JPS5944989B2 - Composite molding method of fiber sheet and plastics - Google Patents

Composite molding method of fiber sheet and plastics

Info

Publication number
JPS5944989B2
JPS5944989B2 JP53102621A JP10262178A JPS5944989B2 JP S5944989 B2 JPS5944989 B2 JP S5944989B2 JP 53102621 A JP53102621 A JP 53102621A JP 10262178 A JP10262178 A JP 10262178A JP S5944989 B2 JPS5944989 B2 JP S5944989B2
Authority
JP
Japan
Prior art keywords
fibers
fiber
fiber sheet
sheet
highly oriented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53102621A
Other languages
Japanese (ja)
Other versions
JPS5528860A (en
Inventor
善明 宮川
健 三戸見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP53102621A priority Critical patent/JPS5944989B2/en
Priority to GB7913071A priority patent/GB2022156B/en
Priority to US06/029,173 priority patent/US4298643A/en
Priority to DE19792915302 priority patent/DE2915302A1/en
Priority to CA325,631A priority patent/CA1122792A/en
Priority to FR7909652A priority patent/FR2422753A1/en
Publication of JPS5528860A publication Critical patent/JPS5528860A/en
Publication of JPS5944989B2 publication Critical patent/JPS5944989B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 本発明はことに各種曲面に立体成形されたプラスチック
スのシートあるいは板の表面に繊維シートが積層された
構造の成形物の製造に好適な複合成形法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention particularly relates to a composite molding method suitable for manufacturing molded products having a structure in which a fiber sheet is laminated on the surface of a plastic sheet or plate three-dimensionally molded into various curved surfaces. .

従来この種の成形構造物を得る方法としては、プラスチ
ックスシートあるいはプラスチックス板を単独に真空成
形またはプレス成形する方法があるが、その外観、手触
りは平面的で冷く、硬い感触のものであつた。
Conventional methods for obtaining this type of molded structure include vacuum forming or press forming a plastic sheet or plate individually, but the appearance and feel are flat, cold, and hard. It was hot.

また予めプラスチックスのシートあるいは板の表面に熱
エンボス加工して外観、手触りを向上させる方法も行わ
れているが、その効果は充分でない。また上記のように
プラスチックスのシートあるいは板を単独に成形加工し
た後、表面に繊維シートを貼りつけることも行われてい
るが、繊維シートの組織的な伸びやそれを構成している
繊維あるいは糸の伸びが充分でないため、充分に立体曲
面にそわせて貼りつけるためには、繊維シートを裁断縫
製して立体的な形状にしたものを貼り合わせる方法が必
要となり、工程が長く複雑で、しかもでき上つた成形物
の外観も商品価値の乏しいものであつた。また外観、手
触りをよくするために繊維シートを、プラスチックスの
シートあるいは板に貼りつけた後に成形を試みた例もあ
るが、成形に過大な圧力と温度を要したり、成形後に繊
維シートが大きな回復力をもつために剥離したり、また
成形物が変形したりする等の問題を有している。
In addition, heat embossing has been carried out on the surface of a plastic sheet or plate in advance to improve its appearance and feel, but this method is not sufficiently effective. Furthermore, as mentioned above, a fiber sheet is attached to the surface of a plastic sheet or plate after it has been individually formed. Because the threads do not stretch sufficiently, in order to adhere them to a three-dimensional curved surface, it is necessary to cut and sew fiber sheets into three-dimensional shapes and then paste them together, which is a long and complicated process. Moreover, the appearance of the finished molded product also lacked commercial value. There have also been cases where fiber sheets have been pasted onto plastic sheets or boards and then molded to improve the appearance and feel; Because it has a large recovery force, it has problems such as peeling and deformation of the molded product.

これは成形加工温度での繊維シートの熱可塑性が小さい
ためである。本発明は後者の方法に見られるようにプラ
スチックスのシートあるいは板と繊維シートを貼り合わ
せ、成形する際に上記の欠点をなくすべく考慮されたも
のであり、成形加工温度で充分な熱可塑性をもつ繊維シ
ートを用いることを特徴としたものである。
This is because the fiber sheet has low thermoplasticity at the molding temperature. The present invention was designed to eliminate the above-mentioned drawbacks when a plastic sheet or plate and a fiber sheet are bonded together and molded, as seen in the latter method, and it is possible to achieve sufficient thermoplasticity at the molding temperature. It is characterized by the use of a fiber sheet with fibers.

