JPS6068A - 燃料電池複合システム - Google Patents

燃料電池複合システム

Info

Publication number
JPS6068A
JPS6068A JP58107046A JP10704683A JPS6068A JP S6068 A JPS6068 A JP S6068A JP 58107046 A JP58107046 A JP 58107046A JP 10704683 A JP10704683 A JP 10704683A JP S6068 A JPS6068 A JP S6068A
Authority
JP
Japan
Prior art keywords
heat
fuel cell
heat exchanger
metal
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58107046A
Other languages
English (en)
Inventor
Nobuyuki Yanagihara
伸行 柳原
Akihiro Hosoi
昭宏 細井
Koji Gamo
孝治 蒲生
Tsutomu Iwaki
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58107046A priority Critical patent/JPS6068A/ja
Publication of JPS6068A publication Critical patent/JPS6068A/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/065Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、金属水素化物と燃料電池を組合せ、燃料電池
による発電と金属水素化物と水素との反応熱を利用した
冷・暖房、給湯などが可能な燃料電池発電と冷暖房、給
湯の複合システムに関するものである。
従来例の構成とその問題点 一般に、ある種の金属(主に合金)は水素を吸蔵し、金
属水素化物を作ることが知られている。
この場合、金属の単位重量当り、より多くの水素を吸蔵
し、使用環境温度で可逆的にその水素を放出する。まだ
金属水素化物より水素を放出する過られている。すなわ
ち、 ここでMは金属、MHは金属水素化物、Qは発生熱量を
示す。
まず、この金属水素化物の発熱量、吸熱量に着目してこ
の吸熱作用を利用して冷房に、発熱作用を利用して暖房
、給湯などに応用するものであり、熱源として太陽熱や
各種排熱を用い、しかも圧縮機などを用いず低騒音の冷
暖房装置が特開昭51−22151号公報、特開昭61
−82942号公報に示されている。一方、燃料電池発
電装置は電力を取得する他にも多量の排熱を発生するの
で、その熱量も有効に利用する事が考えられ、80%程
度の高い総合熱効率が期待できる点で他の発電機関と異
なる。そこで、可動部が少なく、低騒音。
有害な排気ガスを出さない高効率の発電とその排熱の有
効利用システムが要望されていた。
発明の目的 本発明は上記従来技術に鑑み、燃料電池と水素平衡解離
圧力の異なる2種類の金属水素化物とを組合わせること
によって、燃料電池発電の総合熱効率の向上を図ると共
に、電力が得られる中で冷暖房、給湯もできる燃料電池
発電と冷暖房の複合システムを提供するものである。
発明の構成 本発明は、同じ温度で水素平衡解離圧力の異なる2種類
の金属水素化物を各々に内蔵する複数個の金属容器と前
記金属容器を設けだ熱交換器を介して連結し、前記2種
類の金属水素化物の中で水素平衡解離圧力の低い金属水
素化物と燃料電池が相互の発生熱量で熱交換出来るよう
にして、金属水素化物による被熱交換空間の冷暖房、あ
るいは被熱交換物体である水を加熱して給湯機能と燃料
電池の発電機能を兼ね備えだことを特徴とする燃料電池
発電と冷暖房の複合システムである。
実施例の説明 第1図に金属水素化物による加熱と冷却サイクルを模式
的に示す。同一温度で水素平衡解離圧力の異なる金属水
素化物MH1(低い解離圧力側)。
MH2(高い解離圧力側)の温度と圧力の特性から、ま
ず低い解離圧力のMHl(A点)を加熱し、高い解離圧
力MH2の吸蔵圧力(0点)より高くする(B−F点)
。今、B−F点と0点の圧力差よシMH1からMH2に
水素が移動し、0点よシ水素が吸蔵される。この時C点
では発熱現象となる。ついで、MHlとMH2が冷える
と両者の圧力が下がpD点とA点において、逆の圧力差
が形成しMH2からMHlに水素が移動し、D点では周
囲の熱源によって水素を放出し、その吸熱作用で冷却さ
れるしくみである。ここで、A点:50℃、約2.5気
圧、3点:180℃、約70気圧、F点:130℃。
約30気圧、0点:60℃、約26気圧、D点:5℃、
4気圧である。この金属水素化物の加熱。
冷却工程のザイクルを繰返えずことによって有効な熱利
用ができる。
第2図および第3図に燃料電池発電と第1図の原理にも
とづいた金属水素化物による冷暖房と給湯の構成を示す
。第2図において、空調用熱交換器1とパルプ2を介し
て配管6で連結している熱交換器3を内蔵した金属容器
