JPS6070398A - Method and device for removing tritium - Google Patents

Method and device for removing tritium

Info

Publication number
JPS6070398A
JPS6070398A JP58178884A JP17888483A JPS6070398A JP S6070398 A JPS6070398 A JP S6070398A JP 58178884 A JP58178884 A JP 58178884A JP 17888483 A JP17888483 A JP 17888483A JP S6070398 A JPS6070398 A JP S6070398A
Authority
JP
Japan
Prior art keywords
tritium
drying column
preheater
water
handling facility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58178884A
Other languages
Japanese (ja)
Inventor
加藤 岑生
久道 田中
e本 梁雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Oxygen Industries Ltd
Japan Atomic Energy Agency
Original Assignee
Osaka Oxygen Industries Ltd
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Oxygen Industries Ltd, Japan Atomic Energy Research Institute filed Critical Osaka Oxygen Industries Ltd
Priority to JP58178884A priority Critical patent/JPS6070398A/en
Publication of JPS6070398A publication Critical patent/JPS6070398A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はトリチウム(放射性の三重水素であり、以下T
で表わす)を含む化合物(以下、トリチウム化合物とい
う)を取扱う施設などにおいて、トリチウム化合物を含
む空気を触媒反応によって酸化させてトリチウム水に転
化した後、ゼオライトなどの乾燥剤を充填した乾燥カラ
ム内で吸着除去する方法及び装置に関する。
Detailed Description of the Invention The present invention is based on tritium (radioactive tritium, hereinafter referred to as T
At facilities that handle compounds containing tritium compounds (hereinafter referred to as tritium compounds), the air containing tritium compounds is oxidized by a catalytic reaction and converted into tritium water, and then the air containing tritium compounds is converted into tritium water in a drying column filled with a desiccant such as zeolite. The present invention relates to a method and apparatus for adsorption removal.

本発明において、トリチウム化合物とはHT又はT2の
よりなTを含んだ水素、HTO又はT2Oのよ5なTを
含んだ水又はCH3T、C2H3TのようなTを含んだ
炭化水素を意味する。
In the present invention, the tritium compound means hydrogen containing T such as HT or T2, water containing T such as HTO or T2O, or hydrocarbon containing T such as CH3T or C2H3T.

本発明においてトリチウム水とはHTO又はT2Oのよ
うなTを含んだ水又はそれの水蒸気である。
In the present invention, tritiated water is water containing T such as HTO or T2O, or water vapor thereof.

一般にトリチウム化合物の除去方法は、適当な酸化触媒
によって空気中のトリチウム(通常気体水素、炭化水素
および水)化合物を、すべて水の形に変換し、即ちトリ
チウム水として乾燥剤で吸着して除去しているが、ゼオ
ライトなどの乾燥剤を充填した乾燥カラムは一定の時間
使用すると乾燥剤の吸着能が低下する。このように吸着
能が低下した場合は乾燥剤の脱水処理によってトリチウ
ム水を除去して上記の乾燥剤を再生する方法が講じられ
ている。この再生方法は再生する乾燥カラムをトリチウ
ム除去系から取外すか、或℃・は上記トリチウム水に組
込んだまま弁操作によって行なわれるが、何れの場合も
第1図に示す様な閉回路を形成して行なわれる。即ち、
循環ポンプ6によって上記閉回路を循環する空気は予熱
器1で150〜250Cに加熱されて乾燥カラム2に流
入し、更に乾燥カラム2も加熱器乙によって150〜2
5DCに加熱して乾燥剤に吸着されているトリチウム水
が脱着される。このようにトリチウム水を含んだ空気は
θ〜−55Uの温度に維持された冷却器4に流入する。
In general, the method for removing tritium compounds is to convert all tritium (usually gaseous hydrogen, hydrocarbons, and water) compounds in the air into water using an appropriate oxidation catalyst, and remove the tritiated water by adsorption with a desiccant. However, if a drying column filled with a desiccant such as zeolite is used for a certain period of time, the adsorption capacity of the desiccant decreases. When the adsorption capacity has decreased in this way, a method has been taken to regenerate the desiccant by removing tritiated water by dehydrating the desiccant. This regeneration method is carried out by removing the drying column to be regenerated from the tritium removal system, or by operating a valve while it is still incorporated in the above tritiated water, but in either case, a closed circuit as shown in Figure 1 is formed. It is done as follows. That is,
The air circulating in the closed circuit by the circulation pump 6 is heated to 150 to 250C by the preheater 1 and flows into the drying column 2, and the drying column 2 is further heated to 150 to 250C by the heater B.
Tritium water adsorbed on the desiccant is desorbed by heating to 5DC. The air containing tritium water thus flows into the cooler 4 maintained at a temperature of θ to -55U.

