JPS6069736A - Multiplier - Google Patents

Multiplier

Info

Publication number
JPS6069736A
JPS6069736A JP17621083A JP17621083A JPS6069736A JP S6069736 A JPS6069736 A JP S6069736A JP 17621083 A JP17621083 A JP 17621083A JP 17621083 A JP17621083 A JP 17621083A JP S6069736 A JPS6069736 A JP S6069736A
Authority
JP
Japan
Prior art keywords
precision
data
register
double
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17621083A
Other languages
Japanese (ja)
Inventor
Shunji Inada
俊司 稲田
Shigeo Abe
阿部 重夫
Masao Takato
高藤 政雄
Tadaaki Bando
忠秋 坂東
Hideyuki Hara
秀幸 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17621083A priority Critical patent/JPS6069736A/en
Publication of JPS6069736A publication Critical patent/JPS6069736A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/483Computations with numbers represented by a non-linear combination of denominational numbers, e.g. rational numbers, logarithmic number system or floating-point numbers
    • G06F7/487Multiplying; Dividing
    • G06F7/4876Multiplying

Abstract

PURPOSE:To speed up DELTA function operation while maintaining precision by outputting the multiplication result between signal-precision data and double precision data with double precision as the result of operation which is performed by a pipeline multiplier. CONSTITUTION:Data having signal precision and double precision are inputted to inputs 2-1 and 2-2 respectively. Exponent parts of the signal precision and double precision data are set in registers 103 and 104 at the 1st stage 2 of the multiplier. Mantissa parts are set in registers 116 and 117. The exponent parts are summed up by an adder 105 and set in a register 107 at the 2nd stage 3. The mantissa parts are multiplied by a multiplier 118 and set in a register 119. The contents are transferred to a register 108 as they are and the multiplication result of the mantissa parts are added by an adder 120 by using the shift contents of the output at the 3rd stage 4. A bit correction control circuit 126 makes bit corrections at the 4th stage 5 when necessary and the contents of the registers 108, 113, and 121 are outputted by an output control circuit 125.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、70一テイノグ演典回路に・床9、特Vこ、
■EEE4準フローティ/グデータ7オーマントを用い
るベクトル演算を高速に大行J−るパイブライ/尿尊器
に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention is directed to the 70-1 Teinogu Dictionary Circuit, Floor 9, Special V Co.
(2) Concerning a pibre/urinary device that performs vector operations at high speed using EEE4 semi-floating/Gdata 7omants.

〔発明の背景」 ノロ−ティ7グデータで来A、C央行する暑せ、関数演
其等では桁+!2!rちr防ぐために倍精度で乗算する
ことが必賛となる。
[Background of the invention] Noorty 7g data allows you to move from A to C, and in function operations, etc., the digit is +! 2! Multiplication with double precision is essential to prevent r-chir.

5IN(入)を解く拗せの処理手順は仄のようになる。The processing procedure for solving 5IN is as shown below.

(1)X=−F十−1に分離する。(1) Separate into X=-F1-1.

2 (−1<F<1.l :置数) (4) 5IN(−・F )τ氷めゐ。2 (-1<F<1.l: positional number) (4) 5IN(-・F)τice.

(2)VこPいて2/πが匿桔度データで与えられlい
とIXl〉π/2の場合、(2/π・X)から小以都F
f取り出し1ことさ小数都Frこ桁洛らが生し、+iL
が床でない。この桁/8らC防ぐため、2/πτ后梢度
データで4ん、Xt単梢度データから活椙度データVC
変換し、倍祠度米其を行なったのでは、酸分な処理のた
め注IIヒは下tしてしよう。
(2) If V 〉 2/π is given by anonymity data and 〉 π/2, then from (2/π・X)
f take out 1 and the decimal capital Fr this figure is born, +iL
is not the floor. In order to prevent this digit / 8 ra C, 2 /
If the rice is converted and then double-sharpened, then note II will be removed due to the acid treatment.

〔発明の目的〕[Purpose of the invention]

不祐明の目的は、単精度と倍4n度のビット艮が異な/
)4甘に(率4f1度)X(fir謂就〕の乗算全行な
い、その釆昇威釆を惜梢にで出力子ゐパイグライア乗算
器を提供するにるる。
The purpose of Fuyumei is to understand the difference between single precision and double 4n degree bit interpretation.
) 4 times (rate 4f1 degrees) x (fir), and provide the output child Pygraia multiplier by sparing its power.