4と同様に空調用熱交換器6とパルプ7を介して配管8
で連結している熱交換器9を内蔵した金属容器10が水
素移動用パルプ11.12を介して結合されている。金
属容器4の中には一定量の金属水素化物13MH2゜金
属容器10の中にも一定量の金属水素化物14MH1を
入れ、さらに金属容器10の中には燃料電池16の加熱
と冷却を行なう熱交換器16とパルプ17を介して連結
する熱交換器18が入っている。そして、熱交換用の溶
媒の移動はポンプなどを採用して溶媒を循環させること
で熱の移動を円滑に行なう。
また第3図においては、水を導入する配管9から2方に
分かれ、一方は熱交換器3を内蔵している金属容器4か
らパルプ2全通して、他方は熱交換器9を内蔵している
金属容器1oから、各々パルプ20,21.水配管22
.23から温水配管24を通って、温水が出て来る。各
々の金属容器4.1oの中には一定量の金属水素化物1
3,14を入れ、水素移動用パルプ11.12を介して
結合されている。さらには金属容器10の中には燃料電
池15の加熱・冷却を行なう熱交換器16とパルプ7を
介して直結する熱交換器18が入っている。そして燃料
電池16と金属容器10間における熱媒体の移動はポン
プなどを採用して、溶媒を循環させることにより熱の移
動を円滑に行なう。
各々のシステムの動作原理として、寸ず第2図における
燃料電池の発電と金属水素化物による冷暖房機能につい
て述べる。
燃料電池を加熱し、動作温度160〜2Q○℃で発電さ
せ、電力を取シ出すと抵抗分極などによシ発電効率は低
下し、その損失分は熱となって発生する。この燃料電池
から発生する熱量を利用し、熱交換器16.18を介し
て熱移動を行なわせ水素平衡解離圧力の低い金属水素化
物14を加熱し、金属水素化物14からパルプ11を介
して水素を放出させ、水素平衡解離圧力の高い金属水素
化物13において、MHlよシさらに雰囲気圧力を高く
して水素を吸蔵させる。この時金属水素化物MH2の水
素吸蔵熱(発熱量)を暖房に利用する。つぎに、パルプ
17を閉じて燃料電池からの熱移動を停止するかまたは
燃料電池の発電を停止して、MHlの温度を下げると金
属水素化物MH2とMHlの水素平衡圧力の差によって
水素はパルプ12を介して金属水素化物MH2からMH
ll−移動する。金属水素化物MH2から水素が放出す
る時は周囲の熱を奪ってしまう一種の吸熱反応であるか
ら、金属水素化物MH2が冷却される。この冷熱源を熱
交換器3と1を通して冷房ができる。この時、金属水素
化物MH1は水素を吸蔵するので発熱する。この熱量を
熱交換器9,6を介して熱移動して暖房にも利用出来る
。燃料電池の発電持重たは停止時を問わず金属水素化物
の働きで、冷暖房ができることになる。また停止時から
発電を再開する時は金属水素化物MW1のヒートアップ
した水素吸蔵熱でもって、燃料電池の昇温にも役立てる
ことができる。第1図において、金属水素化物MH2の
6点からM馬のE点に水素が移動すれば60℃の温度か
ら約120℃の温度まで昇温することができる。捷だ、
この原理よ?)80〜1oO℃の温度で160−180
℃寸で温度が止弁するので、燃料電池発電の昇温に効果
的に働く。さらには、燃料電池の排熱量を直接に暖房・
給湯にも利用できる。しかも金属水素化物に熱源として
貯蔵すること、そして、長期に蓄熱することができる。
つぎに第3図における燃料電池の発電と金属水素化物に
よる給湯機能についてのべる。
燃料電池16を加熱して動作温度160〜200’Cで
発電させると、先にも述べた様に多量の排熱を出す。こ
の排熱量を熱交換器9,16を介して金属水素化物MH
1を加熱して水素を放出させ、パルプ11を介して水素
の移動を行なわせる。金属水素化物MH1から放出した
水素は金属水素化物MH2に吸蔵され、その吸蔵時の発
熱量を熱交換器3を通して熱交換し水媒体を加温して温
水とし給湯に利用する。つぎに、パルプ17を閉じて燃
料電池からの熱移動を停止するかまたは燃料電池を停止
してMHlの温度を下げると金属水素化物MH2とMH
lの水素平衡圧力の差によって水素はパルプ12を介し
て金属水素化物MH2からMHlに移動する。
管19よりパルプ21.配管22を通して流れる水媒体
を昇温し、この温水を給湯に利用する。
第2図および第3図では水素移動用のパルプ11゜12
を介して金属水素化物MH1,MH2を構成しているが
、さらに、この構成を1組として2組以上を設けると七
により、各組の金属水素化物を各々交互に動作させるこ
とにより、すなわち、燃料電池から出る排熱を交互に各
組の金属水素化物MH1に供給する事により、連続的に
暖房、冷房、あるいは給湯ができると共に、燃料電池か
ら電力も連続的に取り出せる。
次によシ具体的な実施例忙ついて説明する。今回実施し
た燃料電池は電解質としてリン酸溶液を用い、電解質保
持体に含浸させた。酸化剤として空気、燃料として水素
ガスを用いて発電させた。
燃料電池の出力としては20KW(1ooV−20OA
)とした。燃料電池の発電効率(低発熱量換算)は約4
0%とすると理想的には総合熱効率(熱併給型)約8Q
%とも云われているので、約同量の電力の損失が考えら
れるので、約17,200−/h(約860kaVKW
h ×20KW ) t7)排熱量が発生する。
