JPS607139B2 - Manufacturing method of electromagnetic fuel injection valve - Google Patents

Manufacturing method of electromagnetic fuel injection valve

Info

Publication number
JPS607139B2
JPS607139B2 JP10118881A JP10118881A JPS607139B2 JP S607139 B2 JPS607139 B2 JP S607139B2 JP 10118881 A JP10118881 A JP 10118881A JP 10118881 A JP10118881 A JP 10118881A JP S607139 B2 JPS607139 B2 JP S607139B2
Authority
JP
Japan
Prior art keywords
valve body
spherical valve
fuel injection
connecting rod
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10118881A
Other languages
Japanese (ja)
Other versions
JPS585570A (en
Inventor
正吉 桃野
正美 永野
良蔵 友崎
昭司 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10118881A priority Critical patent/JPS607139B2/en
Publication of JPS585570A publication Critical patent/JPS585570A/en
Publication of JPS607139B2 publication Critical patent/JPS607139B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/14Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with ball-shaped valve member

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetically Actuated Valves (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Lift Valve (AREA)

Description

【発明の詳細な説明】 本発明は電磁式燃料噴射弁の製造方法に係り、特に内燃
機関用として、高速開閉および燃料漏洩防止用に好適な
電磁式燃料噴射弁の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing an electromagnetic fuel injection valve, and particularly to a method of manufacturing an electromagnetic fuel injection valve suitable for high-speed opening/closing and prevention of fuel leakage for internal combustion engines.

一般に、自動車用内燃機関など高速機関において、その
燃料の噴射系統には電磁式燃料噴射弁が使用される。
Generally, in high-speed engines such as internal combustion engines for automobiles, electromagnetic fuel injection valves are used in the fuel injection system.

このような燃料噴射弁には、極めて短い周期で開閉動作
がなされることから1M萱回以上の耐久性が要求され、
また、あとだれがなくきれのよい噴射特性が必要であり
、燃料漏洩が極めて少ないことが要求されるものである
。従来、斯かる燃料噴射系統の弁としては、一般的にピ
ントル式ニードル弁が使用され、針状の弁体を往復動作
させることにより、ノズル部の開閉を行わせている。し
かしながら、上述のニードル弁構造の電磁式燃料噴射弁
では、耐久性上の点から弁体,弁座に焼入れ鋼を使用し
、かつ、弁体,弁座を高度な精密さで加工する必要があ
り、製作上の難点を有している。
Since such fuel injection valves open and close in extremely short cycles, they are required to have durability of 1M or more cycles.
In addition, it is necessary to have clean injection characteristics without dripping, and it is also required that fuel leakage is extremely small. Conventionally, a pintle-type needle valve is generally used as a valve in such a fuel injection system, and a nozzle portion is opened and closed by reciprocating a needle-shaped valve body. However, in the above-mentioned electromagnetic fuel injection valve with a needle valve structure, from the viewpoint of durability, it is necessary to use hardened steel for the valve body and valve seat, and to machine the valve body and valve seat with a high degree of precision. However, there are manufacturing difficulties.

更に、弁体,弁座を正確に加工しても、弁体が弁座に対
して傾くと燃料が漏洩するため、弁体を弁座に正確に当
綾させる必要があり、このため、弁体のニードル外径と
ニードルをガイドする部分の径差を数ミクロンにする必
要があり、ガイド部内径に合わせてニードル外径を研摩
する2次的加工調整も必要となるなどの欠点も有してい
る。このような観点から、ニードル弁構造とせずに球状
弁構造とすることが望まれるが、そのような例としては
特開昭55−10016号がある。
Furthermore, even if the valve body and valve seat are precisely machined, fuel will leak if the valve body tilts with respect to the valve seat, so it is necessary to align the valve body accurately with the valve seat. The difference in diameter between the outer diameter of the needle and the part that guides the needle must be a few microns, and there are also drawbacks such as the need for secondary machining adjustment to polish the outer diameter of the needle to match the inner diameter of the guide part. ing. From this point of view, it is desirable to use a spherical valve structure instead of a needle valve structure, and an example of such a structure is disclosed in Japanese Patent Application Laid-open No. 10016/1983.

