JPS606891B2 - Compound having hexagonal layered structure represented by TmGaCuO↓4 and method for producing the same - Google Patents
Compound having hexagonal layered structure represented by TmGaCuO↓4 and method for producing the sameInfo
- Publication number
- JPS606891B2 JPS606891B2 JP9466181A JP9466181A JPS606891B2 JP S606891 B2 JPS606891 B2 JP S606891B2 JP 9466181 A JP9466181 A JP 9466181A JP 9466181 A JP9466181 A JP 9466181A JP S606891 B2 JPS606891 B2 JP S606891B2
- Authority
- JP
- Japan
- Prior art keywords
- compound
- gallium
- copper
- oxide
- layered structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Catalysts (AREA)
Description
【発明の詳細な説明】
本発明は、新規化合物であるTmGaCu04で示され
る六方晶系の層状構造を有する化合物およびその製造法
に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel compound TmGaCu04 having a hexagonal layered structure and a method for producing the same.
従来、YFe204で示される六方晶系の層状構造を有
する化合物は、本出願人らによって合成され、その存在
が既に知られている。Conventionally, a compound having a hexagonal layered structure represented by YFe204 was synthesized by the present applicant, and its existence is already known.
この化合物は、Y3十Fe2十Fe3十042‐で示さ
れるように、鉄の2価イオンと3価イオンは、5酉己位
の酸素イオンによって囲まれ、イットリウム(Y)は、
6配位の酸素イオンをその周わりに持っている化合物で
あり、磁性をもっている。本発明は、前記、Y3十Fe
2十Fe3十042‐化合物のY3十の代わりにTm3
十、Fe2十の代わりにC〆十、Fe3十の代わりにG
a3十を置きかえた新規な化合物およびその製造法を提
供するにある。In this compound, as shown in Y30Fe20Fe3042-, divalent and trivalent ions of iron are surrounded by oxygen ions at the 5-position, and yttrium (Y) is
It is a compound that has six-coordinated oxygen ions around it, and is magnetic. The present invention provides the above-mentioned Y30Fe
20Fe30042 - Tm3 instead of Y30 in the compound
Ten, C instead of Fe2 ten, G instead of Fe3 ten
The object of the present invention is to provide a novel compound that replaces a30 and a method for producing the same.
本発明のTmGaCu04で示される化合物は、この化
合物中、ツリウムはTm3十イオン、ガリウムはGa3
十、銅はCぜ+として存在しており、Tm3十Ga3十
Cu2十042−として表わすことができる。In the compound represented by TmGaCu04 of the present invention, thulium is Tm30 ion, gallium is Ga3
10. Copper exists as Cze+ and can be expressed as Tm3+Ga30Cu2+042-.
この結晶は、第1図に示すように六方晶層状構造を持っ
ている。最大の丸は酸素、中丸はツリウム、最小の黒丸
はガリウムと銅を示している。ガリウムと銅は、ランダ
ムに分布している。銅の2価イオンとガリウムの3価イ
オンは、5配位の酸素イオンによって囲まれている。結
晶学的には同一の位置を占めている。またTmは6配位
の酸素をその周わりに持っている。陰イオンである酸素
は繊密構造をとっている。s,tおよびuは単位格子内
に於ける位置を示す。この結晶の面指数(hkl)、面
間隔(d(A))〔doは実測、dcは計算値を示す。This crystal has a hexagonal layered structure as shown in FIG. The largest circle indicates oxygen, the middle circle indicates thulium, and the smallest black circle indicates gallium and copper. Gallium and copper are randomly distributed. The divalent ions of copper and the trivalent ions of gallium are surrounded by five-coordinated oxygen ions. Crystallographically, they occupy the same position. Moreover, Tm has six-coordinated oxygen around it. Oxygen, an anion, has a delicate structure. s, t and u indicate positions within the unit cell. Planar index (hkl) and interplanar spacing (d(A)) of this crystal [do indicates actual measurement, dc indicates calculated value.
〕、X−線に対する相対反射強度、1(%)は第1表の
とおりである。TmGa○u04
第1表
空間群はRミmであり、その晶癖は板状晶であり、格子
定数は次のとおりである。], relative reflection intensity for X-rays, 1 (%) are as shown in Table 1. TmGa○u04 The first table space group is Rmim, its crystal habit is plate-like, and its lattice constant is as follows.
ao=3.4726 ±0.0004 (
A)Co=25.160 ±0.006
(A)この化合物は、半導体材料および触媒として有用
なものである。ao=3.4726 ±0.0004 (
A) Co=25.160 ±0.006
(A) This compound is useful as a semiconductor material and a catalyst.