これらの熱を効率良く利用できる金属水素化物として、
つぎの材料を選んだ高い水素平衡解離圧力側の金属水素
化物として、TiMn系、たとえば、TtMnl、5’
Hx、Tio、9Zro、1Mn1.、VO02Cr 
o 、 2”HX系など。低い水素平衡解離圧力側の金
属水素化物、たとえば、T 1 o 、 e Z r 
o 、 aM n 1.9Cu o 、 1’ HXr
 VNb H,r Ca N i 5・HX系などが適
当である。
今、燃料電池から出る排熱を利用して、2.000fe
at/h 程度の冷暖房を行なうとして、それに必要な
金属水素化物の量は金属水素化物TiMn1.5・Hを
基準として考えて見ると、T i Mn 1.6・2.
4 H2,4の水素吸蔵・放出にともなう水素との反くν 応熱ΔHは約Wtn o座、であるから、理論的にはT
 I Mn 1. es H2、a ノ利用できる水素
量は1.5W係である。したがって、1にg当9約53
1calの熱量となる。まだ、温度低下による水素利用
効率、熱損失などを考慮すると実際に利用出来る熱量は
約40−勺 となる。冷・暖房に必要な熱量は2.00
07/hであるから必要な金属水素化物は約50 Kg
/hと云う事になる。したがって、金属水素化物として
は、金高圧側にT I Mn 1.5・HXを用い、低
圧側にCaN15HXを採用した。実際に発電によって
20 KWの出力を取り出しつつ、燃料電池の排熱を用
いて高圧側の金属水素化物からの水素放出時の吸熱源を
利用して約2 、OOOIgl/hの冷房および暖房を
することができる。燃料電池の排熱は1時間当り計算値
では17.2007出ているので、この様な冷房又は暖
房が約8基程度組合せることが可能であるし、もっと大
型化の冷・暖房システムもできる。
一方、給湯にも利用したところ16〜20℃温度の水を
40〜60℃以上の温水にまで昇温することができる。
また燃料電池の発電を補助するだめの金属水素化物の熱
量を利用する事により燃料電池の昇温速度を早めること
も確認した。
燃料電池の発熱量を一度金属水素化物に貯えて外部熱源
でヒートアンプするために、全体の熱効率も向上し、金
属水素化物の熱量を応用することで従来技術よシは10
〜20チ程熱効率が向上し熱の有効利用ができる。
なお、上記実施例では金属水素化物を2種類用いた1組
の構成のシステムで行なったが、この−組のシステムを
複数個を燃料電池と結合し、一方の金属水素化物で冷・
暖房を行なっている時は他方の金属水素化物では燃料電
池の熱源で再生(加熱)を行ない、この操作を交互に行
なうことで、連続的な機能を有する。燃料電池の連続発
電と冷暖房・給湯が連続して得られる事はもちろんであ
るが。
燃料電池の停止時でも燃料電池の熱を一度金属水素化物
に貯えることが出来るので、この熱を有効に利用できる
。燃料電池の間欠発電の時でも熱は連続して利用する。
また容器間の水素平衡圧力の相違は単独の金属水素化物
あるいは複数の金属水素化物を混合してもよい。また被
熱交換空間との熱交換は給湯用の湯を介して行ってもよ
い。
この様に、本発明は燃料電池の排熱を効率よく金属水素
化物の水素移動に利用し、冷却と加熱が可能であること
から総合熱効率の高い7ステムが構成できる。さらには
燃料電池の排熱を一度金属水素化物に蓄熱して必要に応
じて再度利用することができる。金属水素化物のヒート
アップ1;よシ燃料電池の昇温に効果があるなどの特徴
を有する。
発明の効果 以上の様に、本発明の複合システムによれば、水素平衡
解離圧力の異なる2種類以上の金属水素化物からなる金
属容器を各々水素移動用パルプで連uし、さらに低重側
金属水素化物よ燃料電池間を熱交換器で連結し、燃料電
池の発電と、その排熱を利用して金属水素化物による冷
暖房・給湯などを行ない、システム全体の総合熱効率の
向上(省エネルギー化)を図ると共に、燃料電池の動作
条件をとわず連続して冷暖房・給湯ができる。
さらにシステムにおいて、可動部が少ないので静かな運
転ができ、また有害ガスが出ないので無公害である。さ
らに、金属水素化物による燃料電池のヒートアップにも
効果を有し、燃料電池発電と冷暖房・給湯の複合システ
ムの機能を有する点で実用的価値は大きい。
【図面の簡単な説明】
第1図は水素平衡圧力の異なる2種類の金属水素化物に
よる冷却・加熱サイクルの特性を模式的に示す図、第2
図は本発明の一実施例の燃料電池発電と金属水素化物に
よる冷暖房を行なう複合システムの構成図、第3図は本
発明の一実施例の燃料電池発電と金属水素化物による給
湯を行なう複合システムの構成図である。 1.3,6,9,16.18・・・・・・熱交換器、2
゜7.11,12,17,20.21・・・・・・パル
プ、4.10・・・・・・金属容器、5,8・・・・・
・連結管、13゜14・・・・・・金属水素化物、15
・・・・・・燃料電池、19゜22.23・・・・・・
給水用配管、24・・・・・・給湯配管。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 (0C) 2301B0 f50 /25 I(b 80 60 
40 20100 −10湿度 Cf03/−r、K) 包5 つ 図