すなわち、本発明はポリアミドを溶融紡糸して得られた
複屈折率(△n)が0.02〜0.045の高配向未延
伸繊維を基布に該高配向未延伸繊維より高軟化点を有す
る繊維をパイル糸とした繊維シート、もしくは上記高配
向未延伸繊維を主として裏面層に偏在させ該高配向未延
伸繊維より高軟化点を有する繊維を主として表面層に偏
在させてなる繊維シートをプラスチックスのシートある
いは板と積層した後、熱成形することを特徴とする複合
成形法である。
That is, the present invention uses highly oriented undrawn fibers with a birefringence index (△n) of 0.02 to 0.045 obtained by melt spinning polyamide as a base fabric, and has a softening point higher than that of the highly oriented undrawn fibers. A fiber sheet in which the fibers having the above-mentioned fibers are made into pile yarns, or a fiber sheet in which the above-mentioned highly oriented undrawn fibers are mainly unevenly distributed in the back layer and fibers having a higher softening point than the highly oriented undrawn fibers are unevenly distributed mainly in the surface layer is used as a plastic. This is a composite molding method that is characterized by laminating sheets or plates of steel and then thermoforming.

本発明によるときは、ポリアミドを特定の紡糸条件下で
紡糸した未延伸の繊維含有シートを用いることにより、
工程操作が簡単で、かつ低温低圧で成形加工できるほか
、曲率の大きい成形部位においても破れや目むきを生じ
たり外観を損うことがなく、すぐれた外観、風合を有す
る複合成形品を得ることができる。
According to the present invention, by using an unstretched fiber-containing sheet made of polyamide spun under specific spinning conditions,
The process is simple and can be molded at low temperature and pressure, and even in molded parts with large curvature, there is no tearing, peeling, or deterioration of the appearance, and a composite molded product with an excellent appearance and texture can be obtained. be able to.

また本発明の高配向未延伸繊維は大きな伸度を有するこ
とから応力が均一に配分され歪を内蔵しないことから層
間剥離を生じたり、成形品が変形することもない。本発
明において用いられるポリアミドはω−アミノ酸H2N
(CH2)n−1C00Hまたはラクタムからのポリア
ミド+HN(CH2)n−1C0→pないしω,d−ジ
アミンH2N(CH2)MNH2とω,d−ジカルボン
酸HOOC(CH2)n−2C00Hからのポリアミド
+HN(CH2)MNHCO(CH2)n−2C0〕p
及びそれら繰返し単位を主体とした共重合ポリアミド等
である。
Furthermore, since the highly oriented undrawn fibers of the present invention have a large elongation, stress is uniformly distributed and there is no built-in strain, so there is no possibility of delamination or deformation of the molded product. The polyamide used in the present invention is ω-amino acid H2N
Polyamide + HN from (CH2) n-1C00H or lactam (CH2) n-1C0 → p to ω, d-diamine H2N (CH2) MNH2 and ω, d-dicarboxylic acid HOOC (CH2) Polyamide + HN from n-2C00H CH2)MNHCO(CH2)n-2C0]p
and copolyamides mainly composed of these repeating units.

但し、ω,ω5は分子鎖末端の位置、pは重合度、M,
nは正の整数を示す。
However, ω, ω5 are the positions of the molecular chain ends, p is the degree of polymerization, M,
n indicates a positive integer.

共重合成分としては従来公知のジアミン成分及び/又は
ジカルボン酸成分が使用できる。上記、ポリアミドから
複屈折率(Δn)が0.02〜0,045の未延伸ポリ
アミド繊維を製造するには紡糸条件の適切な設定が必要
である。
As the copolymerization component, conventionally known diamine components and/or dicarboxylic acid components can be used. In order to produce undrawn polyamide fibers having a birefringence index (Δn) of 0.02 to 0.045 from the above-mentioned polyamide, it is necessary to appropriately set spinning conditions.

