JPS6069218A - Turbine bypass system - Google Patents

Turbine bypass system

Info

Publication number
JPS6069218A
JPS6069218A JP15796283A JP15796283A JPS6069218A JP S6069218 A JPS6069218 A JP S6069218A JP 15796283 A JP15796283 A JP 15796283A JP 15796283 A JP15796283 A JP 15796283A JP S6069218 A JPS6069218 A JP S6069218A
Authority
JP
Japan
Prior art keywords
steam
steam pipe
turbine bypass
pipe
pressure turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15796283A
Other languages
Japanese (ja)
Inventor
Kenji Taguchi
健治 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP15796283A priority Critical patent/JPS6069218A/en
Publication of JPS6069218A publication Critical patent/JPS6069218A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/04Plants characterised by condensers arranged or modified to co-operate with the engines with dump valves to by-pass stages

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)

Abstract

PURPOSE:To enable to perform stable turbine bypass operation without changing the design of a deaerator, by utilizing steam having a higher enthalpy as a heating source for the deaerator, and taking out turbine bypass steam reheated by a reheater from a high-temperature reheat steam pipe. CONSTITUTION:Main steam supplied from a boiler 21 is carried to a high-pressure turbine 22 via a main steam pipe 23 and a stop valve 24 while exhaust gas of the boiler 21 is supplied to a mecium- and low-pressure turbine 27 via a low- temperature reheat steam pipe 26, a reheater 25, a high-temperature reheat steam pipe 28 and a stop valve 29. A low-pressure turbine bypass pipe 36 is extended between the steam pipe 28 and a condenser 35 while a high-pressure turbine bypass pipe 30 is extended between the main steam pipe 23 and the steam pipe 26. The condenser 35 is connected to the boiler 21 via a deaerator 41. At the time of turbine bypass operation, high-pressure turbine bypass reheat steam having a high enthalpy is introduced into the deaerator 41 as heated steam by opening a changeover valve 44 provided in an emergency heated-steam pipe.

Description

【発明の詳細な説明】 本発明は、再熱タービンによる火力発電プラントのター
ビンバイパスシステムの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in turbine bypass systems for thermal power plants with reheat turbines.

従来のこの種の火力発電プラントでは、第1図に示すよ
うに、タービンバイパスシステム使用時は、タービン主
蒸気止め弁1及び再熱蒸気止め弁2は閉じられる。それ
で、ボイラ3で発生した主蒸気は、主蒸気管4を通り、
高圧タービンバイパス弁5で減圧・減温され、低温再熱
蒸気管6に入る。この蒸気は再熱器7で昇温されて再熱
蒸気となり高温再熱蒸気管8を通り低圧タービンバイパ
ス弁9で減圧・減温され、コンデンサ10に入る。
In a conventional thermal power plant of this kind, as shown in FIG. 1, when the turbine bypass system is used, the turbine main steam stop valve 1 and the reheat steam stop valve 2 are closed. Therefore, the main steam generated in the boiler 3 passes through the main steam pipe 4,
The steam is depressurized and heated by the high-pressure turbine bypass valve 5 and enters the low-temperature reheat steam pipe 6. This steam is heated in a reheater 7 to become reheated steam, passes through a high-temperature reheated steam pipe 8, is depressurized and temperature-reduced in a low-pressure turbine bypass valve 9, and enters a condenser 10.

このコンデンサ10で凝縮された復水は復水ポンプ11
で低圧給水として脱気器12へ送られ脱気される。脱気
された低圧給水は、ボイラ給水ポンプ13による高圧給
水としてボイラ3に送られる。
The condensate condensed in this condenser 10 is transferred to a condensate pump 11.
The water is then sent to the deaerator 12 as low-pressure water and degassed. The deaerated low-pressure feed water is sent to the boiler 3 as high-pressure water supply by the boiler feed water pump 13.

前記脱気器12での脱気は他よりの補助蒸気を使う場合
もあるが、低温再熱蒸気管6より高圧タービンバイパス
蒸気を非常用加熱切換弁14を介して使うことが多い。
Although auxiliary steam from elsewhere may be used for deaeration in the deaerator 12, high-pressure turbine bypass steam from the low-temperature reheat steam pipe 6 is often used via the emergency heating switching valve 14.