〔発明の概要〕[Summary of the invention]

不発明のA点はパイプライ/乗真器で実乗算器演算とし
て、単精度データと倍精度データの乗算結果を倍精度デ
ータで出力する愼能τもたせるにめる。
The uninvented point A is a pipeline/multiplier which performs a real multiplier operation and has the ability τ to output the multiplication result of single-precision data and double-precision data as double-precision data.

〔発明の人力m例〕[Example of human power for invention]

第1図yCI E E E像準フローティングフォーマ
ットの単精度と倍精度のデータ金示す。このフォーマッ
トで衣魂さjLるデータは、Sを符号部、E B HE
Dをすh数郡、Fg 、 )’D e仮数部として、a
−BB 単4〃度:(−1J−・2 ・(1,Fa )BD−1
0 1t¥4匿:(−1)”・2 ・(1,FD )である
。但し、k3s 、 BDはそnぞれ単精度、倍々官役
のd旨11tiのバイアス分でるる。′第2凶にパイプ
ライン乗算器の構成を示す。図りこνいて、lはパイプ
ライン末真番金制御するマイクロプログラムコノトロー
ラ、2rl:ハイプライ/末舅器第1ステージ、3はパ
イ12り5乗Km第3ステージ、bkよパイプ2イ/乗
昇器第4ステージ、x−i〜l −4y;Lマイクロプ
ロクラムコ/トローラよジ出カされるパイプライン乗メ
器の市U@信号、2−1はパイプライ/来算ig圧大刀
信号、2−2はバイグライア米昇器右入力1i1+js
 23はパイグンイン米A器出カ1B号でるる。
Figure 1 shows single-precision and double-precision data in the yCI E E E image semi-floating format. In this format, the data to be saved is S as the code part and E B HE as the code part.
Let D be the number group, Fg, )'D e as the mantissa part, a
-BB AAA degree: (-1J-・2 ・(1,Fa) BD-1
0 1t ¥ 4 anonymity: (-1)"・2 ・(1, FD). However, k3s and BD are the bias of n single precision and double official's d effect 11ti, respectively. 'th 2 shows the configuration of the pipeline multiplier. In detail, l is the microprogram controller that controls the pipeline terminal, 2rl is the first stage of the high ply/terminus, and 3 is pi 12 raised to the 5th power. Km 3rd stage, bk yo pipe 2i/rider 4th stage, x-i~l -4y; -1 is the pipe line / future ig pressure signal, 2-2 is the right input of the big wire rice booster 1i1+js
23 is Paigun Inn rice A machine output 1B.

第3図にバイグライン乗扉器の詳細偶成を示す。Figure 3 shows the detailed combination of the bigline door device.

