JPS61142305A - Steam turbine plant - Google Patents

Steam turbine plant

Info

Publication number
JPS61142305A
JPS61142305A JP26357184A JP26357184A JPS61142305A JP S61142305 A JPS61142305 A JP S61142305A JP 26357184 A JP26357184 A JP 26357184A JP 26357184 A JP26357184 A JP 26357184A JP S61142305 A JPS61142305 A JP S61142305A
Authority
JP
Japan
Prior art keywords
steam
feed water
water heater
scavenging
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26357184A
Other languages
Japanese (ja)
Inventor
Kazu Nakao
中尾 和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26357184A priority Critical patent/JPS61142305A/en
Publication of JPS61142305A publication Critical patent/JPS61142305A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/40Use of two or more feed-water heaters in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • F01K3/26Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters with heating by steam
    • F01K3/262Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters with heating by steam by means of heat exchangers
    • F01K3/265Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters with heating by steam by means of heat exchangers using live steam for superheating or reheating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)

Abstract

PURPOSE:To promote the improvement of efficiency, by providing the second scavenge steam flow pipe, which both connects with a feed water heater in a lower pressure stage than the high pressure feed water heater connecting said pipe and has a selector valve, in the case of a steam turbine plant having a reheat device. CONSTITUTION:A steam turbine plant introduces steam, generated in a steam generating device 1, successively in the order of a high pressure turbine 2, wetness separator device 3, reheat device 4 and a low pressure turbine 5, and the steam, after it performs work, is condensed in a condenser 7. Condensed water is returned to the steam generating device 1 via low pressure feed water heaters 8, 9, supply water pump 10 and high pressure feed water heaters 11, 12. In the above, a scavenge steam flow pipe 14 connects the reheat device 4 with the high pressure feed water heater 12, and the pipe 14 connects in its half way one end of the second scavenge steam flow pipe 28 having a selector valve 26 and an orifice 27. And the other end is connected with the high pressure feed water heater 11 being in a lower pressure stage than the high pressure feed water heater 12. And the plant, when it is partly loaded, controls the selector valve 26 so as to be opened.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、蒸気タービンプラントに係り、特に高圧ター
ビンからの油気蒸気或は蒸気発生装置で発生した蒸気で
再熱を行なうようにした再熱装置を有する蒸気タービン
プラントに関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a steam turbine plant, and in particular to a reheating plant in which reheating is performed using oil steam from a high pressure turbine or steam generated in a steam generator. The present invention relates to a steam turbine plant having an apparatus.

〔発明の技術的背東およびその問題点〕一般に、沸騰水
型或は加圧木型の原子炉を用いたタービンプラントにお
いては、タービンに送給される蒸気は、通常の石炭等の
燃料を用いた火力タービンプラントにおける蒸気に比較
して、蒸気中の湿分がはるかに多く、いわゆる湿り蒸気
の状態にある。
[Technical backbone of the invention and its problems] Generally, in a turbine plant using a boiling water type or pressurized wood type nuclear reactor, the steam fed to the turbine is not supplied with ordinary fuel such as coal. Compared to the steam in the thermal turbine plant used, the steam contains much more moisture and is in a so-called wet steam state.

そこで、原子力タービンプラントでは、高圧タービンを
出た湿分の多い蒸気は湿分分離装置を用いて湿分を除去
した後に低圧タービンに導く、いわゆる非再熱サイクル
と、湿分分離装置を出た蒸気を、高圧タービンからの抽
気蒸気或は蒸気発生装置で発生する蒸気で再熱した後に
低圧タービンに導く、いわゆる再熱サイクルが採用され
ている。
Therefore, in nuclear power turbine plants, high-humidity steam leaves the high-pressure turbine and uses a moisture separator to remove moisture before leading to the low-pressure turbine, a so-called non-reheat cycle. A so-called reheat cycle is employed in which steam is reheated using extracted steam from a high-pressure turbine or steam generated by a steam generator and then guided to a low-pressure turbine.

そして、この秤の再熱サイクルとしては、高圧タービン
からの油気蒸気あるいは蒸気発生装置で発生する蒸気で
再熱を行なう1段再熱サイクルと、高圧タービンからの
抽気蒸気で第1段の再熱を行ない、さらに蒸気発生装置
で発生Jる蒸気で第2段の再熱を行なう2段再熱サイク
ルとがある。
The reheat cycle for this scale is a first-stage reheat cycle in which reheat is performed using oil steam from a high-pressure turbine or steam generated by a steam generator, and a first-stage reheat cycle in which steam is extracted from the high-pressure turbine. There is a two-stage reheat cycle in which heat is generated and second stage reheat is performed using steam generated by a steam generator.