高圧タービンバイパス弁5と低圧夕・−ビンバイパス弁
9での減温水は、各々、ボイラ給水ポンプ13及び復水
ポンプ11の出口から取出され使用されることが多い。
The deheated water from the high-pressure turbine bypass valve 5 and the low-pressure turbine bypass valve 9 is often taken out and used from the outlets of the boiler feed water pump 13 and condensate pump 11, respectively.

よって、タービンバイパス運転時には、脱気器12への
低圧給水量は、通常運転時(タービンバイパスを使用し
ない運転)に比し、高圧タービンバイパスの減温水量分
だけ増加する。また、低圧給水温度は、低圧給水ヒータ
ーの加熱蒸気が無くなり、コンデンサ1oの出口の復水
温度まで低下する。この低圧給水の条件の変化は、どち
らも、脱気する為の蒸気量の増加を必要とする。
Therefore, during the turbine bypass operation, the amount of low-pressure water supplied to the deaerator 12 increases by the amount of deheated water in the high-pressure turbine bypass, compared to the normal operation (operation that does not use the turbine bypass). In addition, the low-pressure feed water temperature decreases to the condensate temperature at the outlet of the condenser 1o due to the disappearance of heating steam from the low-pressure feed water heater. Both of these changes in low pressure water supply conditions require an increase in the amount of steam for degassing.

しかし、脱気器12への低圧給水量と加熱蒸気量との間
には、低圧給水の脱気器12でのフラッディング防止の
ため、第2図に示す如く、一定の制限がある。す々わち
、同じ運転圧力では、給水量の増加は、トレイ負荷の上
昇により脱気器の許容する(蒸気負荷)/(給水負荷)
の比率を下げることになり、−概に、許容加熱蒸気量の
増加につ々がらない。
However, there is a certain limit between the amount of low-pressure water supplied to the deaerator 12 and the amount of heated steam, as shown in FIG. 2, in order to prevent flooding of the low-pressure water supplied to the deaerator 12. In other words, at the same operating pressure, the increase in water supply amount is the ratio of (steam load) / (water supply load) allowed by the deaerator due to an increase in tray load.
- generally does not correspond to the increase in the allowable amount of heating steam.

よって、タービンバイパスの条件次第では、脱気器で必
要とする加熱蒸気量を脱気器に投入できない場合がある
Therefore, depending on the conditions of the turbine bypass, the amount of heating steam required by the deaerator may not be able to be input to the deaerator.

本発明者は、このような従来技術の問題点に鑑みてこれ
を解決するために鋭意研究した結果、タービンバイパス
運転時の脱気器の運転特性は、給水量の増加と低温度化
により、加熱蒸気量の増加を必要とする一方、脱気器性
能上、加熱蒸気量を余り増加することができないという
排反矛盾した特性を知ることができ、さらに、この加熱
蒸気量に対する矛盾する特性を、より高いエンタルピー
を持つ蒸気を脱気器の加熱源とすることで解決できると
いう知見を得、この新知見に基いて本発明を完成したの
である。
In view of the problems of the prior art, the present inventor conducted extensive research to solve the problems, and found that the operating characteristics of the deaerator during turbine bypass operation are as follows: While it is necessary to increase the amount of heating steam, it is possible to understand the contradictory characteristics that the amount of heating steam cannot be increased much due to deaerator performance. They found that the problem could be solved by using steam with higher enthalpy as the heating source for the deaerator, and based on this new knowledge, they completed the present invention.

即ち、本発明は、前記従来技術の問題点を解決するため
に、より高いエンタルピーを持つ蒸気全脱気器の加熱源
とすることで、再熱器により加熱された再熱タービンバ
イパス蒸気を高温再熱蒸気管より取り出すことができる
新規なタービンバイパスシステムを提供することを目的
とする。
That is, in order to solve the problems of the prior art, the present invention uses reheat turbine bypass steam heated by the reheater as a heating source for a steam total deaerator having a higher enthalpy, thereby increasing the temperature of the reheat turbine bypass steam heated by the reheater. The purpose is to provide a novel turbine bypass system that can be taken out from the reheat steam pipe.