ここでトリチウム水は凝縮除去された後、トリチウム水
受槽5に流入して廃液処理される。
After the tritiated water is condensed and removed, it flows into the tritiated water receiving tank 5 and is treated as waste liquid.

この方法は、冷却器で処理後の循環空気中になお少量の
トリチウム水が残留する。即ち、冷却器の処理温度にお
ける飽和水蒸気圧によって循環空気中に少量のトリチウ
ム水が残留した状態で循環ポンプを介して閉回路中を循
環する場合がある。
In this method, a small amount of tritiated water still remains in the circulating air after treatment in the cooler. That is, there are cases where a small amount of tritiated water remains in the circulating air due to the saturated water vapor pressure at the processing temperature of the cooler and is circulated in the closed circuit via the circulation pump.

かかる場合には冷却器における処理温度を低くすれば理
論的にはトリチウム水は完全に除去することができるが
、冷却器の能力、トリチウム水の凍結および空気成分の
凝縮による目詰りの発生等の問題点を生じ、更に熱的な
損失も問題となり、経済的な不利益も無視できな(・。
In such cases, the tritiated water can theoretically be completely removed by lowering the processing temperature in the cooler, but there are issues with the cooler's capacity, clogging due to freezing of the tritiated water and condensation of air components, etc. In addition to causing problems, heat loss also becomes a problem, and the economic disadvantage cannot be ignored (・.

本発明の目的は、上記の冷却器における処理温度を比較
的高く維持して従来の欠点を解決することにある。
It is an object of the present invention to maintain the processing temperature in the above-mentioned cooler relatively high to overcome the drawbacks of the prior art.

本発明は、トリチウム取扱施設、酸化触媒床、及びトリ
チウム水除去回路を直列に連結し、該トリチウム水除去
回路においては予熱器−乾燥カラムA、冷却器及び予熱
器−乾燥カラムBが並列に連結されており、 (a)トリチウム取扱施設、酸化触媒床、及び予熱器お
よび乾燥カラムAからなる循環回路を形成するようにパ
ルプを操作し、その循環回路に空気を循環させ、トリチ
ウム取扱施設より発生するトリチウム化合物を循環空気
と共に酸化触媒床に導入し、そのトリチウム化合物をト
リチウム水に転換させ、そのトリチウム水を水蒸気の形
でその循環空気と共に予熱器−乾燥カラムAに導入して
、そのトリチウム水を乾燥カラムAに吸着させ、乾燥カ
ラムへの吸着剤が破過点または破過点近くになるまでそ
の操作を続け、(h) 次いで少なくとも予熱器−乾燥
カラムA、冷却器及び予熱器−乾燥カラムBを通り、そ
してトリチウム取扱施設を通らない循環回路もしくはト
リチウム取扱施設を通る循環回路を形成するようにパル
プを操作し、その間に空気を循環させ、乾燥カラムAを
加熱して乾燥カラムへの吸着剤からトリチウム水を脱着
させ、冷却器においてトリチウム水の大部分を凝縮させ
、その残りのトリチウム水を乾燥カラムBに吸着させ、
それによって乾燥カラムAの再生を行ない、(C)トリ
チウム取扱施設、酸化触媒床、及び予熱器および乾燥カ
ラムBからなる循環回路を形成するようにパルプを操作
し、その循環回路に空気を循環させ、トリチウム取扱施
設より発生するトリチウム化合物を循環空気と共に酸化
触媒床に導入し、そのトリチウム化合物をトリチウム水
に転換させ、そのトリチウム水を水蒸気の形でその循環
空気と共に予熱器−乾燥カラムBに導入して、そのトリ
チウム水を乾燥カラム已に吸着させ、乾燥カラムBの吸
着剤が破過点または破過点近くになるまでその操作を続
け、そして (CL)次いで少なくとも予熱器−乾燥カラムB、冷却
器及び予熱器−乾燥カラムAを通り、そしてトリチウム
取扱施設を通らない循環回路もしくはトリチウム取扱施
設を通る循環回路を形成するようパルプを操作し、その
間に空気を循環させ、乾燥カラムBを加熱して乾燥カラ
ムの吸着剤からトリチウム水を脱着させ、冷却器におい
てトリチウム水の大部分を凝縮させ、その残りのトリチ
ウム水を乾燥カラムAに吸着させ、それによって乾燥カ
ラムBの再生を行なうことからなる工程を繰返すことか
らなる連続的なトリチウム除去方法に関する。
The present invention connects a tritium handling facility, an oxidation catalyst bed, and a tritiated water removal circuit in series, and in the tritium water removal circuit, a preheater-drying column A, a cooler, and a preheater-drying column B are connected in parallel. (a) The pulp is manipulated to form a circulation circuit consisting of a tritium handling facility, an oxidation catalyst bed, a preheater and drying column A, and air is circulated through the circulation circuit to remove waste generated from the tritium handling facility. The tritium compound is introduced into the oxidation catalyst bed together with the circulating air, the tritiated compound is converted into tritiated water, and the tritiated water is introduced in the form of steam into the preheater-drying column A together with the circulating air to convert the tritiated water into the preheater-drying column A. (h) adsorbing at least the preheater-drying column A, the cooler and the preheater-drying until the adsorbent to the drying column is at or near the breakthrough point; The pulp is manipulated to form a circuit through column B and either bypassing the tritium-handling facility or through the tritium-handling facility, while circulating air and heating drying column A. desorbing tritiated water from the adsorbent, condensing most of the tritiated water in a cooler, and adsorbing the remaining tritiated water in a drying column B;
thereby regenerating drying column A and (C) manipulating the pulp to form a circuit consisting of a tritium handling facility, an oxidation catalyst bed, and a preheater and drying column B, and circulating air through the circuit. , the tritium compounds generated from the tritium handling facility are introduced into the oxidation catalyst bed together with the circulating air, the tritium compounds are converted into tritiated water, and the tritiated water is introduced in the form of water vapor into the preheater-drying column B together with the circulating air. and adsorb the tritiated water onto the drying column, continuing the operation until the adsorbent in drying column B is at or near the breakthrough point, and (CL) then at least the preheater-drying column B, Cooler and Preheater - Manipulating the pulp through drying column A and forming a circuit that does not pass through the tritium-handling facility or through the tritium-handling facility, while circulating air and heating drying column B. Tritiated water is desorbed from the adsorbent in the drying column, most of the tritiated water is condensed in a cooler, and the remaining tritiated water is adsorbed to drying column A, thereby regenerating drying column B. This invention relates to a continuous tritium removal method that consists of repeating the following steps.