第3図は、従来の1段再熱サイクルを有する原子力ター
ビンプラントの一実施例を示す系統図であって、蒸気発
生器ど1で発生した大部分の蒸気は主蒸気管を経て高圧
タービン2に導入され、そこで仕事を行なう。高圧ター
ビン2で仕事を終え、湿り度が約12%程度に達した蒸
気は、湿分分離装@3で湿分が除去され、再熱装置4に
導かれて加熱され、その後低圧タービン5に導入されて
仕事を行ない、高圧タービン2および低圧タービン5に
連結された発電816を駆動し、電気エネルギに変換さ
れる。
FIG. 3 is a system diagram showing an embodiment of a conventional nuclear turbine plant having a one-stage reheat cycle, in which most of the steam generated in the steam generator 1 passes through the main steam pipe to the high-pressure turbine 2. It will be introduced and work will be carried out there. The steam that has completed its work in the high pressure turbine 2 and has reached a humidity of approximately 12% has its moisture removed in the moisture separator @ 3, is guided to the reheating device 4, where it is heated, and is then sent to the low pressure turbine 5. It is introduced and performs work, drives power generation 816 connected to high pressure turbine 2 and low pressure turbine 5, and is converted into electrical energy.

一方、低圧タービン5で仕事を行なった蒸気は、復水器
7で復水せしめられ、低圧給水加熱器8および9で昇温
され、給水ポンプ10、高圧給水加熱器11.12を経
て蒸気発生器1に還流される。
On the other hand, the steam that has performed work in the low pressure turbine 5 is condensed in a condenser 7, heated in low pressure feed water heaters 8 and 9, and then passed through a feed water pump 10 and high pressure feed water heaters 11 and 12 to generate steam. It is refluxed to vessel 1.

ところで、前記再熱装置4には蒸気発生装置1で発生し
た蒸気の一部が加熱用として供給され、この加熱蒸気が
再熱装置4において伝熱管外蒸気(被加熱蒸気)に潜熱
を与えて再加熱しつつ伝熱管内を流れる過程で大部分は
凝縮ドレンとなり、ドレン管13を経て高圧給水加熱器
12に回収される。また、一部の加熱蒸気は、伝熱管内
を流れる過程中においても凝縮せず、気相を保ったまま
節気蒸気導管14を経て高圧給水加熱器12に回収され
る。
By the way, a part of the steam generated in the steam generator 1 is supplied to the reheating device 4 for heating, and this heated steam gives latent heat to the steam outside the heat transfer tube (steam to be heated) in the reheating device 4. Most of the water becomes condensed condensate as it flows through the heat exchanger tube while being reheated, and is recovered by the high-pressure feedwater heater 12 via the drain tube 13. Further, a part of the heated steam does not condense during the process of flowing through the heat transfer tube, and is recovered to the high-pressure feed water heater 12 through the air-saving steam conduit 14 while maintaining the gas phase.

すなわち、加熱蒸気が伝熱管内を流れ、伝熱管外蒸気に
その潜熱を与えて再加熱しつつ、管内で凝縮を行なうよ
うな上述の如き再熱装置においては、伝熱管内に流入す
る加熱蒸気の全てが伝熱管出口端より手前の伝熱管内領
域で完全に凝縮すると、伝熱管内は凝縮したドレンで満
たされて閉塞状態となってしまう。ところが、蒸気の凝
縮時における伝熱管壁との熱伝達率は高いが、凝縮後に
おけるドレンとの熱伝達率は低いため、上述のようにド
レンで満たされた状態となると伝熱管外を流れる被加熱
蒸気の温度上昇が十分達成されず、タービン効率を低下
させてしまう。
In other words, in the above-mentioned reheating device in which heated steam flows inside the heat transfer tube and reheats the steam outside the heat transfer tube by imparting its latent heat, the heated steam flowing into the heat transfer tube is condensed inside the tube. If all of the condensate is completely condensed in the region inside the heat exchanger tube before the outlet end of the heat exchanger tube, the inside of the heat exchanger tube will be filled with condensed condensate and become closed. However, although the heat transfer coefficient with the heat exchanger tube wall during condensation is high, the heat transfer coefficient with the condensate after condensation is low, so when the steam is filled with condensate as described above, it flows outside the heat exchanger tube. The temperature of the heated steam is not sufficiently increased, resulting in a decrease in turbine efficiency.