通常500〜2000m/分程度の紡糸速度で複屈折率
(Δn)は0.02〜0.03となり、2000〜40
00m/分の紡糸速度の場合複屈折率(Δn)は0,0
3〜0,045となる。複屈折率(△n)は光源として
ナトリウムD線(波長589mμ)を用いフイラメント
を対角位に配置して行い、次式により計算される。
Normally, the birefringence (Δn) is 0.02 to 0.03 at a spinning speed of about 500 to 2000 m/min, and 2000 to 40 m/min.
At a spinning speed of 00 m/min, the birefringence (Δn) is 0,0
3 to 0,045. The birefringence (Δn) is calculated using the following formula using sodium D line (wavelength 589 mμ) as a light source and arranging filaments diagonally.

但し、n=ポリマー分子鎖の配向度による干渉縞γ=干
渉縞に至らない配向をベレツクの コンペンセータ一で求めたリターデ ーシヨン λ=ナトリウムD線の波長 α=繊維の直径 複屈折率が0,02以下では成形温度に対して不安定で
あるばかりでなく、経時変化が急激に起こり繊維又は糸
、繊維シートとしての寿命が極めて短い、また0.04
5以上では結晶化が急激に進み成形時の繊維の伸びが小
さく、本発明の成形用として不適当となる。
However, n = interference fringe due to the degree of orientation of polymer molecular chains γ = retardation obtained by using a Berek compensator for orientation that does not result in interference fringes λ = wavelength of sodium D line α = fiber diameter birefringence is 0, If it is less than 0.02, it is not only unstable with respect to the molding temperature, but also changes rapidly over time, resulting in an extremely short life as a fiber, thread, or fiber sheet.
If it is 5 or more, crystallization progresses rapidly and the elongation of the fiber during molding is small, making it unsuitable for molding in the present invention.

以上の繊維物性範囲は、同時に複合材として成形される
プラスチツクスの種類、厚さ、成形法、成形温度によつ
て任意にその範囲内で選ぶことが好ましい。
The above range of fiber physical properties is preferably selected arbitrarily within the range depending on the type, thickness, molding method, and molding temperature of the plastic to be simultaneously molded as a composite material.

次にこれらの繊維、糸を用いたシートは不織布、織編物
等任意のシートが使用できるが、該繊維や糸と延伸繊維
(例えば△NO,6O以上)の通常使用されているポリ
アミド繊維や他の熱軟化点の高い繊維又はそれら繊維か
らなる糸とを混合してシートを製造することが重要であ
る。
Next, any sheet using these fibers or threads can be used, such as non-woven fabrics, woven or knitted fabrics, etc., but the fibers or threads and drawn fibers (for example, △NO, 6O or more) such as commonly used polyamide fibers or other sheets can be used. It is important to manufacture sheets by mixing fibers with a high thermal softening point or threads made of these fibers.

そのような場合には配向度の高い延伸繊維や熱軟化点の
高い繊維又はそれら繊維からなる糸は組織内で屈曲状に
配置されていることが好ましく、そのような例として、
例えばパイル糸、浮組織の浮糸のように該繊維を主とし
て表面に配し、裏面に本発明の未延伸ポリアミド繊維を
配した繊維シートが考えられる。このような繊維シート
は未延伸繊維面をプラスチツクス面と積層して成形する
ことにより表面が繊維形態をそのまま保持した成形品を
得られることから好ましい。繊維シートは予め着色又は
捺染されていてもよく、また難燃性、防汚性、撥水、撥
油性、ポリウレタン弾性加工等の処理が施されていても
よい。
In such cases, it is preferable that the drawn fibers with a high degree of orientation, the fibers with a high thermal softening point, or the threads made of these fibers be arranged in a bent manner within the tissue.
For example, a fiber sheet can be considered in which the fibers are mainly arranged on the front surface, such as pile yarns or floating fibers of a floating structure, and the undrawn polyamide fibers of the present invention are arranged on the back surface. Such a fibrous sheet is preferable because it is possible to obtain a molded article whose surface retains the fiber form by laminating the unstretched fiber surface with the plastic surface and molding the sheet. The fiber sheet may be colored or printed in advance, and may also be subjected to treatments such as flame retardancy, stain resistance, water repellency, oil repellency, and polyurethane elasticity treatment.