この目的を達成するだめに、本発明のタービンバイパス
システムでは、ボイラ21で発生した主蒸気を高圧ター
ビン22へ導く主蒸気管23が配設され、該主蒸気管2
3にはタービン主蒸気止め弁24が設けられ、該高圧タ
ービン22の排気を再熱器25へ導く低温再熱蒸気管2
6が配設され、該再熱器より中・低圧タービン27へ再
熱蒸気を導く高温再熱蒸気管28が配設され、該高温再
熱蒸気管28には再熱蒸気止め弁29が設けられ、且つ
、該高温再熱蒸気管28とコンデンサ35とを接続する
低圧タービンバイパス管36と、前記主蒸気管23と低
温再熱蒸気管26とを接続する高圧タービンバイパス管
30とが設けられ、前記コンデンサ35は脱気器41を
介在して前記ボイラ21に接続されているタービンバイ
パスシステムにおいて、前記高温再熱蒸気管28と前記
脱気器41とを非常用加熱蒸気管43で接続し、該蒸気
管43には非常用加熱切換弁44を設けたことを特徴と
する。
In order to achieve this objective, the turbine bypass system of the present invention is provided with a main steam pipe 23 that guides main steam generated in the boiler 21 to the high-pressure turbine 22.
3 is provided with a turbine main steam stop valve 24, and a low temperature reheat steam pipe 2 that guides the exhaust gas of the high pressure turbine 22 to a reheater 25.
6 is provided, and a high temperature reheat steam pipe 28 is provided to guide reheat steam from the reheater to the medium/low pressure turbine 27, and the high temperature reheat steam pipe 28 is provided with a reheat steam stop valve 29. and a low pressure turbine bypass pipe 36 that connects the high temperature reheat steam pipe 28 and the condenser 35, and a high pressure turbine bypass pipe 30 that connects the main steam pipe 23 and the low temperature reheat steam pipe 26. , in a turbine bypass system in which the condenser 35 is connected to the boiler 21 via a deaerator 41, the high temperature reheat steam pipe 28 and the deaerator 41 are connected by an emergency heating steam pipe 43. The steam pipe 43 is characterized in that an emergency heating switching valve 44 is provided.

以下、本発明の詳細を図示する実施例を参照しながら説
明する。
The invention will now be described in detail with reference to illustrative embodiments.

第3図に本発明のタービンバイパスシステムの構成が示
されている。同図において、ボイラ21で発生した主蒸
気を高圧タービン22へ導くため両者の間には主蒸気管
23が配設されており、該主蒸気管23には、高圧ター
ビンバイパス運転時、前記高圧タービン22へ主蒸気の
流入するのを止めるタービン主蒸気止め弁24が設けら
れている。
FIG. 3 shows the configuration of the turbine bypass system of the present invention. In the figure, a main steam pipe 23 is disposed between the two to guide main steam generated in a boiler 21 to a high-pressure turbine 22, and the main steam pipe 23 is provided with the high-pressure A turbine main steam stop valve 24 is provided to stop main steam from flowing into the turbine 22.

該高圧タービン22の排気を再熱器25へ導くため両者
の間には低温再熱蒸気管26が配設され、該再熱器25
より中・低圧タービン27へ再熱蒸気を導くため高温再
熱蒸気管28が配設され、該高温再熱蒸気管28には前
記主蒸気上め弁24と同じ目的で再熱蒸気止め弁29が
設けられている。
In order to guide the exhaust gas of the high pressure turbine 22 to the reheater 25, a low temperature reheat steam pipe 26 is disposed between the two.
A high-temperature reheat steam pipe 28 is provided to guide reheat steam to the medium/low pressure turbine 27, and a reheat steam stop valve 29 is installed in the high-temperature reheat steam pipe 28 for the same purpose as the main steam up valve 24. is provided.