この種の球状弁構造を採用して燃料の漏れを防止するた
めに、真円度の高い球状弁体を確保しつつ耐久性の高い
電磁式燃料噴射弁の構造とすることは困難であり、特に
球状弁体のひずみを生じさせずに製作するのは難しい。
この種の先行技術としては、特公昭56−60853号
がある。
In order to prevent fuel leakage by adopting this type of spherical valve structure, it is difficult to create a highly durable electromagnetic fuel injection valve structure while ensuring a highly rounded spherical valve body. In particular, it is difficult to manufacture a spherical valve body without causing distortion.
As a prior art of this type, there is Japanese Patent Publication No. 56-60853.

これは第4図に示すように、球の一部を切り欠いた球状
弁体3亀とプランジャ32とを組み合せたものである。
このように一部を切り欠いた球に加工する場合、真球を
製作した後に一部を切り欠く方法と、切り欠いたものを
真球に仕上げる方法とがある。第1の方法では、真円度
を維持し耐久性を高めるために既に硬化させる球を切り
欠くのは、加工時間が長くなり「 コストアツする等の
問題がある。また、第2の方法では、切り欠いたものの
外周面を真球面の一部として加工することは、単純に真
球を製作するのと比較して「非常に困難である。一方、
実開昭55−46576号のように球状弁構造のものが
ある。
As shown in FIG. 4, this is a combination of a spherical valve body 3, which is a partially cut-out sphere, and a plunger 32.
When processing a sphere with a part cut out in this way, there are two methods: one is to create a perfect sphere and then cut out a part, and the other is to finish the cutout into a perfect sphere. In the first method, cutting out the already hardened ball in order to maintain roundness and increase durability increases processing time and increases costs.In addition, in the second method, Processing the outer circumferential surface of a cutout as part of a true spherical surface is ``very difficult compared to simply manufacturing a true sphere.On the other hand,
There is a valve with a spherical valve structure, as in Japanese Utility Model Application No. 55-46576.

この種の球のみの弁体では、主磁極と球体が向いあう部
分の表面積を大きくできず、主磁極から球体に通る磁束
の量が極端に制限されるため、球体の吸引力を大きくし
得ない。というのは、吸引力は向いあう表面積に比例し
、加速度は重量に反比例するが、球は、表面積/体積の
比率が最も小さい形であり、非常に不利だからである。
従って、球体にして重量を軽減した効果は、吸引力の減
少と相殺されて、結局は加速度が小さくなってしまう。
そこで〜プランジヤをつけることにより、重量の増加を
できるだけ押えながら、吸引力を大きくし、加速度を増
大させることが望ましい。本発明の目的は、ニードル弁
構造が有する欠点を除去するために球状弁構造を採用し
た電磁式燃料噴射弁において、燃料漏洩防止効果が高く
しかも高速開閉動作にも充分な耐久性を有する弁体をひ
ずみの発生を防止しながら製造する電磁式燃料噴射弁の
製造方法を提案することである。
With this type of valve body consisting only of balls, it is not possible to increase the surface area of the part where the main magnetic pole and the sphere face each other, and the amount of magnetic flux passing from the main magnetic pole to the sphere is extremely limited, so it is not possible to increase the attractive force of the sphere. do not have. This is because the force of attraction is proportional to the opposing surface area and the acceleration is inversely proportional to the weight, but the sphere is the shape with the smallest surface area/volume ratio, which is a huge disadvantage.
Therefore, the effect of reducing weight by making it spherical is offset by the reduction in suction force, resulting in a decrease in acceleration.
Therefore, it is desirable to increase the suction force and increase the acceleration while suppressing the increase in weight as much as possible by adding a plunger. An object of the present invention is to provide a valve body that is highly effective in preventing fuel leakage and has sufficient durability for high-speed opening and closing operations in an electromagnetic fuel injection valve that employs a spherical valve structure in order to eliminate the drawbacks of a needle valve structure. The purpose of the present invention is to propose a method of manufacturing an electromagnetic fuel injection valve that can be manufactured while preventing the occurrence of distortion.