さらに、伝熱管内をドレンで満たされた伝熱管の数量が
ある限界に達すると、伝熱管内の入口端と出口端との圧
力バランスによって、同期的に全ての伝熱管内のドレン
が一斉に蒸気によって押し出され、いわゆるハンチング
現象によって伝熱管内で激しい圧力変動ならびに熱負荷
変動の不安定現象を呈する。その結果、再熱装置の寿命
に著しい低下をもたらす。
Furthermore, when the number of heat exchanger tubes filled with condensate reaches a certain limit, the pressure balance between the inlet end and outlet end of the heat exchanger tubes causes the condensate in all the heat exchanger tubes to synchronously flow. It is pushed out by steam, and due to the so-called hunting phenomenon, severe pressure fluctuations and unstable heat load fluctuations occur within the heat transfer tubes. As a result, the lifespan of the reheating device is significantly reduced.

このようなことから、一般に伝熱管内を流れる蒸気ωを
増して、管内流速を高め、伝熱管内に溜ったドレンを高
速の蒸気流によって取り除く手段がとられており、この
ドレンを押し流すために使用された蒸気が、前述のよう
に節気蒸気導管14を軽て高圧給水加熱器12に回収さ
れる。
For this reason, a method is generally used to increase the steam ω flowing inside the heat transfer tube to increase the flow velocity inside the tube, and to remove the condensate accumulated in the heat transfer tube with a high-speed steam flow. The used steam is recovered to the high pressure feed water heater 12 via the air saving steam conduit 14 as described above.

第4図は再熱装置の伝熱管部の構成図であり、加熱蒸気
流入口20から入口ヘッダ21に流入した加熱蒸気は、
U字状の伝熱管22内を流れ、その間上記伝熱管22の
外部を流れる被加熱蒸気と熱交換した後、出口ヘッダ2
3内に大部分がドレンとして排出され、その後ドレン排
出口24から排出される。また伝熱管内掃気蒸気として
凝縮せずに出口ヘッダ23に流入した約5〜10%の加
熱蒸気は掃気蒸気出口25から排出され高圧給水加熱器
に導かれる。
FIG. 4 is a configuration diagram of the heat exchanger tube section of the reheating device, and the heated steam flowing into the inlet header 21 from the heated steam inlet 20 is
After flowing through the U-shaped heat transfer tube 22 and exchanging heat with the heated steam flowing outside the heat transfer tube 22, the outlet header 2
Most of the water is discharged as drain into the drain 3, and then discharged from the drain outlet 24. Further, approximately 5 to 10% of the heated steam that has flowed into the outlet header 23 without being condensed as scavenging steam in the heat transfer tube is discharged from the scavenging steam outlet 25 and guided to the high-pressure feedwater heater.

ところが、熱力学的な観点からは、このような伝熱管内
に溜ったドレンを除去するための掃気蒸気mが多くなれ
ばなる程、タービンサイクルの熱効率は低くなり、運転
コストの増大となり不紅流である。このため、通常再熱
装置4からの節気蒸気導管14には流量制限用のオリフ
ィス15が設けられ(第3図)、掃気蒸気量が必要以上
に多量にならないようにしである。
However, from a thermodynamic point of view, the more scavenging steam m required to remove the condensate accumulated in the heat transfer tubes, the lower the thermal efficiency of the turbine cycle becomes, increasing the operating cost and increasing the It is a flow. For this reason, the air saving steam conduit 14 from the reheating device 4 is usually provided with an orifice 15 for restricting the flow rate (FIG. 3) to prevent the amount of scavenging steam from becoming more than necessary.

しかし、一般にプラントの定格負荷運転時に適正な掃気
蒸気量になるように上記オリフィス15の仕様が決定さ
れているため、プラントの部分負荷運転時には、被加熱
蒸気側の圧力、温度等が変化することにより、再熱装置
4の掃気蒸気が十分にその機能を果たさないことがある
However, since the specifications of the orifice 15 are generally determined so that the amount of scavenging steam is appropriate when the plant is operating at rated load, the pressure, temperature, etc. on the heated steam side may change when the plant is operating at partial load. Therefore, the scavenging steam of the reheating device 4 may not perform its function sufficiently.