同図において、高圧タービンバイパスのため、主蒸気管
23と低温再熱蒸気管26を継ぐ高圧タービンバイパス
管30には、蒸気変換弁タイプの高圧タービンバイパス
弁31が設けられるが、これにはボイラ給水ポンプ32
より高圧給水が減温水として高圧スプレー調整弁33を
介して供給される。この調整弁33は高圧タービンバイ
パス弁31の下流に設けられる温度調整1器34により
高圧タービンバイパス蒸気温度を制御する。
In the figure, for high-pressure turbine bypass, a high-pressure turbine bypass valve 31 of the steam conversion valve type is installed in a high-pressure turbine bypass pipe 30 that connects the main steam pipe 23 and the low-temperature reheat steam pipe 26; Water supply pump 32
Higher pressure water supply is supplied as detemperature water via the high pressure spray regulating valve 33. This regulating valve 33 controls the high pressure turbine bypass steam temperature by a temperature regulator 34 provided downstream of the high pressure turbine bypass valve 31.

マタ、同図において、低圧タービンバイパス117)た
め、高温再熱蒸気管28とコンデンサ35とを接続する
低圧タービンバイパス管36には、蒸気変換弁タイプの
低圧タービンバイパス弁37が設けられるが、これには
復水ポンプ38より低圧給水の一部が減温水として低圧
スプレー調整弁39を介して供給される。この調整弁3
9は低圧タービンバイパス弁37の下流に設けられる温
度調整器40により低圧タービンバイパス蒸気温度を制
御する。
In the figure, a low-pressure turbine bypass valve 37 of the steam conversion valve type is installed in the low-pressure turbine bypass pipe 36 that connects the high-temperature reheat steam pipe 28 and the condenser 35 for the low-pressure turbine bypass 117). A part of the low-pressure feed water is supplied from the condensate pump 38 as reduced temperature water via the low-pressure spray regulating valve 39. This adjustment valve 3
Reference numeral 9 controls the low pressure turbine bypass steam temperature by a temperature regulator 40 provided downstream of the low pressure turbine bypass valve 37.

同図において、低圧タービンバイパス運転時には、脱気
器41への低圧給水は、低圧給水ヒーター42の加熱源
であるタービン抽気がないのでコンデンサ35の復水温
度となる。この低温の低圧給水を加熱脱気するために高
温再熱蒸気管28より脱気器41まで、再熱高圧タービ
ンバイパス蒸気を供給する非常用加熱蒸気管43を配設
し、これに非常用加熱切換弁44を設ける。
In the same figure, during the low pressure turbine bypass operation, the low pressure water supplied to the deaerator 41 has the condensate temperature of the condenser 35 because there is no turbine bleed air which is a heating source for the low pressure feed water heater 42. In order to heat and deaerate this low-temperature, low-pressure feed water, an emergency heating steam pipe 43 is provided from the high-temperature reheating steam pipe 28 to the deaerator 41 to supply reheating high-pressure turbine bypass steam, and this A switching valve 44 is provided.

而して、上述I7だタービンバイパスシステムによれば
、タービンバイパス運転時に、脱気器41の加熱蒸気と
して、高圧タービンバイパス蒸気より(低圧給水温度は
、加熱蒸気が無く、復水温度まで低下し−Cいる)エン
タルピーの高い再熱高圧タービンバイパス蒸気を使うこ
とによって、脱気器への使用蒸気量を小さくすることが
できる。
According to the above-mentioned turbine bypass system I7, during turbine bypass operation, the heating steam of the deaerator 41 is lower than the high pressure turbine bypass steam (low pressure feed water temperature is lowered to the condensate temperature without heating steam). -C) By using reheated high-pressure turbine bypass steam with high enthalpy, the amount of steam used for the deaerator can be reduced.