本発明は又、トリチウム取扱施設、酸化触媒床及びトリ
チウム水除去回路を直列に連結し、その酸化触媒床はト
リチウム化合物をトリチウム水に変換する役割を果し、
該トリチウム水除去回路においては予熱器及び乾燥カラ
ム、冷却器並びに予熱器および乾燥カラムが並列に連結
されており、冷却器にトリチウム水受槽が連結されてお
り、トリチウム取扱施設、酸化触媒床、及び2つの予熱
器および乾燥カラムの任意の一方の間並びに少なくとも
一方の予熱器及び乾燥カラム、冷却器、及び他方の予熱
器及び乾燥カラムを通り、そしてトリチウム取扱施設を
通らない循環回路もしくは、トリチウム取扱施設を通る
循環回路を形成できるようにパルプが設置されている連
続的なトリチウム除去装置に関する。
The present invention also connects a tritium handling facility, an oxidation catalyst bed and a tritiated water removal circuit in series, the oxidation catalyst bed serving to convert tritium compounds into tritium water;
In the tritium water removal circuit, a preheater and a drying column, a cooler, a preheater and a drying column are connected in parallel, a tritium water receiving tank is connected to the cooler, and a tritium handling facility, an oxidation catalyst bed, and A circuit or tritium handling circuit between any one of two preheaters and drying columns and passing through at least one preheater and drying column, a cooler, and the other preheater and drying column and not passing through a tritium handling facility. Concerning a continuous tritium removal device in which the pulp is installed so as to form a circulation circuit through the facility.

以下、本発明を第2図に示す実施例に従って詳細に説明
する。
Hereinafter, the present invention will be explained in detail according to the embodiment shown in FIG.