また、上記着色処理、各種性能付与処理は繊維、糸の段
階で行うこともできるし繊維形成前に行うこともできる
。一方プラスチツクスのシート或いは板としては塩化ビ
ニール樹脂、ABS樹脂、ポリオレフイン樹脂など一般
に使用されている全ての熱可塑性プラスチツクス材料が
用いられる。
Further, the above-mentioned coloring treatment and various performance imparting treatments can be performed at the fiber or thread stage, or can be performed before fiber formation. On the other hand, as the plastic sheet or plate, all commonly used thermoplastic materials such as vinyl chloride resin, ABS resin, and polyolefin resin can be used.

プラスチツクスシートの材料には可塑剤、難燃剤、制電
剤、無機充填剤、核剤、安定剤等を所望により配合して
使用することもできる。またこのプラスチツクスのシー
トあるいは板と繊維シートを貼り合わせるための接着剤
としては、繊維とプラスチツクスとの親和性が高く充分
な接着強度を有するもので、しかも硬化後にも適度な熱
可塑性をもつものが好ましい。接着の方法としてはドラ
イラミネート、ウエツトラミネートなどの方式が考えら
れ、また熱溶融型のフイルム状、不織布状粉末状の接着
剤を使用することもできる。
Plasticizers, flame retardants, antistatic agents, inorganic fillers, nucleating agents, stabilizers and the like may be added to the material of the plastic sheet as desired. In addition, the adhesive used to bond the plastic sheet or board to the fiber sheet is one that has a high affinity for the fibers and plastics, has sufficient adhesive strength, and has a suitable thermoplasticity even after curing. Preferably. Possible bonding methods include dry lamination and wet lamination, and it is also possible to use hot melt adhesives in the form of films, non-woven fabrics, and powders.

またプラスチツクスのシート又は板を成形製造する時点
で繊維シートと接着積層することも可能である。また上
述のようにして得られた積層シートを熱成形する方法と
しては、プレス成形、真空成形などがあり、プラスチツ
クスの種類によつて適度の成形温度が用いられる。
It is also possible to adhesively laminate a plastic sheet or plate with a fiber sheet at the time of molding and manufacturing. Further, methods for thermoforming the laminated sheet obtained as described above include press molding, vacuum forming, etc., and an appropriate molding temperature is used depending on the type of plastic.

加熱手段は湿熱、乾熱いずれでもよい。本発明の方法で
成形された立体構造物は表面に繊維層があるため外観、
風合にすぐれた製品となり、またその成形工程では過大
な力を必要とせず、成形後に繊維シートがもとの形に戻
ろうとする力が殆んどゼロに近いため変形したり、各層
間の剥離も発生せず、成形の原型に忠実な美しい成形物
を得ることができ、自動車内装品、家具用化粧板、オモ
チヤ、その他の成形品として良好な結果を得た。
The heating means may be either wet heat or dry heat. The three-dimensional structure formed by the method of the present invention has a fiber layer on the surface, so the appearance
The product has an excellent texture, and the molding process does not require excessive force; the force that causes the fiber sheet to return to its original shape after molding is almost zero, so there is no possibility of deformation or damage between the layers. No peeling occurred, and a beautiful molded product faithful to the original molding pattern could be obtained, and good results were obtained for automobile interior parts, decorative laminates for furniture, toys, and other molded products.

以下、本発明の実施例を述べる。Examples of the present invention will be described below.

なお、本発明における繊維の軟化点とは、一定の昇温速
度で加熱したとき繊維が急激に変形しやすくなる温度を
言い、次の方法で測定した。繊維1本または数本を束に
したものに0,019/dの荷重を加えて空気中で1゜
C/分の速度で昇温していくと、ある温度範囲に達した
とき収縮が起こるが荷重が一定になるように収縮させる
In addition, the softening point of the fiber in the present invention refers to the temperature at which the fiber becomes easily deformed rapidly when heated at a constant temperature increase rate, and was measured by the following method. When a load of 0,019/d is applied to one fiber or a bundle of several fibers and the temperature is increased at a rate of 1°C/min in air, contraction occurs when a certain temperature range is reached. is contracted so that the load remains constant.

このときの試料繊維の寸法変化と温度との関係をグラフ
にしてその変化が急激に起こる温度を軟化点として決め
る。実施例 1 ナイロン−6を溶融温度260℃、紡糸速度1200m
/分で溶融紡糸して複屈折率0.02011.65デニ
ール/10フイラメントのマルチフイラメントヤーン(
軟化点約165ンC)を得た。
The relationship between the dimensional change of the sample fiber and temperature at this time is made into a graph, and the temperature at which the change occurs rapidly is determined as the softening point. Example 1 Nylon-6 melting temperature 260°C, spinning speed 1200m
/min to produce a multifilament yarn (
A softening point of about 165°C was obtained.