以上述べたように、本発明のタービンバイパスでは、ボ
イラで発生した主蒸気を高圧タービンへ導く主蒸気管が
配設され、該主蒸気管にはタービン主蒸気止め弁が設け
られ、該高圧タービンの排気を再熱器へ導く低温再熱蒸
気管が配設され、該再熱器より中・低圧タービンへ再熱
蒸気を導く高温再熱蒸気管が配設され、該高温再熱蒸気
管には再熱蒸気止め弁が設けられ、且つ、該高温再熱蒸
気管とコンデンサとを接続する低圧タービンバイパス管
と、前記主蒸気管と低温再熱蒸気管とを接続する高圧タ
ービンバイパス管が設けられ、前記コンデンサは脱気器
を介在して前記ボイラに接続されているタービンバイパ
スシステムにおいて、前記高温再熱蒸気管と前記脱気器
と非常用加熱蒸気管で接続し、該非常用加熱蒸気管には
非常用加熱切換弁を設けたので、最大連続蒸発量(以下
MCRと略す)での運転時のヒートバランス(第4−1
図)、MCR,での運転時の全蒸気タービンバイパスさ
せ脱気器加熱蒸気を高圧タービンバイパス蒸気とした場
合のヒートバランス(第4−2図)、MCR運転時の全
蒸気をタービンバイパスさせ脱気器加熱蒸気を再熱高圧
タービンバイパス蒸気とした場合のヒートバランス(第
4−3図)、から判るように、従来のシステムの場合、
脱気器への低圧給水約560 TON/Hに対し、加熱
蒸気は約124 TON/H必要であるが、新しいシス
テム(本発明)では、低圧給水約579 TON /H
に対し、加熱蒸気は109TON/Hで済む。
As described above, in the turbine bypass of the present invention, a main steam pipe is provided to guide main steam generated in the boiler to the high pressure turbine, the main steam pipe is provided with a turbine main steam stop valve, and the high pressure turbine A low-temperature reheat steam pipe is installed to guide the exhaust gas from the reheater to the reheater, and a high-temperature reheat steam pipe is installed to lead the reheat steam from the reheater to the medium/low pressure turbine. is provided with a reheat steam stop valve, and is provided with a low pressure turbine bypass pipe that connects the high temperature reheat steam pipe and the condenser, and a high pressure turbine bypass pipe that connects the main steam pipe and the low temperature reheat steam pipe. In a turbine bypass system in which the condenser is connected to the boiler via a deaerator, the high temperature reheat steam pipe and the deaerator are connected to each other by an emergency heating steam pipe, and the emergency heating steam is connected to the high temperature reheat steam pipe and the deaerator. Since the pipe is equipped with an emergency heating switching valve, the heat balance (No. 4-1) during operation at maximum continuous evaporation rate (MCR) is
(Fig. 4-2), heat balance when all steam turbine is bypassed during operation in MCR, and deaerator heating steam is used as high-pressure turbine bypass steam (Fig. 4-2), As can be seen from the heat balance (Figure 4-3) when steam heating steam is used as reheated high-pressure turbine bypass steam, in the case of the conventional system,
About 560 TON/H of low-pressure water supply to the deaerator requires heating steam of about 124 TON/H, but with the new system (this invention), the low-pressure water supply of about 579 TON/H
On the other hand, heating steam only requires 109 TON/H.

このことは、脱気器トレイ面積to、c+375の場合
(運転圧力フ、 7 kg/ cIlt)、従来のシス
テムでは、トレイ負荷が51.2TON/曜 で(蒸気
負荷)/(給水負荷)が19.8%となり、110.9
TON/I(Lか脱気器へ入れられなく、到底、前述し
た脱気器必要量124TON/Hをまかなえないことを
意味する。
This means that when the deaerator tray area to, c+375 (operating pressure f, 7 kg/cIlt), in the conventional system, the tray load is 51.2 TON/week and (steam load)/(feed water load) is 19 .8%, 110.9
TON/I (L) cannot be put into the deaerator, which means that the above-mentioned deaerator requirement of 124 TON/H cannot be met.