すなわち、プラントの部分負荷運転時には、タービンで
は入口蒸気量が少なく、蒸気加減弁により絞り込まれた
運転となるため柊、再熱装置4の入口圧力、温度ともに
定格負荷運転時よりも大幅に低下している。例えば、典
型的な沸騰水型原子力タービンプラントにおいては、1
00%負荷運転時には再熱装置4の入口圧力は約14に
9/cda。
In other words, when the plant is operating at partial load, the amount of steam at the inlet of the turbine is small and the operation is restricted by the steam control valve, so the inlet pressure and temperature of the reheating device 4 are significantly lower than during rated load operation. ing. For example, in a typical boiling water nuclear turbine plant, 1
At 00% load operation, the inlet pressure of the reheating device 4 is approximately 14.9/cda.

入口温度は約190℃であるが、25%負荷運転時には
入口圧力は約4 Kg / cm a、入口温度は約1
40℃となる。このため再熱装置4の被加熱蒸気の入口
側の蒸気と熱交換を行なう伝熱管出口端部では、周囲温
度の低下により、加熱蒸気が凝縮しやすい条件となり、
前述のように伝熱管内のドレンによる閉塞が発生しやす
くなる。したがって、これを防止するには前記掃気蒸気
を定格負荷運転時よりも増加させ、すみやかに伝熱管内
に溜ったドレンを排出しなければならない。
The inlet temperature is about 190℃, but at 25% load operation, the inlet pressure is about 4 Kg/cm a, and the inlet temperature is about 1
It becomes 40℃. For this reason, at the outlet end of the heat transfer tube that exchanges heat with the steam on the inlet side of the heated steam of the reheating device 4, the reduced ambient temperature creates a condition where the heated steam is likely to condense.
As mentioned above, blockage due to drains inside the heat transfer tubes is likely to occur. Therefore, in order to prevent this, it is necessary to increase the scavenging steam more than during rated load operation and promptly discharge the condensate accumulated in the heat exchanger tubes.

しかしながら、前述のように、掃気蒸気1管14に設け
られたオリフィス15は定格負荷運転時に最適な掃気蒸
気流量となるように設計されているため、部分負荷運転
時にも掃気蒸気流量は殆ど変化しない。このため、部分
負荷運転が行なわれるようなプラントの起動・停止時に
は、必要な掃気蒸気流量が確保できなく、伝熱管内にド
レンによる閉塞やハンチング現象が発生し、再熱装置の
寿命が低下するとともに、タービンプラントの安全運転
に重大な支障をきたす等の問題がある。
However, as mentioned above, the orifice 15 provided in the scavenging steam 1 pipe 14 is designed to provide the optimum scavenging steam flow rate during rated load operation, so the scavenging steam flow rate hardly changes even during partial load operation. . For this reason, when a plant is started or stopped during partial load operation, the necessary scavenging steam flow rate cannot be secured, and condensate blockage or hunting occurs in the heat transfer tubes, reducing the life of the reheating equipment. In addition, there are other problems such as serious hindrance to the safe operation of turbine plants.

〔発明の目的〕[Purpose of the invention]

本発明はこのような点に鑑み、タービンプラントの部分
口筒運転時においても所要の掃気蒸気流量を確保でき、
伝熱管内におけるドレンによる閉塞やハンチング現象を
防止し得るようにした蒸気タービンプラントを得ること
を目的とする。
In view of these points, the present invention can ensure the required scavenging steam flow rate even during partial pipe operation of a turbine plant,
An object of the present invention is to obtain a steam turbine plant capable of preventing clogging due to drain and hunting phenomenon in heat transfer tubes.