上記目的を達成するために「本発明は励磁作用により励
磁コイル中心軸方向に沿って往復動されるプランジャに
取り付けられる連結ロッドと、この連結ロッドの先端に
固着されバルブシート部を有するバルブハウジング内に
摺動可能に収容される球状弁体とを備えた電磁式燃料噴
射弁の製造方法において、前記連結ロッドの端面に円形
内周緑を有する凹部を形成し、この凹部の内周縁と球状
弁体とを線状接触状態で当援させ「 この接触線に沿っ
て抵抗溶接により一体的に溶接結合させるように構成し
、弁体の傾きによる燃料漏れのおそれを解消するととも
に、ひずみのない充分な真円度を確保しつつ充分な強度
を有するようにした。
In order to achieve the above object, the present invention includes a connecting rod that is attached to a plunger that is reciprocated along the central axis direction of an exciting coil by an exciting action, and a valve housing that is fixed to the tip of the connecting rod and has a valve seat. In the method for manufacturing an electromagnetic fuel injection valve having a spherical valve body slidably housed in the connecting rod, a recess having a circular inner periphery is formed on the end face of the connecting rod, and the inner periphery of the recess and the spherical valve are connected to each other. The structure is such that the valve body is in linear contact with the valve body, and is integrally joined by resistance welding along this contact line, eliminating the risk of fuel leakage due to the inclination of the valve body, as well as ensuring sufficient pressure without distortion. It is designed to have sufficient strength while ensuring a perfect roundness.

以下に本発明の実施例を図面を参照しながら詳細に説明
する。まず、第耳図に本実施例の方法により製造される
電磁式燃料噴射弁の構造例を示す。
Embodiments of the present invention will be described in detail below with reference to the drawings. First, a structural example of an electromagnetic fuel injection valve manufactured by the method of this embodiment is shown in the diagram.

この燃料噴射弁川ま、コイル2およびコイルホルダ3の
中心部にコア4を配設し、また、ホルダ3の上端面をコ
ア母と一体にされたフランジ部5で被い、更にホルダ3
の外側面および下面部をヨーク6で取囲んで構成してあ
る。またホルダ3の中心部に挿入されたコア4の端面に
対向し〜スプリング7を介してプランジャ8がコイル2
の中心軸方向に移動可能に収容されている。プランジャ
81こは、弁機構を構成する連結ロッド9が固定され、
更にロッド9の先端には球状弁体10が固着されている
。このような連結ロッド9一と球状弁体10とはヨーク
6の下面に取り付けられるバルブハウジング竃qのガイ
ド孔亀2に収容され「このハウジング量1に形成された
燃料流入通路亀3と流出通路官4間を速断するように「
コイル2の中心軸方向に沿って往復勤する。バルブハ
ウジング11内には流出通路亀4への開□部に円錐状の
バルフシート部15が形成され、ガイド孔12内を情動
移動する球状弁体IQと密着することにより通路遮断が
行われる。なお、連結ロッド9には鍔部16が形成され
、ハウジング11とプランジャ8間に介装されるストッ
パITにより弁体10のストロークを規定している。
A core 4 is disposed at the center of the fuel injection valve, the coil 2 and the coil holder 3, and the upper end surface of the holder 3 is covered with a flange portion 5 integrated with the core mother.
A yoke 6 surrounds the outer and lower surfaces of the yoke 6. Further, a plunger 8 is connected to the coil 2 through a spring 7, facing the end face of the core 4 inserted into the center of the holder 3.
is housed so as to be movable in the direction of its central axis. The plunger 81 has a connecting rod 9 configuring the valve mechanism fixed,
Further, a spherical valve body 10 is fixed to the tip of the rod 9. The connecting rod 91 and the spherical valve body 10 are accommodated in the guide hole 2 of the valve housing q attached to the lower surface of the yoke 6, and are connected to a fuel inlet passage 3 and an outflow passage formed in the housing 1. As if to make a quick decision between the government and the government,
It reciprocates along the central axis direction of the coil 2. A conical valve seat part 15 is formed in the valve housing 11 at the opening to the outflow passage turtle 4, and the passage is blocked by coming into close contact with the spherical valve element IQ moving within the guide hole 12. A flange 16 is formed on the connecting rod 9, and a stopper IT interposed between the housing 11 and the plunger 8 defines the stroke of the valve body 10.