Claims (2)

    【特許請求の範囲】
  1. (1)水素平衡圧力の異なる金属水素化物を各々内蔵す
    る複数の金属容器と、前記金属容器間を接続する水素流
    路と、前記各金属容器に設けだ熱交換器と、燃料電池に
    設けた熱交換器と、水素平衡圧力の低い前記容器に設け
    た第2の熱交換器と前記第2の熱交換器と前記燃料電池
    に設けた熱交換器との間に設けた熱媒体流路を具備し、
    少なくとも前記金属容器の熱交換器を介して金属容器と
    被熱交換空間もしくは被熱交換物体の間で熱交換するこ
    とを特徴とする燃料電池複合システム。
  2. (2)水素平衡圧力の異なる金属水素化物を各々内蔵す
    る2個の金属容器を1組とし、これを複数組用意し、各
    金属容器毎に熱交換器を配し、燃料電池に設けた熱交換
    器と各組の水素平衡圧力の低い金属容器の第2の熱交換
    器との間で熱交換し、前記各組の金属容器に設けた熱交
    換器を介して前記金属容器と被熱交換空間もしくは被熱
    交換物体の間で連続的に熱交換させることを特徴とする
    特許請求の範囲第1項記載の燃料電池複合システム。
JP58107046A 1983-06-15 1983-06-15 燃料電池複合システム Pending JPS6068A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58107046A JPS6068A (ja) 1983-06-15 1983-06-15 燃料電池複合システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58107046A JPS6068A (ja) 1983-06-15 1983-06-15 燃料電池複合システム