■はトリチウム除去装置、11はトリチウム取扱施設を
示し、乾燥カラム14および20には新品または再生し
たゼオライト系吸着剤が充填されていて、先ずトリチウ
ム取扱施設πにおいて漏洩したトリチウム化合物を含ん
だ空気(被処理空気)はトリチウム取扱施設置−v1−
循環ポンプ11−酸化触媒床12−V、V3−予熱器1
ろ一乾燥力ラム14−v4.v5−露点計21−V、4
−トリチウム取扱施設■の閉回路を循環して吸着系を形
成する。この時、他の弁は全て閉の状態にある。即ち、
被処理空気中のトリチウム化合物は酸化触媒床12によ
って、すべて水の形に変換されて乾燥カラム14で吸着
される。この吸着工程における乾燥カラム14の破過点
は勿論経時変化による吸着能の低下は露点計22によっ
て検知され、露点計22によって乾燥カラム14が破過
点又は、破過点近(に達したことを検知すると、乾燥カ
ラム14は吸着工程から再生工程に切替るとともに乾燥
カラム20が吸着工程に入る。
■ indicates a tritium removal device, 11 indicates a tritium handling facility, drying columns 14 and 20 are filled with new or regenerated zeolite adsorbent, and air containing tritium compounds leaked at the tritium handling facility π ( air to be treated) is tritium handling facility -v1-
Circulation pump 11 - oxidation catalyst bed 12 - V, V3 - preheater 1
Filter drying power ram 14-v4. v5-Dew point meter 21-V, 4
-Circulates in the closed circuit of the tritium handling facility ■ to form an adsorption system. At this time, all other valves are closed. That is,
All tritium compounds in the air to be treated are converted into water by the oxidation catalyst bed 12 and adsorbed by the drying column 14 . The dew point meter 22 detects not only the breakthrough point of the drying column 14 in this adsorption process but also the decrease in adsorption capacity due to changes over time. When detected, the drying column 14 switches from the adsorption process to the regeneration process, and the drying column 20 enters the adsorption process.

即ち、Vl、−循環ポンプ11−酸化触媒床12V2 
、”3T”)!に513−乾燥カラム14−V4゜■7
−露点計16−冷却器17−■8.■11−子熱器19
−乾燥力ラム20−■□2.■□3−露点計22−V□
5の閉回路を形成し、予熱器1ろで150〜250Cに
加熱した循環空気を同じく加熱器5で150〜250C
に加熱した乾燥カラム14に送入して、該乾燥カラム1
4内に吸着しているトリチウム水を脱着させて乾燥カラ
ム14は再生される。この乾燥カラム14の再生工程を
形成する閉回路の中にトリチウム取扱施設■を組むこと
も可能である。このようにして脱着したトリチウム水又
は脱着したトリチウム水と酸化触媒からのトリチウム水
を含んだ空気は冷却器17で5Cまで冷却されてトリチ
ウム水の大部分を凝縮除去し、該トリチウム水はトリチ
ウム水受槽18に貯蔵される。上記のように冷却器17
で大部分のトリチウム水は凝縮除去されるが、凝縮除去
されなかったトリチウム水は空気とともに常温下の乾燥
カラム20に送入口、ここでトリチウム水は吸着されて
完全に除去される。上記の吸着工程下にある乾燥カラム
20の破過点は露点計22によって検知される。
That is, Vl, - circulation pump 11 - oxidation catalyst bed 12V2
, “3T”)! 513-Drying column 14-V4゜■7
-Dew point meter 16-Cooler 17-■8. ■11-Child heater 19
-Drying power ram 20-■□2. ■□3-Dew point meter 22-V□
The circulating air heated to 150-250C by preheater 1 is heated to 150-250C by heater 5.
the drying column 14 heated to
The drying column 14 is regenerated by desorbing the tritiated water adsorbed in the drying column 14. It is also possible to incorporate a tritium handling facility (2) into the closed circuit forming the regeneration process of this drying column 14. The air containing the tritium water desorbed in this way or the desorbed tritium water and the tritium water from the oxidation catalyst is cooled to 5C in the cooler 17 to condense and remove most of the tritium water. It is stored in the receiving tank 18. Cooler 17 as above
Most of the tritiated water is condensed and removed, but the tritiated water that is not condensed and removed is sent together with air to the drying column 20 at room temperature, where the tritiated water is adsorbed and completely removed. The breakthrough point of the drying column 20 under the above adsorption process is detected by the dew point meter 22.