図1こ2いて、101,102は指数部入力制御回路、
103,104rt:入力ti e di((l:ラッ
チすルレジスタ、105はへカ擢敢部k)用昇すゐ刀口
昇蕗、107は力Ill舅命106の加昇給米【ラッチ
するレジスタ、108はレジスタlυ7の円台τその筐
よラッチするレジスタ、1cJ9r、i指数部の演j結
米t′tのまま出力するか、■、硼典して田カする加其
器、l l 0Dlx、有人カイ+号KE Q Rfb
 E、 OR回路、IllはE OR回路1111の出
カτラッチするレジスタ、l l 2rtl l lの
円台f’tのままランチするレジスタ、113は112
の円台tそのままラッチするレジスタ、114,115
は仮数部人力制御tgl14.116,117は人力仮
数部t2ンチ′″j′ゐレジスタ、118v′i、丘側
板数部と石側板畝部金来算する宋昇需、119は仮数部
を乗算し7′CS分$tラッチするレジスタ、120r
i1191cランチされた郡分槓tガロ鼻する刃口算器
、121は120の加n結果全2ソチするレジスタ、1
22は121にラッチされた刀q算精米を32ピント丘
シフトするゾノタ、123は@0″か/フタ122の出
力全セレクトすゐセレクタ、工24はレジスタ121c
t)Iil力勿そのまi出力すゐか、1ピント石シフト
した1直・と出力するかτセレクトするセレクタ、12
5は出力′iti制御回路、126はビット補正が必要
かどうかtセレクトするピント補正制11141回路、
127はバイアス補正値、2−4゜2−5は入力16号
2−1.2−2から指数部人力霜1jf4回路101,
101こ工つてと9出された指数部人力16号、2−(
i、2−7は入力情号2−1゜2−2から仮−a都人力
制御回路114,115によって取り出さA7’(仮数
部入力信号、2−8は符号都演昇精釆、2−9は指数部
演算結果、2−10は仮数部演算結果でるる。
In FIG. 1 and 2, 101 and 102 are exponent input control circuits;
103, 104 rt: Input ti e di ((l: latch register, 105 is for the heka active part k), 107 is the increase for the power Ill father-in-law 106 [latching register, 108 is the circular table τ of the register lυ7, and the register that latches the casing, 1cJ9r, and the i exponent part is output as it is. Manned Kai+ KE Q Rfb
E, OR circuit, Ill is E A register that latches the output τ of OR circuit 1111, a register that launches with the round table f't of l l 2rtl l l, 113 is 112
Registers that latch as is, 114, 115
is mantissa manual control tgl14. 116, 117 is manual mantissa t2 inch'''j'2 register, 118v'i, hill side board number part and stone side board ridge part is calculated by Song Dynasty, 119 is multiplication of mantissa part. Register to latch $t for 7'CS, 120r
i1191c Lunched county branch t Garo nose blade calculator, 121 is 120 addition n result total 2 registers, 1
22 is a zonota that shifts the 32 focus hill of the sword q arithmetic milling rice latched to 121, 123 is @0''/selector that selects all outputs of the lid 122, and work 24 is a register 121c.
t) A selector that selects whether to output Iil force as is, or to output 1 shift with 1 focus shift, 12
5 is an output 'iti control circuit, 126 is a focus correction system 11141 circuit that selects whether or not bit correction is necessary;
127 is the bias correction value, 2-4°2-5 is the input number 16 from 2-1.2-2 to the exponential part manual frost 1jf4 circuit 101,
101 Kotsute and 9 were issued for the index department human power No. 16, 2-(
i, 2-7 are taken out from the input information 2-1 and 2-2 by the artificial human power control circuits 114 and 115 A7' (mantissa input signal, 2-8 is the code output, 2- 9 is the result of exponent part calculation, and 2-10 is the result of mantissa part calculation.

(単精度データ)X(倍精度データ)を実行したときの
手順を以下に説明する。
The procedure for executing (single precision data) X (double precision data) will be described below.