〔発明の概要〕[Summary of the invention]

本発明は、高圧タービンからの抽気蒸気或は蒸気発生装
置で発生した蒸気で再熱を行なうようにした再熱装置を
有する蒸気タービンプラントにおいて、上記再熱装置か
ら高圧給水加熱器に掃気蒸気を導く掃気蒸気導管を設け
るとともに、上記再熱装置における掃気蒸気の一部をざ
らに切苗弁を介して上記高圧給水加熱器よりも低圧段の
給水加熱器に導く、第2の掃気蒸気導管を設けたことを
特徴とする。
The present invention provides a steam turbine plant having a reheating device that performs reheating using extracted steam from a high-pressure turbine or steam generated by a steam generator, in which scavenging steam is transferred from the reheating device to a high-pressure feedwater heater. A second scavenging steam conduit is provided for guiding a part of the scavenging steam in the reheating device to a feed water heater at a lower pressure stage than the high pressure feed water heater through a coarse cutting valve. It is characterized by having been established.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の蒸気タービンプラントの概略系統図で
あって、蒸気発生装置1で発生した蒸気は主蒸気管を経
て高圧タービン2に導入され、そこで仕事を終えた蒸気
は湿分分離装置3で湿分が除去され、その後再熱装@4
で再熱された後、低圧タービン5に導入される。上記低
圧タービン5に導入され仕事を行なった蒸気は、復水器
7で復水せしめられ、低圧給水加熱器8および9で昇温
され、給水ポンプ10、高圧給水加熱器11゜12を経
て蒸気発生器1に還流される。
FIG. 1 is a schematic system diagram of a steam turbine plant according to the present invention, in which steam generated in a steam generator 1 is introduced into a high-pressure turbine 2 through a main steam pipe, and the steam that has finished its work there is sent to a moisture separator. Moisture is removed in step 3 and then reheated @4
After being reheated at , it is introduced into the low pressure turbine 5. The steam that has been introduced into the low pressure turbine 5 and has done work is condensed in the condenser 7, heated up in the low pressure feed water heaters 8 and 9, and then passed through the feed water pump 10 and high pressure feed water heaters 11 and 12 into steam. It is refluxed to the generator 1.

一方、再熱装置4に供給された加熱蒸気は、そこで低圧
タービン5に供給される蒸気と熱交換し、そこで凝縮し
たドレンはドレン管13を経て高圧給水加熱器12に回
収される。また、上記再熱装置4において凝縮せず気相
を保ったままの掃気蒸気は、掃気蒸気導管14を経て高
圧給水加熱器12に回収される。
On the other hand, the heated steam supplied to the reheating device 4 exchanges heat with the steam supplied to the low-pressure turbine 5 there, and the condensed drain therein is recovered to the high-pressure feedwater heater 12 via the drain pipe 13. Further, the scavenging steam that is not condensed in the reheating device 4 and remains in the gas phase is recovered to the high-pressure feed water heater 12 via the scavenging steam conduit 14.

ところで、上記再熱装置4と高圧給水加熱器12とを結
ぶ掃気蒸気導管14の途中には、切替え弁26およびオ
リフィス27を有する第2の掃気蒸気導管28の一端が
接続され、すなわち掃気蒸気導管14から第2の掃気蒸
気導管28が分岐導出されており、その第2の掃気蒸気
導管28の他端が、高圧給水加熱器12より低圧段であ
る高圧給水加熱器11に接続されている。
Incidentally, one end of a second scavenging steam conduit 28 having a switching valve 26 and an orifice 27 is connected in the middle of the scavenging steam conduit 14 connecting the reheating device 4 and the high-pressure feed water heater 12. A second scavenging steam conduit 28 is branched out from 14, and the other end of the second scavenging steam conduit 28 is connected to the high pressure feed water heater 11 which is a lower pressure stage than the high pressure feed water heater 12.

しかして、プラントの定格負荷運転時には、上記切替え
弁26が閉じられており、再熱装置4で発生するY1気
蒸気は、オリフィス15を経て高圧給水加熱器12のみ
に送給される。
Thus, during rated load operation of the plant, the switching valve 26 is closed, and the Y1 steam generated in the reheating device 4 is sent only to the high-pressure feedwater heater 12 via the orifice 15.

ここで、プラントが部分負荷、例えば50%負荷以下の
場合には、切替え弁26が間らかれ、掃気蒸気は高圧給
水加熱器12だけではなく、オリフィス27を経て低圧
段である高圧給水加熱器11にも送給される。すなわち
、高圧給水加熱器11は高圧給水加熱器12よりも低圧
力であることから、掃気蒸気形もより多量抽出すること
ができ、結局従来の2(8以上の蒸気を再熱装置の掃気
蒸気として抽出することができる。したがって、部分負
荷時においても、再熱装置内における伝熱管内のドレン
閉塞やハンチング現象が防止される。
Here, when the plant is under partial load, for example, 50% load or less, the switching valve 26 is interrupted, and the scavenging steam is sent not only to the high-pressure feedwater heater 12 but also to the high-pressure feedwater heater, which is a low-pressure stage, via the orifice 27. 11 will also be sent. That is, since the pressure of the high pressure feed water heater 11 is lower than that of the high pressure feed water heater 12, a larger amount of scavenging steam type can be extracted, and in the end, the conventional 2 (8 or more) steam is used as the scavenging steam of the reheating device. Therefore, even during partial load, drain clogging and hunting phenomena in the heat transfer tubes in the reheating device are prevented.