この化合物は、次の方法によって製造し得られる。This compound can be produced by the following method.
金属ツリウム(Tm)はあるいは酸化ツリウム(Tm2
03)もし〈は、加熱されることによって酸化ツリウム
(Tm203)に分解される化合物と、金属ガリウム、
あるいは酸化ガリウム(Ga203)もしくは、加熱さ
れることにより酸化ガリウム(Ga203)に分解され
る化合物と、金属銅あるいは酸化鋼(Cu○)もしくは
加熱されることにより分解されて酸化鋼(Cuo)を生
ずる化合物とを、イッテルビウム、ガリウム、銅の割合
が原子比で1対1対1になるように混合して、700o
o以上の温度で、大気中、酸化性雰囲気、あるいはガリ
ウムおよび銅が各々3価イオン状態、2価イオン状態よ
り還元されない程度の還元雰囲気のもとで加熱すること
によって製造することが出来る。Thulium metal (Tm) is also known as thulium oxide (Tm2).
03) Moshi is a compound that decomposes into thulium oxide (Tm203) when heated, and metal gallium,
Alternatively, gallium oxide (Ga203) or a compound that decomposes into gallium oxide (Ga203) when heated, and metallic copper or oxidized steel (Cu○), or a compound that decomposes when heated to produce oxidized steel (Cuo). ytterbium, gallium, and copper in an atomic ratio of 1:1:1, and
It can be produced by heating in the air, in an oxidizing atmosphere, or in a reducing atmosphere to the extent that gallium and copper are not reduced from their trivalent ion state and divalent ion state, respectively, at a temperature of 100 yen or more.
本発明に用いる出発物質は、市販のものをそのまま使用
してもよいが、出発物質相互間の化学反応を速やかに進
行させるためには、粒径がちいさい程よく、特にloA
m以下であることが好ましい。また、電気材料として用
いる場合には不純物の混入をきらうので、出発原料物資
は純度が高いほど好ましい。Commercially available starting materials used in the present invention may be used as they are, but in order to rapidly advance the chemical reaction between the starting materials, the smaller the particle size, the better.
It is preferable that it is below m. Furthermore, when used as an electrical material, contamination with impurities is avoided, so the higher the purity of the starting raw materials, the better.
この原料をそのまま、あるいはアルコール類もしくはア
セトンと共に充分に混合する。こられの混合割合は、ツ
リウム、ガリウム、銅の割合が原子比として1対1対1
の割合である。This raw material is thoroughly mixed as is or with alcohol or acetone. The mixing ratio of these is 1:1:1 as an atomic ratio of thulium, gallium, and copper.
This is the percentage of
この割合をはずすと目的とする化合物を得ることは出来
ない。この混合物を大気中、あるいは酸化性雰囲気もし
くはガリウムおよび銅が3価イオン状態および2価イオ
ン状態から還元され得ない程度の還元雰囲気のもとで7
00午0以上の温度で加熱する。加熱時間は、1日もし
くはそれ以上である。加熱の際の昇温速度には制約はな
い。反応終了後は、0℃に急袷するかあるいは大気中に
急激にひきだせばよい。得られたTmGaCu04化合
物は、黒色を示し、粉末X線回析法によって結晶構造を
有することがわかった。その結晶構造は、既に本出願人
が得たYFe204と同型であることがわかった。出発
混合試料と反応生成物の試料重量を精密に秤量し、得ら
れた試料の化学量論数を決定した。実施例
純度99.9%以上のツリウム酸化物(Tm203)粉
末、純度99.9%以上の酸化ガリウム(Ga203)
粉末、および試薬特級の酸化鋼(Cu○)粉末を、モル
比で1対1対2の割合に秤量し、乳鉢内でエチルアルコ
ールを加えて充分に混合し、平均粒径数仏mの微粉末を
得た。If this ratio is exceeded, the target compound cannot be obtained. This mixture was mixed in air, or in an oxidizing atmosphere or in a reducing atmosphere such that gallium and copper could not be reduced from their trivalent and divalent ionic states.