この糸をグランド部として用い、パイル部を糸状で染色
した210デニール/48フイラメントの高配向度のナ
イロン6マルチフイラメントの延伸仮撚捲縮加工糸(軟
化点185゜C)を用いたシングル丸編機によるベロア
一組織を編成して目付3409/m”のパイル編地を得
た。この編地は、高配向未延伸ナイロン−6繊維がグラ
ンド部を形成して、編地の寸法安定を維持し、高配向度
の延伸ナイロン糸はパイル部を形成して、屈曲状態とな
つていjるため、これを熱成形したとき前者の糸は成形
時に糸軸方向に実質的な伸びが生じるが、後者は、単に
屈曲した糸が直線状に近ずくのみで本質的な糸の伸びは
生じない。
This yarn was used as the ground part, and the pile part was thread-dyed. 210 denier/48 filament highly oriented nylon 6 multifilament drawn false twisted crimped yarn (softening point 185°C) was used for single circular knitting. A pile knitted fabric with a basis weight of 3409/m was obtained by knitting a velor structure using a machine. In this knitted fabric, highly oriented unstretched nylon-6 fibers form a ground portion to maintain dimensional stability of the knitted fabric. However, since the highly oriented drawn nylon yarn forms a pile part and is in a bent state, when it is thermoformed, the former yarn undergoes substantial elongation in the yarn axis direction during molding. In the latter case, the bent yarn simply approaches a straight line, and no essential elongation of the yarn occurs.

この編地に市販の2液反応型のウレタン系の接着剤(商
品名ハマタイト一横浜ゴ春社製)を固形分で30μの厚
みに塗布し、厚さ0,877!Iの塩化ビニール樹脂板
とラミネート後、乾燥して積層板を得た。
A commercially available two-component reactive urethane adhesive (product name: Hamatite Ichi Yokohama Goshunsha Co., Ltd.) was applied to this knitted fabric to a solid content of 30 μm, resulting in a thickness of 0,877 μm! After laminating with the vinyl chloride resin board of I, it was dried to obtain a laminate.

この積層板を160℃に加熱後、曲面形状を有する真空
成形用型を用いて真空成形を実施した。未延伸ナイロン
繊維はこの成形温度のもとで約4倍の伸びが生じ、しか
もその時に生じる応力は極めて小さく曲面形状であつて
も無理なく成形でき、成形後の歪もなく美しい仕上りを
得た。またナイロン−6パイル繊維は曲面部位で伸長さ
れるが、応力が均一に配分されて充分目むき防止効果が
得られると共に熱変形をほとんど生じないことから外観
のすぐれた立体成形品が得られた。この成形品は自動車
の内装板として充分耐久性があり、外観、風合共にすぐ
れたものであつた。実施例 2ナイロン−66を溶融温
度296゜C1紡糸速度1300m/分で溶融紡糸して
複屈折率0,022、220デニール/28フイラメン
ト(軟化点約220デC)のマルチフイラメントヤーン
を得た。
After heating this laminate to 160° C., vacuum forming was performed using a vacuum forming mold having a curved surface shape. The unstretched nylon fibers elongate approximately four times at this temperature, and the stress generated at that time is extremely small, allowing for easy molding even into curved shapes, and a beautiful finish with no distortion after molding. . In addition, although the nylon-6 pile fibers are elongated at the curved surface, the stress is evenly distributed, which is sufficient to prevent peeling, and there is almost no thermal deformation, resulting in a three-dimensional molded product with an excellent appearance. . This molded product was durable enough to be used as an interior panel for an automobile, and had an excellent appearance and feel. Example 2 Nylon-66 was melt-spun at a melting temperature of 296°C and a spinning speed of 1300 m/min to obtain a multifilament yarn having a birefringence of 0.022 and 220 denier/28 filaments (softening point of about 220 deC).