次いでトリチウム取扱施設■において漏洩したトリチウ
ム化合物を含んだ空気(被処理空気)はトリチウム取扱
施設置I−V1−循環ポンプ11−酸化触媒床12−■
□。、■11−子熱器19−乾燥カラム20−V、□、
V13−露点計22−V、4−)リチウム取扱施設■の
閉回路を循環して吸着系を形成する。この時、他の弁は
全て閉の状態にある。即ち、被処理空気中のトリチウム
化合物は酸化触媒床12によって、すべて水の形に変換
されて乾燥カラム20で吸着される。この吸着工程にお
ける乾燥カラム20の破過点は勿論経時変化による吸着
能の低下は露点計22によって検知され、露点計22に
よって乾燥カラム20が破過点又は、破過点近くに達し
たことを検知すると、乾燥カラム2oは吸着工程から再
生工程に切替るとともに乾燥カラムが吸着工程に入る。
Next, the air containing the tritium compound (air to be treated) that leaked from the tritium handling facility (■) is transferred to the tritium handling facility (I-V1) - circulation pump 11 - oxidation catalyst bed 12 - (2)
□. , ■11-Child heater 19-Drying column 20-V, □,
V13-Dew point meter 22-V, 4-) Circulate through the closed circuit of the lithium handling facility (■) to form an adsorption system. At this time, all other valves are closed. That is, all tritium compounds in the air to be treated are converted into water by the oxidation catalyst bed 12 and adsorbed by the drying column 20. The dew point meter 22 detects not only the breakthrough point of the drying column 20 in this adsorption process, but also the decrease in adsorption capacity due to changes over time. When detected, the drying column 2o switches from the adsorption process to the regeneration process, and at the same time, the drying column enters the adsorption process.

即ち、Vl、−循環ポンプ11−酸化触媒床12’10
. ■11−予熱器19−乾燥力ラム2O−V12゜V
l9−露点計16−冷却器17−V6.V13−予熱器
1ろ一乾燥力ラム2O−V4.V5−露点計22−V□
5の閉回路を形成し、予熱器16で1ゝ50〜250C
に加熱した循環空気を同じく加熱器5で150〜250
Cに加熱した乾燥カラム20に送入して、該乾燥カラム
20内に吸着しているトリチウム水を脱着させて乾燥カ
ラム14は再生される。この乾燥カラム14の再生工程
を形成する閉回路の中にトリチウム取扱施設■を組込む
ことも可能である。このようにして脱着したトリチウム
水又は脱着したトリチウム水と酸化触媒からのトリチウ
ム水を含んだ空気は冷却器17で5Cまで冷却されてト
リチウム水の大部分を凝縮除去し、該トリチウム水はト
リチウム水受槽18に貯蔵される。
That is, Vl, - circulation pump 11 - oxidation catalyst bed 12'10
.. ■11-Preheater 19-Drying power ram 2O-V12°V
19-Dew point meter 16-Cooler 17-V6. V13-Preheater 1 filter-drying power ram 2O-V4. V5-Dew point meter 22-V□
A closed circuit of 5 is formed, and the preheater 16 is heated to 1.50~250C.
The circulating air heated to 150 to 250
The drying column 14 is regenerated by feeding it into the drying column 20 heated to C and desorbing the tritium water adsorbed in the drying column 20. It is also possible to incorporate the tritium handling facility (1) into the closed circuit forming the regeneration process of the drying column 14. The air containing the tritium water desorbed in this way or the desorbed tritium water and the tritium water from the oxidation catalyst is cooled to 5C in the cooler 17 to condense and remove most of the tritium water. It is stored in the receiving tank 18.

上記のように冷却器17で大部分のトリチウム水は凝縮
除去されるが、凝縮除去されなかったトリチウム水は空
気とともに常温下の乾燥カラム14に送入し、ここでト
リチウム水は吸着されて完全に除去される。上記の吸着
工程下にある乾燥カラム14の破過点は露点計22によ
って検知される。
As mentioned above, most of the tritiated water is condensed and removed in the cooler 17, but the tritiated water that is not condensed and removed is sent together with air to the drying column 14 at room temperature, where the tritiated water is adsorbed and completely removed. will be removed. The breakthrough point of the drying column 14 under the above adsorption process is detected by the dew point meter 22.