が、一方、新しいシステム(本発明)では、トレイ負荷
が53T ON /u/mで(蒸気負荷)/(給水負荷
)が190%と々す、110.0TON/Hを脱気器へ
投入可能であシ、これは前述した脱気器必要量109T
ON/Hを上廻っているのである。
However, in the new system (the present invention), when the tray load is 53T ON /u/m, (steam load) / (feed water load) is 190%, and 110.0TON/H can be input to the deaerator. Yes, this is the deaerator required amount of 109T as mentioned above.
It exceeds ON/H.

よって、従来システムでは、脱気器への必要加熱蒸気量
が投入できず、第4−2図に示すヒートバランスが保て
ず、安定したタービンバイパス運転ができない。このよ
うなとき、脱気器のトレイ面積などを大きくして脱気器
への必要蒸気投入量を入れることを可能にするが、新し
いシステム(本発明)では、脱気器の仕様を変えること
なく脱気器へ必要々加熱量を入れることができる。
Therefore, in the conventional system, the required amount of heating steam cannot be input to the deaerator, the heat balance shown in FIG. 4-2 cannot be maintained, and stable turbine bypass operation cannot be performed. In such cases, it is possible to increase the tray area of the deaerator to accommodate the necessary amount of steam input to the deaerator, but with the new system (this invention), it is possible to change the specifications of the deaerator. The necessary amount of heat can be input to the deaerator without any need for heating.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のタービンバイパスシステムの管系線図、
第2図は脱気器加熱蒸気量と低圧給水の関係図、第3図
は本発明のタービンバイパスシステムの管系線図、第4
−1図はMCR[最大連続蒸発量)通常運転時のヒート
バランスの管系線図、第4−2図は従来のMCR,ター
ビンバイパス運転時のヒートバランスの管系線図、第4
−3図は本発明のMCRタービンバイパス運転時のヒー
トバランスの管系線図である。 21・・ボイラ、22・・高圧タービン、23・・主蒸
気管、24・・主蒸気止め弁、25・・再熱器、26・
・低温再熱蒸気管、27・・中・低圧タービン、28・
・高温再熱蒸気管、29・・再熱蒸気止め弁、30・・
高圧タービンバイパス管、31・・高圧タービンバイパ
ス弁、32・・ボイラ給水ポンプ、33・・高圧スプレ
ー調整弁、34・・温度調整器、35・・コンデンサ、
36・・低圧タービンバイパス管、37・・低圧タービ
ンバイパス弁、38・・復水ポンプ、39・・低圧スプ
レー調整弁、40・・温度調整器、41・・脱気器、4
2・・低圧給水ヒーター、43・・非常用加熱蒸気管、
44・・非常用加熱切換弁。 (11) (Z情nいl<ay) IJ 曽P 149”tluワ
ヌ話詰 四ヌ謔誌
Figure 1 is a piping diagram of a conventional turbine bypass system.
Fig. 2 is a relationship diagram between the deaerator heating steam amount and low-pressure feed water, Fig. 3 is a piping diagram of the turbine bypass system of the present invention, and Fig. 4
Figure-1 is a pipe system diagram of heat balance during MCR [maximum continuous evaporation] normal operation, Figure 4-2 is a pipe system diagram of heat balance during conventional MCR, turbine bypass operation,
Figure 3 is a heat balance pipe diagram during bypass operation of the MCR turbine of the present invention. 21. Boiler, 22. High pressure turbine, 23. Main steam pipe, 24. Main steam stop valve, 25. Reheater, 26.
・Low-temperature reheat steam pipe, 27. Medium/low pressure turbine, 28.
・High temperature reheat steam pipe, 29... Reheat steam stop valve, 30...
High pressure turbine bypass pipe, 31... High pressure turbine bypass valve, 32... Boiler feed water pump, 33... High pressure spray adjustment valve, 34... Temperature regulator, 35... Condenser,
36...Low pressure turbine bypass pipe, 37...Low pressure turbine bypass valve, 38...Condensate pump, 39...Low pressure spray adjustment valve, 40...Temperature regulator, 41...Deaerator, 4
2...Low pressure water heater, 43...Emergency heating steam pipe,
44...Emergency heating switching valve. (11) (Z emotion nil <ay) IJ SoP 149” tlu One story story four songs magazine

Claims (1)