このように構成される電磁式燃料噴射弁1は、機関が運
転される間、数HZから数百日2の往復運動が連結ロッ
ド9および球状弁体10‘こ対して与えられるため「充
分な耐久性が必要であり、しかも燃料漏れ防止のために
は球状弁体亀0が充分な真円度を保持して連結ロッド9
に固着されていることが要求される。
The electromagnetic fuel injection valve 1 configured in this manner has a reciprocating motion of several Hz to several hundred days 2 against the connecting rod 9 and the spherical valve body 10' while the engine is operating. Durability is required, and in order to prevent fuel leakage, the spherical valve body 0 must maintain sufficient roundness to connect the connecting rod 9.
It is required that it be fixed to.

そこで、本実施例に係る製造方法に伴なう条件は次のよ
うになる。
Therefore, the conditions associated with the manufacturing method according to this embodiment are as follows.

すなわち「球状弁体10とバルフシート部15の材質と
しては高速開閉動作に耐え得る耐摩耗性の観点から、焼
き入れした鋼系やステンレス系の材料が選定される。
That is, "Hardened steel or stainless steel materials are selected as the materials for the spherical valve body 10 and the valve seat portion 15 from the viewpoint of wear resistance that can withstand high-speed opening and closing operations.

これは噴射弁1の特性上、内燃機関の燃料流量をまかな
うため、一般に球状弁体1 0のストロークは0.05
〜0.3柳程度必要とし、かつ全閉から全開までの時間
は0.3のsec程度要求される。したがって、プラン
ジャ8の加速度は数百グラムのオーダとなり、かつ、作
動回数10億回程度の寿命が必要となるからである。ま
た、連結ロッド9と球状弁体10とは、両者を確実に結
合し耐久性を向上させる必要があることから、溶接結合
させることが望ましい。
Due to the characteristics of the injection valve 1, the stroke of the spherical valve body 10 is generally 0.05 to cover the fuel flow rate of the internal combustion engine.
~0.3 seconds are required, and the time from fully closed to fully open is required to be approximately 0.3 seconds. Therefore, the acceleration of the plunger 8 is on the order of several hundred grams, and the plunger 8 requires a lifespan of about 1 billion operations. Furthermore, it is desirable that the connecting rod 9 and the spherical valve body 10 be joined together by welding, since it is necessary to reliably join them together to improve durability.

したがって、溶酸性の観点から両者の材質は同程度の材
質であることが要求される。一方、溶接結合するに際し
、連結ロッド9および球状弁体1川まともに固い材料で
あるため、熔接部を急熱,急冷しすぎると割れが入るお
それがある。しかも、バルフシート部15からの燃料漏
れを防止するためには、球状弁体10、バルブシート部
15ともに数ミクロン以下の真円度が必要となる。この
ようなことから、連結ロッド9と球状弁体10との溶接
は、球状弁体IDのバルブシート部15やガイド孔12
に接触する箇所に熱的影響がおよんで加熱によるひずみ
や材質軟化を起こさない手段によって行わなければなら
ない。したがって、溶接法としては、低コストで熱的影
響の小さい抵抗溶接が最適である。更に、弁体10のス
トロークが短いことから、連結ロッド9と球状弁体10
との溶接に際し、溶接後の弁体構造長さそ(第1図参照
)寸法が一定となるような方法を採用しなければならな
い。
Therefore, from the viewpoint of acid-soluble properties, both materials are required to be of the same quality. On the other hand, when joining together by welding, since the connecting rod 9 and the spherical valve body are made of fairly hard materials, there is a risk of cracking if the welded portion is heated or cooled too quickly. Furthermore, in order to prevent fuel leakage from the valve seat portion 15, both the spherical valve body 10 and the valve seat portion 15 need to have a roundness of several microns or less. For this reason, the welding between the connecting rod 9 and the spherical valve body 10 is performed on the valve seat portion 15 and the guide hole 12 of the spherical valve body ID.
This must be done using a method that does not cause distortion or softening of the material due to heating due to thermal effects on the parts that come into contact with the material. Therefore, the optimal welding method is resistance welding, which is low cost and has little thermal influence. Furthermore, since the stroke of the valve body 10 is short, the connection rod 9 and the spherical valve body 10 are
When welding with the valve body, a method must be adopted that will keep the length of the valve body structure (see Figure 1) constant after welding.