まず、第1ステージ2の圧入力2−1に単精度データが
、右入力2−2に倍精度データ上位32ピントが転送さ
れる。このときマイクロプログラムコノトローラlよ#
)mlステージ2に対し入力制御1R号1−1が出力さ
れ、指数部入力制御回路101.102によシ左人力2
−11右人力2−2の指数部2−4.2−5が出力され
る。第4図に指数部入力制御回路10112)構成を示
す。図にお゛いて、1−il、1−12は入力制御信号
l−1に含まれる左人力luu呻信号で、左入力データ
が単精度データのとき1−iiが°l″、倍精度データ
王立32ピントのとき1−12が′1”となシ、単精度
、倍精度それぞれの場合の圧入力データの指数部2−4
が出力される。102もlOlと同じ構成で、入力制御
信号1−1に含まれる右入力1fflJ 1即信号によ
り右入力データの指数部2−5が出力される。この場合
は、圧入力2−1が単精度データ、右入力2−2が倍s
就データ上位32ビットであるので、レジスタ103に
:は単精度データの指数部、レジスタ104には倍稍に
データの指数部がセットされる。仮数部入力制御回路1
14.115によ多座入力2−1、右入力2−2の仮数
部2−6.2−7が出力される。第5図に仮数部入力制
御回路114の構成分水す。図に2いて、1−11.1
−12.1−13は入力制御信号1−1に宮よれる左入
力制御信号で、圧入力データが単精度データのとき、1
−11が“1″、倍槽メデータ上位32ビットのとき、
1−12が1″、倍精度データ下位32ピントのとき、
1−13が”1″となシ、単精度、倍精度上位32ビッ
トそtぞれの場合の左入力データの仮数部2−6が出力
される。115も114と構成は同じで、入力制御信号
1−1に含まれる右人力制御信号によシ右人力データの
仮数部2−7が出力される。この場合は、仮数部2−6
の0〜7ビツト目に0,8ピント目にl#、9〜31ビ
ツト目に左入力単精度データの仮数部が出力され、仮数
部2−700〜lOビツト目に0.11ビツト目に“1
1′、12〜31ビツト目に右入力倍精度データ上位″
32ピントに含まれる仮数部が出力され、レジスタ11
6,117にセントされる。2−6の8ビツト目と2−
7の11ピント目に1を出力したのは、データフォーマ
ット上、かくされたピントを立てるだめのものである。
First, single-precision data is transferred to the press input 2-1 of the first stage 2, and upper 32 pinpoints of double-precision data are transferred to the right input 2-2. At this time, the microprogram controller #
) The input control 1R No. 1-1 is output to the ml stage 2, and the input control circuit 101.102 outputs the left input control 2.
-11 The exponent part 2-4.2-5 of the right human power 2-2 is output. FIG. 4 shows the configuration of the exponent part input control circuit 10112). In the figure, 1-il and 1-12 are the left human power luu groan signals included in the input control signal l-1, and when the left input data is single-precision data, 1-ii is °l'', double-precision data For Royal 32 pinto, 1-12 is '1'', exponent part 2-4 of press-in force data for single precision and double precision respectively.
is output. 102 also has the same configuration as lOl, and the exponent part 2-5 of the right input data is outputted by the right input 1fflJ1 immediate signal included in the input control signal 1-1. In this case, press input 2-1 is single precision data, right input 2-2 is double s
Since this is the upper 32 bits of data, : is set in the register 103 as the exponent part of the single-precision data, and in the register 104, the exponent part of the data in double precision is set. Mantissa input control circuit 1
14.115 outputs the mantissa parts 2-6, 2-7 of the multi-located input 2-1 and the right input 2-2. FIG. 5 shows the configuration of the mantissa input control circuit 114. In figure 2, 1-11.1
-12.1-13 is the left input control signal based on the input control signal 1-1, and when the press force data is single precision data, 1
When -11 is “1” and the upper 32 bits of the double tank metadata,
When 1-12 is 1″ and the lower 32 double-precision data is in focus,
The mantissa part 2-6 of the left input data is output when 1-13 is "1" and the upper 32 bits of single precision and double precision are respectively t. 115 has the same configuration as 114, and the mantissa part 2-7 of the right human power data is outputted according to the right human power control signal included in the input control signal 1-1. In this case, the mantissa part 2-6
The mantissa part of the left input single-precision data is output from the 0th to 7th bits, l# is output from the 0th and 8th pins, the mantissa part of the left input single precision data is output from the 9th to 31st bits, and the mantissa part from 2-700th to lOth bits is output from the 0.11th bit. “1
1', 12th to 31st bits, right input double-precision data upper''
The mantissa part included in 32 pinto is output and stored in register 11.
6,117 cents. 8th bit of 2-6 and 2-
The reason for outputting 1 at the 11th focus of 7 is to set the hidden focus due to the data format.

禰も6図にレジスタ116,117にセットされたデー
タ分水す。
The data set in registers 116 and 117 are also shown in Figure 6.

図において、6−10FSは左入力の単精度データの仮
数部、6−2のFDυは右人力のI音稍度データ上位3
2ビットに富まれる反数部データでるる。
In the figure, 6-10 FS is the mantissa part of the left input single-precision data, and 6-2 FDυ is the top 3 I sound consistency data of the right input.
The reciprocal part data is enriched with 2 bits.

FORIIOによシ左右入力データの符号部τEO几し
た結果がレジスタ111にセットされる。
The sign part τEO of the left and right input data is processed by FORIIO, and the result is set in the register 111.