【特許請求の範囲】[Claims] ボイラで発生した主蒸気を高圧タービンへ導く主蒸気管
が配設され、該主蒸気管にはタービン主蒸気止め弁が設
けられ、該高圧タービンの排気を再熱器へ導く低温再熱
蒸気管が配設され、該再熱器より中・低圧タービンへ再
熱蒸気を導く高温再熱蒸気管が配設され、該高温再熱蒸
気管には再熱蒸気止め弁が設けられ、且つ、該高温再熱
蒸気管とコンデンサとを接続する低圧タービンバイパス
管と、前記主蒸気管と低温再熱蒸気管とを接続する高圧
タービンバイパス管とが設けられ、前記コンデンサは脱
気器を介在して前記ボイラに接続されているタービンバ
イパスシステムにおいて、前記高温再熱蒸気管と前記脱
気器とを非常用加熱蒸気管で接続し、該非常用加熱蒸気
管には非常用加熱切換弁を設けたことを特徴とするター
ビンバイパスシステム。
A main steam pipe is provided to guide main steam generated in the boiler to a high-pressure turbine, a turbine main steam stop valve is provided in the main steam pipe, and a low-temperature reheat steam pipe guides exhaust gas from the high-pressure turbine to a reheater. A high-temperature reheat steam pipe is installed to guide reheat steam from the reheater to the medium/low pressure turbine, and the high-temperature reheat steam pipe is provided with a reheat steam stop valve. A low-pressure turbine bypass pipe connects the high-temperature reheat steam pipe and the condenser, and a high-pressure turbine bypass pipe connects the main steam pipe and the low-temperature reheat steam pipe. In the turbine bypass system connected to the boiler, the high temperature reheat steam pipe and the deaerator are connected by an emergency heating steam pipe, and the emergency heating steam pipe is provided with an emergency heating switching valve. A turbine bypass system characterized by:
JP15796283A 1983-08-31 1983-08-31 Turbine bypass system Pending JPS6069218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15796283A JPS6069218A (en) 1983-08-31 1983-08-31 Turbine bypass system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15796283A JPS6069218A (en) 1983-08-31 1983-08-31 Turbine bypass system

Publications (1)

Publication Number Publication Date
JPS6069218A true JPS6069218A (en) 1985-04-19

Family

ID=15661252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15796283A Pending JPS6069218A (en) 1983-08-31 1983-08-31 Turbine bypass system

Country Status (1)

Country Link
JP (1) JPS6069218A (en)

Similar Documents

Publication Publication Date Title
JPS6193208A (en) Turbine bypass system
MXPA96002485A (en) Method and conversion apparatus of a water vapor turbine energy plant with thermal regeneration cycle to a combined cycle power plant without regeneration
US2900792A (en) Steam power plant having a forced flow steam generator
CN209978005U (en) Primary frequency modulation control system for secondary reheating unit
JPS6069218A (en) Turbine bypass system
JP2006063886A (en) Thermal power plant
US3359732A (en) Method and apparatus for starting a steam generating power plant
JPH0932512A (en) Steam supply device of steam turbine gland seal
JP2999122B2 (en) Control equipment for complex plant
JPH03282102A (en) Exhaust heat recovery boiler and controller of temperature reducing device used for it
JPS6291703A (en) Steaming preventive device for fuel economizer
JPS5823206A (en) Thermal power plant equipped with stored steam power generation system
JPS5993906A (en) Steam turbine plant
JPS5948696A (en) Steam distributing device of reactor plant
JP3497553B2 (en) Multi-can thermal power plant and operating method thereof
JPH0454204A (en) Control device for gas-extraction and condensation type turbine
JPS59110811A (en) Steam turbine plant
JPH0921505A (en) Reheat steam system for boiler
JPS61164004A (en) Control method of steam turbine
JPS63169409A (en) Controller for moisture separating reheater
JPH0224883Y2 (en)
JPH0250004A (en) Control system of pressure inside deaerator
JPS61142305A (en) Steam turbine plant
JPS6235002B2 (en)
JPS58178103A (en) Protective device for feedwater heater