上記の如き要求される条件を満足する製造方法は次の通
りである。すなわち、第2〜3図に示される如く、まず
、一方の結合部村である連結ロッド9の先端面に円形内
周縁を有する凹部18を形成し、この凹部18を球状弁
体1川こ当援させ、両者を線状接触状態とする。
A manufacturing method that satisfies the above-mentioned required conditions is as follows. That is, as shown in FIGS. 2 and 3, first, a recess 18 having a circular inner circumferential edge is formed on the distal end surface of the connecting rod 9, which is one joint, and the recess 18 is inserted into the spherical valve body 1. and bring the two into linear contact.

これは、溶接部を内周緑に沿う円周状のエッジ部とし、
当該熔接部以外への熱影響をできるだけ小さくする必要
があるからである。また、これら両者には「高速往復運
動が付与され高い耐久性が要求されることから、凹部1
8の内径d,および球状弁体10の直径Dとの関係は次
のように設定する必要がある。まず、結合力の観点から
、溶接される円周はできるだけ大きい方が望ましい。し
かしながら、接触円の径が大きすぎると溶接時の連結ロ
ッド9と球状弁体10の相対位置すなわちそ寸法(第1
図参照)のばらつきが大きくなる。このばらつきが大き
いとストロークの小さい燃料噴射弁1では適正な燃料噴
射を行うことができない。このため、接触円を大きくす
るには限度があり、実験的に確認されたところによれば
球状弁体1川こおおる接触円の接触角8は100度を越
えると大きくなり、最大8=100度が限度である。他
方、強度面からは、aの角度が40度以下になると凹部
18の内周縁で当たる効果が少なくなり、熱影響が増大
する割に強度が小さくなり、溶接長さが短くなることと
相まって急激に結合力が小さくなる。以上のことから、
接触角のま40〜100度が好適であり、このことは、
凹部18の直径d,が球状弁体10の直径Dに対し35
〜75%であることに相当する。このように当綾した連
結ロッド9と球状弁体10とには、第3図に示される如
く、電極19,20を接触させ、抵抗溶接を施す。
This makes the welding part a circumferential edge along the inner green,
This is because it is necessary to minimize the thermal influence on areas other than the welded area. In addition, since both of these are given high-speed reciprocating motion and require high durability, the concave portion
The relationship between the inner diameter d of 8 and the diameter D of the spherical valve body 10 needs to be set as follows. First, from the viewpoint of bonding strength, it is desirable that the circumference to be welded be as large as possible. However, if the diameter of the contact circle is too large, the relative position of the connecting rod 9 and the spherical valve body 10 during welding, that is, its dimension (first
(see figure) becomes more variable. If this variation is large, the fuel injection valve 1 with a small stroke cannot perform proper fuel injection. For this reason, there is a limit to increasing the contact circle, and it has been experimentally confirmed that the contact angle 8 of the contact circle that covers one river of the spherical valve body increases when it exceeds 100 degrees, and the maximum contact angle 8 = The limit is 100 degrees. On the other hand, from the viewpoint of strength, when the angle a becomes 40 degrees or less, the effect of contact with the inner periphery of the recess 18 decreases, the strength decreases even though the thermal influence increases, and when the welding length shortens, the The bonding force becomes smaller. From the above,
A contact angle of 40 to 100 degrees is suitable, which means that
The diameter d of the recess 18 is 35 with respect to the diameter D of the spherical valve body 10.
This corresponds to ~75%. As shown in FIG. 3, electrodes 19 and 20 are brought into contact with the connecting rod 9 and the spherical valve body 10, which are connected in this way, and resistance welding is performed.