次のマン/サイクルでは、第lステージ2の右入力信号
線2−2に残シの倍精度データ下位32ピントが転送さ
れる。このときマイクロプログラムコノトローラlより
第1ステージ2に対し入力制御卸1g号1−16が出力
される。1−16が“12のとき仮数部入力制御回路1
17によシ、右入力信号線2−2のデータがそのままレ
ジスタ117にセントされる。レジスタ117にセント
されたデータτvJG図の6−3に示す。第lステージ
2の117以外のレジスタは更新しない。第2ステージ
では、最初のマシンサイクルでレジスタ1.03,10
4にセントされ7c指数部を加算し、その結果とバイア
ヌ1厘Bs金?)Jc算する。この場合は(単精度)x
(l精度)の演算を実行するので、指数部は ′)−no (gs−gD−in 1−Bl12″+−
s″×2’ =2 の計算をする必要がるる。倍精度で出力するためには、
指数部を加算した結果にバイアス値Bsを減算する必要
がめる。バイアス値を減算した結果をレジスタ107に
セットする。レジスタエl工の内容はそのままレジスタ
112にセントされる。
In the next man/cycle, the remaining double-precision data lower 32 pintos are transferred to the right input signal line 2-2 of the l-th stage 2. At this time, the input control controller 1g 1-16 is outputted from the microprogram controller 1 to the first stage 2. When 1-16 is “12”, the mantissa input control circuit 1
17, the data on the right input signal line 2-2 is sent to the register 117 as is. The data τvJG sent to the register 117 is shown in 6-3 of the figure. Registers other than 117 in the l-th stage 2 are not updated. In the second stage, in the first machine cycle registers 1.03, 10
4 cents and add the 7c exponent part and the result and Bayanu 1 rin Bs gold? ) Calculate Jc. In this case (single precision) x
Since the calculation is performed with (l precision), the exponent part is ')-no (gs-gD-in 1-Bl12''+-
It is necessary to calculate s″×2' = 2. To output in double precision,
It is necessary to subtract the bias value Bs from the result of adding the exponent part. The result of subtracting the bias value is set in the register 107. The contents of the register 112 are sent to the register 112 as they are.

乗算器118では、最初のマシンサイクルでレジスタ1
16,117にセントされたデータを乗算し、その部分
積tレジスタ119にセントする。
Multiplier 118 registers 1 in the first machine cycle.
16,117 is multiplied by the sent data and the partial product is sent to the t register 119.

次のマシンサイクルでは、第2ステージ3の乗算器11
8で、敢初のマシンサイクルでレジスタ116にセント
された単精度データの仮数部6−1と24目のマシンサ
イクルでレジス久117にセットされた倍硝屁データ下
位32ビット6−3が乗算され、部分積がレジスタ11
9にセントされる。第3ステージでは、レジスタ107
の内容がレジスタ108に、レジスタ112の内容カレ
ジスタ113にそのままセントされる。ニー目のマシン
サイクルでレジスタ119にセントされた単4波データ
の仮数部6−1と倍精度データ下位32ビットを乗算し
た部分、taを加算器120で加算し、その結果tレジ
スタ121へセットfる。
In the next machine cycle, the multiplier 11 of the second stage 3
8, the mantissa part 6-1 of the single-precision data sent to the register 116 in the first machine cycle is multiplied by the lower 32 bits 6-3 of the double-precision data set in the register 117 in the 24th machine cycle. and the partial product is stored in register 11
9 cents. In the third stage, register 107
The contents of the register 108 and the contents of the register 112 are sent to the register 113 as they are. The part obtained by multiplying the mantissa part 6-1 of the AAA wave data sent to the register 119 in the second machine cycle by the lower 32 bits of the double precision data, ta, is added by the adder 120, and the result is set in the t register 121. Fru.

次のマシンサイクルでは、34i目のマシンサイクルで
レジスタ119にセントされた内容と、レジスタ121
にセントされた内dtンフク122で圧へ32ヒ′ノド
シフトしたものケ力ロ算五番120で力n算し、その結
果全レジスタ121ヘセントする。そのときの刀aXの
状j法を第7図Vこ示す。図に2いて、8−1.8−2
はレジスタ121にセントされた仮数部乗真精釆のビッ
ト構成図で、8−1は最上位ピントから桁上げがめった
場合、8−2は桁上げがなかった場合を示す。
In the next machine cycle, the contents sent to register 119 in the 34i-th machine cycle and the contents sent to register 121
Of the data sent to dt, the pressure is shifted by 32 steps using the dt function 122, and the power n is calculated using the 5th step 120, and the result is sent to all registers 121. The shape of the sword aX at that time is shown in Figure 7V. 2 in the figure, 8-1.8-2
is a bit configuration diagram of the mantissa multiplied by the true value placed in the register 121, 8-1 shows the case where a carry is rarely carried from the most significant focus, and 8-2 shows the case where there is no carry.