本発明の特徴は、2つの乾燥カラムはパルプ操作によっ
て吸着および再生を繰返し、再生のために取外すす必要
がない。冷却器で大部分のトリチウム水を凝縮させ、残
りのトリチウム水は別の乾燥カラムに吸着させて、次工
程で回収する。そのため本発明においては冷却器をそれ
ほど低温にする必要がなく冷却器の目詰りをなくすこと
が出来る。
A feature of the present invention is that the two drying columns are repeatedly adsorbed and regenerated by pulping operations, and there is no need to remove them for regeneration. Most of the tritiated water is condensed in a condenser, and the remaining tritiated water is adsorbed in another drying column and recovered in the next step. Therefore, in the present invention, there is no need to lower the temperature of the cooler to such a low temperature, and clogging of the cooler can be eliminated.

以下、本発明の実施例を示す。Examples of the present invention will be shown below.

実施例 1 第2図に示すような装置でトリチウム水の除去を行なっ
た。乾燥カラムにはそれぞれモレキュラー7−で5A”
/16インチ投レット5.5 ky充填された。その酸
化触媒はニーゲルハードA−’166481/8インチ
ペレット1.9kgが充填された。被処理トリチウム化
合物としてトリチウム水40〇−465マイクロキユー
リー/ mllを使用した。乾燥カラムはヒーターで2
50tl’まで加熱できる冷却器はフレオン冷凍で入口
空気温度が40Cのとき出口温度5Cまで冷却できるも
のである。トリチウム水を乾燥カラムに吸着させた。再
生は260Cで5時間行なった。再生時の空気量5m3
7hであった。冷却器から620m1のトリチウム水が
回収された。再生後の乾燥カラムには1.5X10−6
マイクロキユーリー/ ml空気のトリチウムが存在し
、これは許容基準値以下であった。
Example 1 Tritiated water was removed using an apparatus as shown in FIG. Each drying column contains 5A” of molecular 7-
/16 inch throwlet 5.5 ky was filled. The oxidation catalyst was packed with 1.9 kg of Nigelhard A-'16648 1/8 inch pellets. Tritium water of 400-465 microcuries/ml was used as the tritium compound to be treated. The drying column is heated with 2
A cooler that can heat up to 50 tl' is a Freon refrigeration device that can cool down to an outlet temperature of 5C when the inlet air temperature is 40C. Tritiated water was adsorbed onto a dry column. Regeneration was performed at 260C for 5 hours. Air volume during playback: 5m3
It was 7 hours. 620ml of tritiated water was recovered from the cooler. 1.5X10-6 for drying column after regeneration
Tritium of microcuries/ml air was present, which was below the acceptable standard value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のトリチウム化合物との除去装置を示すフ
ローシートであり、第2図は本発明のトリチウム化合物
の除去装置を示すフローシートである。 特許出願人 日本原子力研究所 (外1名) (外4名) 手続補正書(方式) 昭オロ廿年 2月73日 昭和 H年74特願第 77汁h 号 ろ、補正をする者 事件との関係 出 願 人 住所 烙宕r、 (uoq)日本原子力研究所(外1名) 4代理人
FIG. 1 is a flow sheet showing a conventional tritium compound removal device, and FIG. 2 is a flow sheet showing a tritium compound removal device of the present invention. Patent applicant: Japan Atomic Energy Research Institute (1 other person) (4 other people) Procedural amendment (method) February 73, 2013 Showa H year 1974 Patent Application No. 77-h, the case of the person making the amendment Relationship: Applicant Address: (UOQ) Japan Atomic Energy Research Institute (1 other person) 4 agents

Claims (1)