なお、第2の掃気蒸気導管28は必ずしも高圧給水加熱
器11に接続する必要はなく、掃気蒸気の必要長によっ
ては例えば低圧給水加熱器9に接続してもよい。
Note that the second scavenging steam conduit 28 does not necessarily need to be connected to the high-pressure feedwater heater 11, and may be connected to, for example, the low-pressure feedwater heater 9 depending on the required length of the scavenging steam.

また、第2図に示すように、再熱装置4の掃気蒸気導管
14−から、ざらに復水器7に接続する第3の掃気蒸気
導管29を分岐し、その第3の掃気蒸気導管29にも切
替え弁30およびオリフィス31を設けるようにしても
よい。しかしてこの場合には、プラント高圧負荷時には
切替え弁26および30を閉じ、プラント負荷が例えば
50〜25%負荷の中負荷時には切替え弁26を開らき
、さらに25%負荷以下のプラント低負荷時には切替え
弁30をも聞くことによって、再熱装置の掃気蒸気mを
負荷に応じて大幅に増加さけることができる。
Further, as shown in FIG. 2, a third scavenging steam conduit 29 connected to the condenser 7 is branched from the scavenging steam conduit 14- of the reheating device 4, and the third scavenging steam conduit 29 The switching valve 30 and orifice 31 may also be provided. However, in this case, the switching valves 26 and 30 are closed when the plant is under high pressure load, the switching valve 26 is opened when the plant load is a medium load of, for example, 50 to 25%, and the switching valve 26 is opened when the plant is under a low load of 25% or less. By also monitoring the valve 30, the scavenging steam m of the reheating device can be avoided to increase significantly depending on the load.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明においては掃気蒸気導管が
接続されている高圧給水加熱器より低圧段の給水加熱器
に接続されるとともに切替え弁を有する第2の掃気蒸気
導管を設けたので、プラントの低負荷時に上記切替え弁
を開くことによって、掃気蒸気mを増加せしめることが
でき、再熱装置の掃気蒸気の不足による伝熱管内のドレ
ン閉塞やハンチング現象を防止でき、プラントの効率を
畠くするとともにその信頼性を高いものとすることがで
きる。
As explained above, in the present invention, the second scavenging steam conduit is connected to the feed water heater of the lower pressure stage than the high pressure feed water heater to which the scavenging steam conduit is connected, and has a switching valve. By opening the switching valve when the load is low, the scavenging steam m can be increased, preventing drain clogging and hunting phenomena in the heat transfer tubes due to lack of scavenging steam in the reheating device, and improving plant efficiency. At the same time, its reliability can be made high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれ本発明の実施例を示す系
統図、第3図は従来のタービンプラントの概略系統図、
第4図は再熱装置の伝熱管部の構成を示す図である。 1・・・熱気発生装置、2・・・高圧タービン、4・・
・再熱装置、5・・・低圧タービン、8.9・・・低圧
給水加熱器、11.12・・・高圧給水加熱器、14・
・・掃気蒸気導管、26.30・・・切替え弁、28・
・・第2の掃気蒸気導管。 出願人代理人  猪  股    清 51 園
FIG. 1 and FIG. 2 are system diagrams showing embodiments of the present invention, respectively, FIG. 3 is a schematic system diagram of a conventional turbine plant,
FIG. 4 is a diagram showing the configuration of the heat exchanger tube section of the reheating device. 1...Hot air generator, 2...High pressure turbine, 4...
・Reheating device, 5...Low pressure turbine, 8.9...Low pressure feed water heater, 11.12...High pressure feed water heater, 14.
...Scavenging steam pipe, 26.30...Switching valve, 28.
...Second scavenging steam conduit. Applicant's agent Kiyoshi Inomata 51 Sono

Claims (1)