次の777サイクルでは、最初ピント補正が必要かどう
かtビット補正制御回路126によってセレクトし、必
要かどうかに従って、レジスタ108.113,121
の内容を出力制御回路125によって出力する。第8図
に出力制御g1回路125の構成を示す。図に2いて、
1−41.1−42,1−43は、マイクロプログラム
コントローラlJ:pi4ステージ5に対して出力され
る信号1−4に含まれる信号で、1−41は単精度乗算
結果を出力するときに“1″となシ、1−42は(単精
夏ン×(缶精就)の乗算結果を陪硝匿で出力するときに
“l#となり、1−43は倍精度乗算結果を出力すると
きに”l″となる。ビット補正が必要でないならばレジ
スタ1130内谷を乗算結果出力信号線2−300ビツ
ト目に、レジスタ108の0〜10ビット目fi:2−
3の1〜11ビツト目に、レジスタ12工の2〜53ピ
ント目τ2−3の12〜63ビツト目に出力する。
In the next 777 cycles, the t-bit correction control circuit 126 first selects whether or not focus correction is necessary, and registers 108, 113, and 126 select whether or not focus correction is necessary.
The output control circuit 125 outputs the contents. FIG. 8 shows the configuration of the output control g1 circuit 125. In the figure 2,
1-41. 1-42, 1-43 are signals included in the signal 1-4 output to the microprogram controller lJ:pi4 stage 5, and 1-41 is a signal included in the signal 1-4 output when outputting the single-precision multiplication result. "1" and 1-42 are "l#" when outputting the multiplication result of (single precision summer x (can color) in double precision, and 1-43 outputs the double precision multiplication result. If bit correction is not required, the multiplication result output signal line 2-300th bit of the register 1130 is set to the 0th to 10th bits fi:2- of the register 108.
3, and the 12th to 63rd bits of the 2nd to 53rd pins τ2-3 of the 12th register.

ビット補正が必要ならば、レジスタ113の内容2−3
00ピント目に、レジスタ108の内容を加算器109
によってi 7Jaえてその結果を2−3の1〜11ビ
ツト目に、レジスタl 21(Dl〜51ビット目の内
容tシフタ124によって1ビツト右シフトすることに
より2−3の12〜63ビツト目に出力する。以上のよ
うにして乗算結果出力信号線2−3に(単槓贋)X(倍
精度)の乗算結果が1音4度で出力される。
If bit correction is required, the contents of register 113 2-3
At the 00th focus, the contents of the register 108 are added to the adder 109.
The result is shifted to the 12th to 63rd bits of 2-3 by shifting the result by 1 bit to the right using the shifter 124. As described above, the multiplication result of (single precision) x (double precision) is outputted to the multiplication result output signal line 2-3 in the form of one note and a fourth.

〔発明の効果〕〔Effect of the invention〕

不発明によれば、(単精度)×(倍精度)の乗算を行な
い倍精度で出力することができるので、硝反r保つfc
まま関数演算を高速化できる。
According to the invention, it is possible to perform multiplication of (single precision) x (double precision) and output in double precision, so fc
You can speed up functional operations.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はIEEE標準フローティングデータフォーマッ
ト図、第2図はパイプライン乗算器概略図、第3図はパ
イプライフ乗算器詳細図、第4図は第3図に2けるlO
lの構成図、第5図は第3図に2ける114の構成図、
第6図は第3図における116,117にセントされる
データの説明図、第7図は仮数部乗算時のピント構成図
、第8図はg3図に2ける125の構成図でめる。 101・・・指数部入力制御回路、114・・・仮数部
Δ第 1 日 第1頁の続き 0発 明 者 原 秀 幸 日立重大みか町5丁目か工
場内 2番1号 株式会社日立製作所大み
Figure 1 is an IEEE standard floating data format diagram, Figure 2 is a schematic diagram of a pipeline multiplier, Figure 3 is a detailed diagram of a pipe life multiplier, and Figure 4 is a diagram of the 2 in Figure 3.
Fig. 5 is a block diagram of 114 in Fig. 3,
FIG. 6 is an explanatory diagram of the data cents 116 and 117 in FIG. 3, FIG. 7 is a diagram of the focus configuration during multiplication of the mantissa part, and FIG. 8 is a diagram of the configuration of 125 in 2 in Figure g3. 101...Exponent part input control circuit, 114...Mantissa part ΔContinued from Day 1, Page 1 0 Inventor Hideyuki Hara Hitachi University, Mika-cho 5-chome or 2-1, Hitachi, Ltd. fruit