【特許請求の範囲】 1 トリチウム取扱施設、酸化触媒床及びトリチウム水
除去回路を直列に連結し、該トリチウム水除去回路にお
いては予熱器−乾燥カラムA。 冷却器及び予熱器−乾燥カラムB、が並列に連結されて
おり、 (a)トリチウム取扱施設、酸化触媒床、及び予熱器お
よび乾燥カラムAからなる循環回路を形成するようにパ
ルプを操作し、その循環回路に空気を循環させ、トリチ
ウム取扱施設より発生するトリチウム化合物を循環空気
と共に酸化触媒床に導入し、そのトリチウム化合物をト
リチウム水に転換させ、そのトリチウム水を水蒸気の形
でその循環空気と共に予熱器−乾燥カラムAに導入して
、そのトリチウム水を乾燥カラムAに吸着させ、乾燥カ
ラムAの吸着剤が破過点または破過点近(になるまでそ
の操作を続け、 (b) 次いで少なくとも予熱器−乾燥カラムA、冷却
器及び予熱器−乾燥カラムBを通り、そしてトリチウム
取扱施設を通らな(・循環回路もしくはトリチウム取扱
施設を通る循環回路を形成するようにパルプを操作し、
その間に空気を循環させ、乾燥カラムAを加熱して乾燥
カラムAの吸着剤から1−1)チウム水を脱着させ、冷
却器においてトリチウム水の大部分を凝縮させ、その残
りのトリチウム水を乾燥カラムBに吸着させ、それによ
って乾燥カラムAの再生を行ない、 (、?) l−!Jチウム取扱施設、酸化触媒床、及び
予熱器および乾燥カラムBからなる循環回路を形成する
ようにパルプを操作し、その循環回路に空気を循環させ
、トリチウム取扱施設より発生するトリチウム化合物を
循環空気と共に酸化触媒床に導入し、そのl−IJチウ
ム化合物をトリチウム水に転換させ、その[・リチウム
水を水蒸気の形でその循環空気と共に予熱器−乾燥カラ
ムBに導入して、そのトリチウム水を乾燥カラム已に吸
着させ、乾燥カラムBの吸着剤が破過点または破過点近
くになるまでその操作を続け、そして (d)次いで少なくとも予熱器−乾燥カラムB、冷却器
及び予熱器−乾燥カラムAを通り、そしてトリチウム取
扱施設を通らない循環回路もしくはトリチウム取扱施設
を通る循環回路を形成するようにバルブを操作し、その
間に空気を循環させ、乾燥カラムBを加熱して乾燥カラ
ムAの吸着剤からトリチウム水な脱着させ、冷却器にお
いてトリチウム水の大部分を凝縮させ、その残りのトリ
チウム水を乾燥カラムAに吸着させ、それによって乾燥
カラムBの再生を行なうことからなる工程を繰返すこと
からなる連続的なトリチウム除去方法。 2、トリチウム取扱施設、酸化触媒床及びトリチウム水
除去回路を直列に連結し、その酸化触媒床はトリチウム
化合物をトリチウム水に変換する役割を果し、該トリチ
ウム水除去回路においては予熱器及び乾燥カラム、冷却
器並びに予熱器および乾燥カラムが並列に連結されてお
り、冷却器にトリチウム水受槽が連結されており、トリ
チウム取扱施設、酸化触媒床、及び2つの予熱器および
乾燥カラムの任意の一方の間並びに少な(とも一方の予
熱器及び乾燥カラム、冷却器、及び他方の予熱器及び乾
燥カラムを通り、そしてトリチウム取扱施設を通らない
循環回路もしくは、トリチウム取扱施設を通る循環回路
を形成できるようにバルブが設置されている連続的なト
リチウム除去装置。
[Scope of Claims] 1. A tritium handling facility, an oxidation catalyst bed, and a tritiated water removal circuit are connected in series, and in the tritiated water removal circuit, a preheater-drying column A is provided. cooler and preheater-drying column B, are connected in parallel; (a) operating the pulp to form a circuit consisting of a tritium handling facility, an oxidation catalyst bed, and a preheater and drying column A; Air is circulated through the circulation circuit, tritium compounds generated from the tritium handling facility are introduced into the oxidation catalyst bed together with the circulating air, the tritium compounds are converted into tritiated water, and the tritiated water is mixed with the circulating air in the form of water vapor. The tritiated water is adsorbed into the preheater-drying column A, and the operation is continued until the adsorbent in the drying column A is at or near the breakthrough point; (b) then through at least the preheater-drying column A, the cooler and the preheater-drying column B, and through the tritium-handling facility (-manipulating the pulp so as to form a circuit or a circuit through the tritium-handling facility;
Meanwhile, air is circulated and drying column A is heated to desorb 1-1) tium water from the adsorbent in drying column A, and most of the tritium water is condensed in the cooler, and the remaining tritium water is dried. It is adsorbed onto column B, thereby regenerating the dry column A, (,?) l-! J Pulp is operated to form a circulation circuit consisting of a tium handling facility, an oxidation catalyst bed, a preheater and a drying column B, and air is circulated through the circulation circuit to remove tritium compounds generated from the tritium handling facility. The lithium water is introduced into the preheater-drying column B in the form of steam together with the circulating air to convert the l-IJ tium compound into tritiated water. adsorb onto the drying column and continue the operation until the adsorbent in drying column B is at or near the breakthrough point, and (d) then at least the preheater-drying column B, the cooler and the preheater-drying. The valves are operated to form a circuit through column A and either bypassing the tritium handling facility or through the tritium handling facility, circulating air between them to heat drying column B and drying column A. Repeating the process consisting of desorbing tritiated water from the adsorbent, condensing most of the tritiated water in a cooler, and adsorbing the remaining tritiated water onto drying column A, thereby regenerating drying column B. A continuous tritium removal method consisting of: 2. A tritium handling facility, an oxidation catalyst bed, and a tritium water removal circuit are connected in series, and the oxidation catalyst bed plays the role of converting tritium compounds into tritium water, and the tritium water removal circuit has a preheater and a drying column. , a cooler and a preheater and a drying column are connected in parallel, a tritium water receiver is connected to the cooler, and a tritium handling facility, an oxidation catalyst bed, and any one of the two preheaters and drying columns are connected in parallel. A circulating circuit that passes through the preheater and drying column on one side, a cooler, and the preheater and drying column on the other side and does not pass through the tritium handling facility, or a circulation circuit that passes through the tritium handling facility can be formed. Continuous tritium removal equipment with valves installed.
JP58178884A 1983-09-27 1983-09-27 Method and device for removing tritium Pending JPS6070398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58178884A JPS6070398A (en) 1983-09-27 1983-09-27 Method and device for removing tritium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58178884A JPS6070398A (en) 1983-09-27 1983-09-27 Method and device for removing tritium