Publications (1)

Publication Number Publication Date
JPS6068A true JPS6068A (ja) 1985-01-05

Family

ID=14449143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58107046A Pending JPS6068A (ja) 1983-06-15 1983-06-15 燃料電池複合システム

Country Status (1)

Country Link
JP (1) JPS6068A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053983A (ja) * 1991-06-28 1993-01-14 Juki Corp 糸調子器の調節つまみ定位置戻し装置
JP2002222658A (ja) * 2001-01-25 2002-08-09 Honda Motor Co Ltd 燃料電池システム
KR20140072049A (ko) * 2011-08-23 2014-06-12 하이드로지니어스 테크놀로지스 게엠베하 빌딩에 에너지를 공급하는 장치 및 방법

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053983A (ja) * 1991-06-28 1993-01-14 Juki Corp 糸調子器の調節つまみ定位置戻し装置
JP2002222658A (ja) * 2001-01-25 2002-08-09 Honda Motor Co Ltd 燃料電池システム
US7195830B2 (en) * 2001-01-25 2007-03-27 Honda Giken Kogyo Kabushiki Kaisha Apparatus, mechanism and process for warming-up fuel cell
KR20140072049A (ko) * 2011-08-23 2014-06-12 하이드로지니어스 테크놀로지스 게엠베하 빌딩에 에너지를 공급하는 장치 및 방법
JP2014529852A (ja) * 2011-08-23 2014-11-13 ヒドローゲニオス・テヒノロギース・ゲーエムベーハーHydrogenious Technologies Gmbh 建物にエネルギーを供給する設備および方法
US9685671B2 (en) 2011-08-23 2017-06-20 Hydrogenious Technologies Gmbh Arrangement and method for supplying energy to buildings

Similar Documents

Publication Publication Date Title
Zhao et al. 4E analysis and multiobjective optimization of a PEMFC-based CCHP system with dehumidification
CN108365235B (zh) 基于有机朗肯循环的燃料电池余热利用系统
US20220364773A1 (en) Advanced Metal Hydride Heat Transfer System Utilizing An Electrochemical Hydrogen Compressor
US4262739A (en) System for thermal energy storage, space heating and cooling and power conversion
KR101339672B1 (ko) 연료전지의 열을 이용한 냉난방 공급시스템
JP7306623B2 (ja) 水素利用システムにおける熱管理方法
JP2002124280A (ja) 燃料電池発電システム
JP3631107B2 (ja) マイクロガスタービン廃熱ガスを用いたコジェネレーションシステム
CN109944756A (zh) 一种基于甲烷重整储能的太阳能光热发电系统及方法
JPS6068A (ja) 燃料電池複合システム
JPH0541236A (ja) 電力貯蔵装置
CN113530626B (zh) 一种基于有机朗肯循环的燃料电池余热发电系统
Syed et al. Thermodynamic and heat‐hydrogen transfer analyses of novel multistage hydrogen‐alloy sorption heat pump
Gambini Metal hydride energy systems performance evaluation. Part B: performance analysis model of dual metal hydride energy systems
US20190293324A1 (en) Advanced Metal Hydride Heat Transfer System Utilizing An Electrochemical Hydrogen Compressor
Corumlu et al. Performance analysis of a novel solar energy‐based combined plant for alternative fuels production
JPH0481098B2 (ja)
JP2005085598A (ja) 化学蓄熱蓄水素装置
SU688660A1 (ru) Паросилова установка
JPS5819956B2 (ja) 金属水素化合物を用いた冷房装置
US6298665B1 (en) Power generating device employing hydrogen absorbing alloys and low heat
JPS59219648A (ja) 給湯装置
TW505775B (en) Hydrogen-storing material applicable on solar or waste heat thermal exchange system
CN118258247A (zh) 一种热化学耦合液态二氧化碳多能长时储能系统
CN117211950A (zh) 一种利用空气热能的氢能发电系统