Claims (1)

【特許請求の範囲】[Claims] 工、単イ・n度、倍槽贋■jt大行する回路に2いて、
単梢就、1f槓度の指定(よシ、宿fji都と仮数部を
選択する回路、前記指数部の演其をする回路、前記仮数
部の乗算器する回路、na記仮数都の乗算精米に従い前
記指数郡金匍正する回路、単梢度末算績釆を単/r*夏
で出力するか、惰梢度乗算結果金倍精度で出力するか、
(単梢就)X(倍精度)の来I結釆C倍槽就で出力する
かに応じてデータ全出力する回路、(+、f!反XX(
惜・消波)の米算τ行ない、七の乗算精米を倍精度のデ
ータで重力するt21路からなること金%倣とする乗算
器。
Engineering, single A/n degree, double tank fake ■jt 2 in the circuit that goes on,
Single tree position, 1f scale designation (yoshi, inn fji capital and mantissa selection circuit, circuit to operate the exponent part, circuit to multiply the mantissa part, na number mantissa multiplication rice) According to the circuit for correcting the exponent, whether to output the single end calculation function in single/r*sum or to output the result of inertia multiplication in double precision;
(Single precision) A circuit that outputs all data depending on whether it is output with X (double precision) or not, (+, f! Anti-XX (
This multiplier is made up of a t21 path that uses double-precision data to calculate 7 multipliers using double-precision data.
JP17621083A 1983-09-26 1983-09-26 Multiplier Pending JPS6069736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17621083A JPS6069736A (en) 1983-09-26 1983-09-26 Multiplier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17621083A JPS6069736A (en) 1983-09-26 1983-09-26 Multiplier

Publications (1)

Publication Number Publication Date
JPS6069736A true JPS6069736A (en) 1985-04-20

Family

ID=16009544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17621083A Pending JPS6069736A (en) 1983-09-26 1983-09-26 Multiplier

Country Status (1)

Country Link
JP (1) JPS6069736A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04140827A (en) * 1990-10-02 1992-05-14 Fujitsu Ten Ltd Arithmetic method for floating point display data

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04140827A (en) * 1990-10-02 1992-05-14 Fujitsu Ten Ltd Arithmetic method for floating point display data

Similar Documents

Publication Publication Date Title
JPS6347874A (en) Arithmetic unit
US5206823A (en) Apparatus to perform Newton iterations for reciprocal and reciprocal square root
US6115729A (en) Floating point multiply-accumulate unit
US4866652A (en) Floating point unit using combined multiply and ALU functions
JPH09269891A (en) Method and device for adding partial product, method and device for multiplying floating point, and method and device for floating point product-sum operation
US5157624A (en) Machine method to perform newton iterations for reciprocal square roots
JPS58117075A (en) Monolithic type folding circuit for time-wise digital processing
JPH1195981A (en) Multiplication circuit
US7921149B2 (en) Division and square root arithmetic unit
KR19990013698A (en) Calculation method and device
US8495121B2 (en) Arithmetic processing device and methods thereof
JP2012528391A (en) Integer and multiply-add operations with saturation
JPS60140429A (en) Decimal notation multiplier system
JPS6069736A (en) Multiplier
KR100317767B1 (en) Floating point binary quad word format multiply instruction unit
JPH0519170B2 (en)
JPH0578049B2 (en)
JPS6222178A (en) Multiplier for multiplying two complex numbers
JPH06266536A (en) Multiplication/division device
JPS58101343A (en) Multiplication system
JPS6115233A (en) Multiplier
JPS6086671A (en) Vector processing device
JPS6116325A (en) Floating point operating system
JPH0377539B2 (en)
JPS63254525A (en) Dividing device