Publications (1)

Publication Number Publication Date
JPS6070398A true JPS6070398A (en) 1985-04-22

Family

ID=16056379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58178884A Pending JPS6070398A (en) 1983-09-27 1983-09-27 Method and device for removing tritium

Country Status (1)

Country Link
JP (1) JPS6070398A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4935196A (en) * 1987-10-02 1990-06-19 The United States Of America As Represented By The United States Department Of Energy Differential atmospheric tritium sampler
CN105741898A (en) * 2016-04-20 2016-07-06 中国工程物理研究院核物理与化学研究所 Treatment device for tritium gas and tritiated water

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633599A (en) * 1979-08-28 1981-04-04 Japan Atomic Energy Res Inst Purifier capable of continuous recovery of tritium*used for helium cooling medium for highhtemperature gas furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633599A (en) * 1979-08-28 1981-04-04 Japan Atomic Energy Res Inst Purifier capable of continuous recovery of tritium*used for helium cooling medium for highhtemperature gas furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4935196A (en) * 1987-10-02 1990-06-19 The United States Of America As Represented By The United States Department Of Energy Differential atmospheric tritium sampler
CN105741898A (en) * 2016-04-20 2016-07-06 中国工程物理研究院核物理与化学研究所 Treatment device for tritium gas and tritiated water

Similar Documents

Publication Publication Date Title
US4056369A (en) Method of and apparatus for the recovery of a desired material from a carrier stream
US4511375A (en) Process and apparatus for direct heat transfer temperature swing regeneration
US3928004A (en) Purification of inert gases
CN102205235A (en) Method and apparatus for circulating, desorbing, shunting, recovering, and reclaiming hot gas by using adsorption bed
CN104888741A (en) Solid adsorbent regeneration process
WO1990011117A1 (en) Process for efficiently recovering adsorbable gas from gas which contains adsorbable gas at low concentration
JP3084248B2 (en) Two-stage adsorption / separation equipment and method for recovering carbon dioxide from flue gas
JP6671204B2 (en) Gas separation equipment
JPS63305924A (en) Method and apparatus for purifying gas containing hydrogen isotope
CN105097060A (en) Helium purifying and regenerating system and method for high-temperature gas cooled reactor optimization
JPS6070398A (en) Method and device for removing tritium
JPH0768127A (en) Hot-air desorption type solvent recovering device
JP2001137646A (en) Device and method for adsorption treating waste gas
JPH06226029A (en) Method for recovering solvent
US3507051A (en) Regeneration process
JPS6182825A (en) Solvent recovery apparatus
JP3544860B2 (en) Pretreatment device in air separation unit
US4248607A (en) CTR Fuel recovery system using regeneration of a molecular sieve drying bed
JP3364118B2 (en) Gas treatment method and apparatus using inorganic adsorbent
WO1991005597A1 (en) Method and apparatus for the separation of one or more agents
JPH0938445A (en) Method for regenerating adsorption tower
JP3515901B2 (en) Pretreatment device in air separation unit
JPS58170518A (en) Operation of adsorbing tower
JPS6359339A (en) Heat recovery method in carbon dioxide removing apparatus
JP2001137647A (en) Multistage adsorption treating device for waste gas and method