この場合、連結ロッド9側の電極19の接触位置は球状
弁体10に何らの不都合を与えないが、球状弁体10側
の電極20の接触位置が問題となる。すなわち、球状弁
体10がバルブシート部15とガイド孔12に接触する
位置を避けなければ、当該箇所に溶接時の熱影響がおよ
び、ひずみなどを発生して弁機能を損うからである。そ
こで、バルブシ−卜部15の頂角少(第2図参照)に着
目すると、球状弁体10のストロークに対する該シート
部15の燃料通路断面積の増加割合はめ:90度のとき
が最も大きい。
In this case, the contact position of the electrode 19 on the connecting rod 9 side does not cause any inconvenience to the spherical valve body 10, but the contact position of the electrode 20 on the spherical valve body 10 side poses a problem. That is, if the position where the spherical valve body 10 contacts the valve seat portion 15 and the guide hole 12 is not avoided, the heat effect during welding will be exerted on this position, causing distortion etc. and impairing the valve function. Therefore, focusing on the small apex angle of the valve seat portion 15 (see FIG. 2), the ratio of increase in the cross-sectional area of the fuel passage of the seat portion 15 to the stroke of the spherical valve body 10 is greatest when it is 90 degrees.

これは■=90度付近で同一流量を流すのに必要なスト
ロークを最小にでき利点となる。ストロークが小さいと
弁が全閉から全開するまでに要する時間の短縮および開
閉時の騒音低減に有利であり、したがって少=90度が
望ましい。他方、?=60度以下あるし、はぐ=110
度以上ではストロークに対する燃料通路断面積の増加割
合が急激に減少するためでは最小60度および最大11
0度に設定する必要がある。このようにバルブシート部
15の頂角では60〜110度の範囲内に選定される。
したがって、電極20の接触部位は、球状弁体10にお
けるバルフシート部15とガイド孔12との援触部間、
あるいは燃料流出通路14に対面する部分とすることが
考えられる。しかし、流出通路14側では電極20の接
触する面積が4・さく電流集中による発熱のために、球
状弁体10がひずんで不適当である。このようなことか
ら、電極20の設触位置は、バルブシート部15とガイ
ド孔12の間であって、バルブシート部15との接触部
に熱影響を与えない部位に限定される。したがって、電
極20の形状は、電流集中が生じないように凹部21を
設けて前記最適位置に線状嬢触するようにしてある。こ
こで、抵抗溶接による熱影響のおよぶ範囲は角度にして
略10度であるため、球状弁体10と電極20の接触角
度Q(第3図参照)は、■=60〜110度に熱影響を
考慮した角度が加えられたQ=70〜120度以上とす
る必要がある。一方、ガイド孔12との接触部位に着目
すると、この接触点Qは180度であるため、熱影響が
およばないように、Q=170度以下とする必要がある
。しかしながら、凹部21を有する電極20を懐触ごせ
て溶接を行う場合、Q=140度以上になると球状弁体
10が電極2川こ食い込み、電極20の損耗を速めるの
で、Q=140度以下とすることが必要となる。このよ
うなことから、球状弁体10と電極20の接触角Qは7
0〜140度の範囲に設定され、れは電極凹部21の直
径もが球状弁体10の直径Dの55〜95%であること
に相当する。
This has the advantage of minimizing the stroke required to flow the same flow rate near ■=90 degrees. A small stroke is advantageous in shortening the time required for the valve to fully open from fully closed, and in reducing noise during opening and closing, and therefore, a small stroke of 90 degrees is desirable. On the other hand? = 60 degrees or less, and it is 110 degrees
The increase rate of the fuel passage cross-sectional area with respect to the stroke decreases rapidly at temperatures above 60 degrees and maximum 11 degrees.
It needs to be set to 0 degrees. In this way, the apex angle of the valve seat portion 15 is selected within the range of 60 to 110 degrees.
Therefore, the contact area of the electrode 20 is between the contact area between the valve seat part 15 and the guide hole 12 in the spherical valve body 10,
Alternatively, a portion facing the fuel outflow passage 14 may be considered. However, on the outflow passage 14 side, the contact area of the electrode 20 is 4.5 mm, and the spherical valve body 10 is distorted and unsuitable due to heat generation due to current concentration. For this reason, the contact position of the electrode 20 is limited to a location between the valve seat portion 15 and the guide hole 12 where the contact portion with the valve seat portion 15 is not affected by heat. Therefore, the shape of the electrode 20 is such that a concave portion 21 is provided so that the electrode 20 contacts the optimal position in a linear manner so as to prevent current concentration. Here, since the range affected by heat due to resistance welding is approximately 10 degrees in angle, the contact angle Q between the spherical valve body 10 and the electrode 20 (see Figure 3) is such that the range affected by heat is approximately 60 to 110 degrees. It is necessary to set Q=70 to 120 degrees or more, including the angle taking into account. On the other hand, if we focus on the contact area with the guide hole 12, since this contact point Q is 180 degrees, it is necessary to make Q=170 degrees or less so as not to be affected by heat. However, when welding is carried out by touching the electrode 20 having the recess 21, if the temperature exceeds Q=140 degrees, the spherical valve body 10 will dig into the electrode 20, accelerating the wear and tear of the electrode 20. It is necessary to do so. For this reason, the contact angle Q between the spherical valve body 10 and the electrode 20 is 7.
It is set in the range of 0 to 140 degrees, which corresponds to the fact that the diameter of the electrode recess 21 is also 55 to 95% of the diameter D of the spherical valve body 10.