【特許請求の範囲】 1、高圧タービンからの抽気蒸気或いは蒸気発生装置で
発生した蒸気で再熱を行なうようにした再熱装置を有す
る蒸気タービンプラントにおいて、上記再熱装置から高
圧給水加熱器に掃気蒸気を導く掃気蒸気導管を設けると
ともに、上記再熱装置における掃気蒸気の一部をさらに
切替弁を介して上記高圧給水加熱器よりも低圧段の給水
加熱器に導く、第2の掃気蒸気導管を設けたことを特徴
とする、蒸気タービンプラント。 2、第2の掃気蒸気導管は、再熱装置と高圧給水加熱器
とを接続する掃気蒸気導管から分岐されていることを特
徴とする、特許請求の範囲第1項記載の蒸気タービンプ
ラント 3、切替弁は、プラントの低負荷時に開らかれることを
特徴とする、特許請求の範囲第1項記載の蒸気タービン
プラント。
[Scope of Claims] 1. In a steam turbine plant having a reheating device that performs reheating using extracted steam from a high-pressure turbine or steam generated by a steam generator, a steam turbine plant having a reheating device that performs reheating using steam extracted from a high-pressure turbine or steam generated by a steam generator, in which the reheating device is connected to a high-pressure feed water heater. A scavenging steam conduit is provided to guide the scavenging steam, and a second scavenging steam conduit further guides a portion of the scavenging steam in the reheating device to a feed water heater at a lower pressure stage than the high pressure feed water heater via a switching valve. A steam turbine plant characterized by being equipped with. 2. The steam turbine plant 3 according to claim 1, wherein the second scavenging steam conduit is branched from the scavenging steam conduit connecting the reheating device and the high-pressure feed water heater; 2. The steam turbine plant according to claim 1, wherein the switching valve is opened when the load of the plant is low.
JP26357184A 1984-12-13 1984-12-13 Steam turbine plant Pending JPS61142305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26357184A JPS61142305A (en) 1984-12-13 1984-12-13 Steam turbine plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26357184A JPS61142305A (en) 1984-12-13 1984-12-13 Steam turbine plant

Publications (1)

Publication Number Publication Date
JPS61142305A true JPS61142305A (en) 1986-06-30

Family

ID=17391397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26357184A Pending JPS61142305A (en) 1984-12-13 1984-12-13 Steam turbine plant

Country Status (1)

Country Link
JP (1) JPS61142305A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336407A (en) * 1989-05-17 1991-02-18 Westinghouse Electric Corp <We> Reheat system and method for improving heat consumption thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336407A (en) * 1989-05-17 1991-02-18 Westinghouse Electric Corp <We> Reheat system and method for improving heat consumption thereof

Similar Documents

Publication Publication Date Title
US6393822B2 (en) Cooling steam supply method of a combined cycle power generation plant
EP1752617A2 (en) Combined cycle power plant
JP4191894B2 (en) Method of operating gas / steam combined turbine facility and gas / steam combined turbine facility for implementing the method
US3575002A (en) Combination fossil fuel and superheated steam nuclear power plant
CN104533554B (en) A kind of new and effective water supply heat back system for single reheat unit
JPH03124902A (en) Combined cycle power plant and operating method therefor
KR20130139326A (en) Retrofitting a heating steam extraction facility in a fossil-fired power plant
US5727377A (en) Method of operating a gas turbine power plant with steam injection
US5140818A (en) Internal moisture separation cycle
US4336105A (en) Nuclear power plant steam system
US3055181A (en) Method of operating a power plant system
JPS61142305A (en) Steam turbine plant
US4862692A (en) Supercritical pressure once-through boiler
US3359732A (en) Method and apparatus for starting a steam generating power plant
JP4349133B2 (en) Nuclear power plant and operation method thereof
JP2668086B2 (en) Steam-steam reheat steam turbine
JP3133183B2 (en) Combined cycle power plant
CN206681807U (en) A kind of TRT transformed based on medium temperature and medium pressure waste heat, complementary energy electricity generation system
JP4516438B2 (en) Operation method of nuclear power plant
JPS5993906A (en) Steam turbine plant
JP2531801B2 (en) Exhaust heat recovery heat exchanger controller
JPS59134307A (en) Steam turbine plant
JPH0610619A (en) Supply water heating device
JPH0330687B2 (en)
JPS59110811A (en) Steam turbine plant