Claims (1)

【特許請求の範囲】[Claims] 1 ポリアミドを溶融紡糸して得られた複屈折率(△n
)が0.020〜0.045の高配向未延伸繊維を基布
に該高配向未延伸繊維より高軟化点を有する繊維をパイ
ル糸とした繊維シート、もしくは上記高配向未延伸繊維
を主として裏面層に偏在させ、該高配向未延伸繊維より
高軟化度を有する繊維を主として表面層に偏在させてな
る繊維シートと、プラスチックスのシートまたは板とを
積層した後、熱成形することを特徴とする繊維シートと
プラスチックスとの複合成形法。
1 Birefringence obtained by melt spinning polyamide (△n
) is 0.020 to 0.045 as a base fabric, and a fiber sheet made of pile yarn made of fibers having a higher softening point than the highly oriented undrawn fibers, or a back side mainly made of the highly oriented undrawn fibers. A fiber sheet comprising fibers unevenly distributed in layers and having a higher softening degree than the highly oriented undrawn fibers mainly unevenly distributed in the surface layer and a plastic sheet or plate are laminated and then thermoformed. A composite molding method of fiber sheets and plastics.
JP53102621A 1978-04-14 1978-08-22 Composite molding method of fiber sheet and plastics Expired JPS5944989B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP53102621A JPS5944989B2 (en) 1978-08-22 1978-08-22 Composite molding method of fiber sheet and plastics
GB7913071A GB2022156B (en) 1978-04-14 1979-04-12 Warp knitted fabric woven or unwoven fabric used in making a liminate
US06/029,173 US4298643A (en) 1978-04-14 1979-04-12 Fiber sheet for forming
DE19792915302 DE2915302A1 (en) 1978-04-14 1979-04-14 MOLDABLE FLAT TEXTILE FIBER MATERIAL, COMPOSITE PANEL MADE FROM IT AND PROCESS FOR ITS INTEGRAL SHAPING
CA325,631A CA1122792A (en) 1978-04-14 1979-04-17 Fiber sheet
FR7909652A FR2422753A1 (en) 1978-04-14 1979-04-17 FIBER SHEET AND ITS APPLICATIONS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53102621A JPS5944989B2 (en) 1978-08-22 1978-08-22 Composite molding method of fiber sheet and plastics

Publications (2)

Publication Number Publication Date
JPS5528860A JPS5528860A (en) 1980-02-29
JPS5944989B2 true JPS5944989B2 (en) 1984-11-02

Family

ID=14332308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53102621A Expired JPS5944989B2 (en) 1978-04-14 1978-08-22 Composite molding method of fiber sheet and plastics

Country Status (1)

Country Link
JP (1) JPS5944989B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63101530U (en) * 1986-12-24 1988-07-01
EP0919371B1 (en) 1997-03-24 2006-07-19 Toray Industries, Inc. Coating device, printing device, imaging device, printing system, and printing method

Also Published As

Publication number Publication date
JPS5528860A (en) 1980-02-29

Similar Documents

Publication Publication Date Title
CA1122792A (en) Fiber sheet
US4568581A (en) Molded three dimensional fibrous surfaced article and method of producing same
US3622434A (en) Creped fiber-film combination and process therefor
US3713936A (en) Fabric molding
JPH04216047A (en) Thermally moldable compound sheet
JPH05504107A (en) Improvement of thermoplastic composite materials
JPS63281836A (en) Combined body consisting of plurality of layer with one or more of reinforced layer and fiber-reinforced plastic product manufactured from said combined body
WO1996037648A1 (en) Corrugated fiberboard knit, and moldings and mouse pad formed of same
US6821601B2 (en) Stitchbonded fabric and process for making same
US3814658A (en) Composite laminate
JP2001505631A (en) Stitch bond fabric and method of manufacturing the same
US3440133A (en) Coated fabrics having high stretch ratios
US3846205A (en) Method for producing laminated materials of fibers
JPS591811B2 (en) Fiber sheet for molding
JPS59620B2 (en) Warp knitted fabric for molding
JPS6040537B2 (en) fabric for molding
US4900608A (en) Flexible epoxy-coated fabric
JPS5944989B2 (en) Composite molding method of fiber sheet and plastics
JPH038852A (en) Fabric for forming
JPS6212335B2 (en)
JPS6156350B2 (en)
US7437807B2 (en) Tufted backing and method of manufacturing same
JPS62141167A (en) Production of composite sheet
JPS648739B2 (en)
JPS609142B2 (en) Manufacturing method of glass cloth for reinforcing plastics