このように、本実施例によれば、連結ロッド9と球状弁
体10を、連結ロッド9の先端凹部18と球状弁体10
とも線接触状態で当援させ、しかもガイド孔12やバル
フシート部15との接触部位への熱影響を回避しながら
抵抗熔接によって確実に結合させるので、球状弁体1川
こひずみを生じさせることなく強固な弁体構造とするこ
とができる。
As described above, according to this embodiment, the connecting rod 9 and the spherical valve body 10 are
Since the spherical valve body 1 is connected in a line contact state and is securely connected by resistance welding while avoiding heat influence on the contact portion with the guide hole 12 and the valve seat portion 15, the spherical valve body 1 does not cause any distortion. A strong valve body structure can be achieved.

したがって、高速往復運動がなされる弁体構造として充
分な耐久性を有し、しかも製作容易な球状弁体10を用
い、連結ロッド9がバルブハウジングー1!こ対してあ
る程度傾いても充分に燃料をシールすることができるた
め、連結ロッド9の外径とハウジング11の内径の公差
が大きくてもよい電磁式燃料噴射弁を製作することがで
きる。以上の如く、本発明によれば、球状弁体構造を採
用するととげこ、球状弁体に熱的影響を与えることなく
連結ロッドと溶接結合した電磁式燃料噴射弁を得ること
ができるので、燃料漏れを効果的に防止しつつ、充分な
耐久性を有する弁とすることができる。
Therefore, the connecting rod 9 is connected to the valve housing 1 by using the spherical valve body 10 which has sufficient durability as a valve body structure capable of high-speed reciprocating motion and is easy to manufacture. On the other hand, since the fuel can be sufficiently sealed even if the connecting rod 9 is tilted to some extent, it is possible to manufacture an electromagnetic fuel injection valve that does not require a large tolerance between the outer diameter of the connecting rod 9 and the inner diameter of the housing 11. As described above, according to the present invention, by adopting the spherical valve body structure, it is possible to obtain an electromagnetic fuel injection valve in which the thorns and the connecting rod are welded together without any thermal influence on the spherical valve body. The valve can effectively prevent leakage and have sufficient durability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電磁式燃料噴射弁の構造を示す断面図、第2図
は弁体部分の拡大断面図、第3図は連結ロッドと球状弁
体の溶接状態を示す断面図、第4図は従来の弁体の一例
を示す断面図である。 1・・・・・‘電磁式燃料噴射弁、2…・・・励磁コイ
ル、8・・・・・・プランジャ、9・・・・・−連結ロ
ッド、10・・・…球状弁体、11・・・・〜ゞルブハ
ウジング、12・・・・・・ガイド孔、15……バルブ
シート部、19,20・・・・・・電極。 第4図 第1図 第2図 第3図
Fig. 1 is a sectional view showing the structure of an electromagnetic fuel injection valve, Fig. 2 is an enlarged sectional view of the valve body, Fig. 3 is a sectional view showing the welding state of the connecting rod and the spherical valve body, and Fig. 4 is It is a sectional view showing an example of a conventional valve body. 1...'Electromagnetic fuel injection valve, 2...Exciting coil, 8...Plunger, 9...-Connecting rod, 10...Spherical valve body, 11 . . . ~ valve housing, 12 . . . guide hole, 15 . . . valve seat portion, 19, 20 . . . electrode. Figure 4 Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1 励磁コイルの中心軸に沿って往復動するプランジヤ
に取り付けられ往復動可能な連結ロツドと、バルブシー
ト部を有するバルブハウジング内に摺動可能に収容され
連結ロツドの先端に固着された球状弁体とを含む電磁式
燃料噴射弁の製造方法において、球状弁体に対向する連
結ロツドの端面に円形内周縁を有する凹部を形成し、凹
部の内周縁と球状弁体とを線接触状態で当接させ、抵抗
溶接によりこの接触線に沿って一体的に溶接結合させる
ことを特徴とする電磁式燃料噴射弁の製造方法。 2 特許請求の範囲第1項において、連結ロツドに形成
される凹部の内径を球状弁体直径の35〜75%とする
ことを特徴とする電磁式燃料噴射弁の製造方法。
[Scope of Claims] 1. A connecting rod that is attached to a plunger that reciprocates along the central axis of the excitation coil and is movable in a reciprocating manner; In a method of manufacturing an electromagnetic fuel injection valve including a fixed spherical valve element, a recess having a circular inner periphery is formed on the end face of a connecting rod facing the spherical valve element, and the inner periphery of the recess and the spherical valve element are connected to each other. A method of manufacturing an electromagnetic fuel injector, which comprises bringing them into contact in a line-contact state and integrally welding them together along the line of contact by resistance welding. 2. The method of manufacturing an electromagnetic fuel injection valve according to claim 1, characterized in that the inner diameter of the recess formed in the connecting rod is 35 to 75% of the diameter of the spherical valve body.
JP10118881A 1981-07-01 1981-07-01 Manufacturing method of electromagnetic fuel injection valve Expired JPS607139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10118881A JPS607139B2 (en) 1981-07-01 1981-07-01 Manufacturing method of electromagnetic fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10118881A JPS607139B2 (en) 1981-07-01 1981-07-01 Manufacturing method of electromagnetic fuel injection valve

