく曲面形状であつて
も無理なく成形でき、成形後の歪もなく美しい仕上りを
得た。パイル繊維は曲面部位で伸長されるが、応力が均
一に配分されてコーナー部の目むきもなく外観のすぐれ
た立体成形品が得られた。高配向未延伸ポリエステル繊
維に代えてポリウレタン弾性繊維を使用した比較例は成
形性は良好であつたが、成形後歪が内在しキツクバツク
の欠点を有していた。
After heating this laminated sheet to 170° C., vacuum forming was performed using a vacuum forming mold having a curved surface shape. The ground fibers elongated more than three times at this molding temperature, and the stress generated at that time was extremely small, allowing for easy molding even into curved shapes, and a beautiful finish was obtained with no distortion after molding. Although the pile fibers were elongated at the curved surface, the stress was evenly distributed, and a three-dimensional molded product with an excellent appearance was obtained without any peeling at the corners. Comparative examples in which polyurethane elastic fibers were used in place of highly oriented unstretched polyester fibers had good moldability, but had the drawback of inherent distortion and backlash after molding.

実施例 2 実施例1で用いたポリエチレンテレフタレートを使用し
、紡糸巻取速度を変化させて種々△nの未延伸繊維を製
造し、実施例1と同様にしてパイル編地を編成、ABS
樹脂板をラミネートして熱成形し成形性(繊維製造後可
及的速やかに)を評価した。
Example 2 Using the polyethylene terephthalate used in Example 1, various undrawn fibers of △n were produced by changing the spinning winding speed, and pile knitted fabrics were knitted in the same manner as in Example 1, and ABS
The resin plates were laminated and thermoformed, and the moldability (as soon as possible after fiber production) was evaluated.

その結果を表−1に示した。△NO.O2〜0.08を
もつ未延伸ポリエステル繊維使用繊維シートが成形前の
経時安定性、染色加工性および成形性の点から良好な結
果を与えたが、更に△nが0.025〜0.07程度で
より好ましい結果を与えた。
The results are shown in Table-1. △NO. Fiber sheets using undrawn polyester fibers with O2 to 0.08 gave good results in terms of stability over time before molding, dyeing processability, and moldability, but in addition, Δn was 0.025 to 0.07. gave more favorable results.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリエチレンテレフタレートもしくはエチレンテレ
フタレート繰返し単位を主体としたポリエステルを溶融
紡糸して得られた複屈折率(△n)が0.02〜0.0
8の高配向未延伸繊維をグランド部に配し、該繊維より
高軟化点を有する繊維をパイル部に配してなる成形用繊
維シート。
1 The birefringence index (△n) obtained by melt-spinning polyethylene terephthalate or polyester mainly composed of ethylene terephthalate repeating units is 0.02 to 0.0.
A fiber sheet for molding comprising highly oriented undrawn fibers of No. 8 arranged in the ground part and fibers having a higher softening point than the fibers arranged in the pile part.
JP54122299A 1979-09-21 1979-09-21 Fiber sheet for molding Expired JPS591811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54122299A JPS591811B2 (en) 1979-09-21 1979-09-21 Fiber sheet for molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54122299A JPS591811B2 (en) 1979-09-21 1979-09-21 Fiber sheet for molding

Publications (2)

Publication Number Publication Date
JPS5580537A JPS5580537A (en) 1980-06-17
JPS591811B2 true JPS591811B2 (en) 1984-01-14

Family

ID=14832511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54122299A Expired JPS591811B2 (en) 1979-09-21 1979-09-21 Fiber sheet for molding

Country Status (1)

Country Link
JP (1) JPS591811B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5766149A (en) * 1980-10-08 1982-04-22 Toyo Boseki Molding fabric and production thereof
JPS57176227A (en) * 1981-04-20 1982-10-29 Toyo Boseki Polyester spun sewing machine yarn
JPS60259682A (en) * 1984-06-06 1985-12-21 Toyobo Co Ltd Forming leather
JPS61146839A (en) * 1984-12-18 1986-07-04 ダイニツク株式会社 Moldable fabric
JPH07116661B2 (en) * 1986-12-25 1995-12-13 ユニチカ株式会社 Fabric for molding
JPH07116662B2 (en) * 1986-12-27 1995-12-13 ユニチカ株式会社 Warp knitted fabric
JPH01306611A (en) * 1988-05-27 1989-12-11 Toray Ind Inc Polyester fiber and woven and knitted fabric made of said fiber suitable for fashioning
JPH01306612A (en) * 1988-05-31 1989-12-11 Toray Ind Inc Polyester fiber and woven and knitted fabric made of said fiber for fashioning

Also Published As

Publication number Publication date
JPS5580537A (en) 1980-06-17

Similar Documents

Publication Publication Date Title
CA1122792A (en) Fiber sheet
US4568581A (en) Molded three dimensional fibrous surfaced article and method of producing same
JP2005105807A (en) Floor covering with woven face
JPH05504107A (en) Improvement of thermoplastic composite materials
WO1996037648A1 (en) Corrugated fiberboard knit, and moldings and mouse pad formed of same
US3814658A (en) Composite laminate
JPS591811B2 (en) Fiber sheet for molding
JPH04224942A (en) Web for enclosure
JPS59620B2 (en) Warp knitted fabric for molding
JPS6040537B2 (en) fabric for molding
US11339530B2 (en) Napped artificial leather, polyester fiber, and non-woven fabric
JPS6212335B2 (en)
KR100247080B1 (en) Method of manufacturing artificial leather with high density , high tenacity and softness
JPH038852A (en) Fabric for forming
JPS6156350B2 (en)
JPS5944989B2 (en) Composite molding method of fiber sheet and plastics
JP3650223B2 (en) Non-woven fabric for thermoforming
JP2002339227A (en) Fiber structure
JPS62141167A (en) Production of composite sheet
KR102448619B1 (en) Non-woven Fabric for Primary Carpet Backing in Carpet Preparing Process, and Method for Manufacturing the Same
JPH0376662B2 (en)
JPH0730491B2 (en) Composite molded product
KR20160080563A (en) manufacturing method of nonwoven for carpet backing with improved forming property
JPS60248349A (en) Housing case for precision apparatus or electronic part
JPH07116661B2 (en) Fabric for molding