Publications (2)

Publication Number Publication Date
JPS585570A JPS585570A (en) 1983-01-12
JPS607139B2 true JPS607139B2 (en) 1985-02-22

Family

ID=14293992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10118881A Expired JPS607139B2 (en) 1981-07-01 1981-07-01 Manufacturing method of electromagnetic fuel injection valve

Country Status (1)

Country Link
JP (1) JPS607139B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60167157U (en) * 1984-04-17 1985-11-06 三菱自動車工業株式会社 electromagnetic fuel injection device
JP6797697B2 (en) * 2017-01-11 2020-12-09 日立オートモティブシステムズ株式会社 Manufacturing method of fuel injection valve and fuel injection valve

Also Published As

Publication number Publication date
JPS585570A (en) 1983-01-12

Similar Documents

Publication Publication Date Title
EP1609981B1 (en) Electromagnetic fuel injection valve
US5211341A (en) Fuel injector valve having a collared sphere valve element
JP5231705B2 (en) Fuel injection valve
US7021569B1 (en) Fuel injection valve
JP2001513165A (en) Method of manufacturing valve seat for fuel injection valve and fuel injection valve
US6783109B2 (en) Electromagnetic fuel injection valve
US6938839B2 (en) Needle alignment fuel injector
JPS607139B2 (en) Manufacturing method of electromagnetic fuel injection valve
JP3793379B2 (en) Beam welding method for two parts with different hardness
JP3662019B2 (en) Electromagnet operated fuel injection valve
JP4071255B2 (en) Electromagnetic fuel injection valve
US7458530B2 (en) Fuel injector sleeve armature
JP3803539B2 (en) Electromagnetic fuel injection valve
JP2005036696A (en) Electromagnetic drive type fuel injection valve
JP2002303222A (en) Fuel injection valve
JP3819741B2 (en) Electromagnetic fuel injection valve
JP6807827B2 (en) Fuel injection valve
JPH11230006A (en) Fuel injection valve
CN110192022B (en) Fuel injection valve and method for manufacturing fuel injection valve
JPH07145765A (en) Manufacture of valve
JP6817927B2 (en) Fuel injection valve
JP7049925B2 (en) Fuel injection valve
JP6673797B2 (en) Fuel injection valve
JP6867239B2 (en) Fuel injection valve
JPH0378508A (en) Hollow valve for internal combustion engine and its manufacture