Heat at a temperature of 00:00 or higher. The heating time is one day or more. There are no restrictions on the rate of temperature increase during heating. After the reaction is completed, the temperature may be raised to 0° C. or the solution may be rapidly drawn out into the atmosphere. The obtained TmGaCu04 compound exhibited black color and was found to have a crystal structure by powder X-ray diffraction. The crystal structure was found to be the same as that of YFe204 already obtained by the applicant. The weights of the starting mixed sample and the reaction product were precisely weighed, and the stoichiometry of the resulting sample was determined. Examples Thulium oxide (Tm203) powder with a purity of 99.9% or more, gallium oxide (Ga203) with a purity of 99.9% or more
Powder and reagent-grade oxidized steel (Cu○) powder were weighed at a molar ratio of 1:1:2, and ethyl alcohol was added in a mortar and mixed thoroughly to form a fine powder with an average particle size of several meters. A powder was obtained.
該混合物を白金ルッボ内にみたして、1020qoに設
定された箱型のシリコニット炉内に入れ、4日間加熱し
、その後試料を炉外にとりだし、室温まで急速に冷却し
た。得られた試料はTm○aCu04であり、既に報告
されているYFe204と結晶学的には、同型であるこ
とが粉末X線回折法によって確認された。試料重量が加
熱前後で精密に秤量され、得られた試料の化学量論数が
決定された。第1表に得られた試料の結晶学的性質を示
した。The mixture was filled in a platinum rubbo and placed in a box-shaped siliconite furnace set at 1020 qo and heated for 4 days, after which the sample was taken out of the furnace and rapidly cooled to room temperature. The obtained sample was Tm○aCu04, and it was confirmed by powder X-ray diffraction that it was crystallographically the same type as the previously reported YFe204. The weight of the sample was precisely weighed before and after heating, and the stoichiometry of the resulting sample was determined. Table 1 shows the crystallographic properties of the samples obtained.
図面は、本発明のTmGaCu04結晶の図である。
最大の丸は酸素、中丸はツリウム、最小黒丸はガリウム
と銅を示す。第1図The drawing is a diagram of a TmGaCu04 crystal of the present invention. The largest circle indicates oxygen, the middle circle indicates thulium, and the smallest black circle indicates gallium and copper. Figure 1
Claims (1)
を有する化合物。 2 金属ツリウム(Tm)あるいは酸化ツリウム(Tm
_2O_3)もしくは、加熱されることにより酸化ツリ
ウム(Tm_2O_3)に分解される化合物と、金属ガ
リウム(Ga)あるいは酸化ガリウム(Ga_2O_3
)もしくは、加熱されることにより酸化ガリウム(Ga
_2O_3)に分解される化合物と、銅(Cu)あるい
は酸化銅(CuO)もしくは、加熱されることにより分
解されて酸化銅(CuO)を生ずる化合物とを、イツテ
ルビウム、ガリウム、銅の割合が原子比で1対1対1に
なるように混合して、700℃以上の温度で大気中、酸
化性雰囲気あるいはガリウムおよび銅が各々3価イオン
状態、2価イオン状態より還元されない程度の還元雰囲
気のもとで加熱することを特徴とするTmGaCuO_
4で示される六方晶系の層状構造を有する化合物の製造
法。[Claims] 1 A compound having a hexagonal layered structure represented by TmGaCuO_4. 2 Thulium metal (Tm) or thulium oxide (Tm
_2O_3) or a compound that decomposes into thulium oxide (Tm_2O_3) when heated, and metallic gallium (Ga) or gallium oxide (Ga_2O_3).
) or gallium oxide (Ga
_2O_3) and copper (Cu) or copper oxide (CuO), or a compound that decomposes to produce copper oxide (CuO) when heated, with the ratio of ytterbium, gallium, and copper being atomic. Mix at a ratio of 1:1:1 and place in the air at a temperature of 700°C or higher in an oxidizing atmosphere or in a reducing atmosphere to the extent that gallium and copper are not reduced from the trivalent ion state and divalent ion state, respectively. TmGaCuO_ characterized by heating under
A method for producing a compound having a hexagonal layered structure represented by No. 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9466181A JPS606891B2 (en) | 1981-06-19 | 1981-06-19 | Compound having hexagonal layered structure represented by TmGaCuO↓4 and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9466181A JPS606891B2 (en) | 1981-06-19 | 1981-06-19 | Compound having hexagonal layered structure represented by TmGaCuO↓4 and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57209828A JPS57209828A (en) | 1982-12-23 |
JPS606891B2 true JPS606891B2 (en) | 1985-02-21 |
Family
ID=14116428
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9466181A Expired JPS606891B2 (en) | 1981-06-19 | 1981-06-19 | Compound having hexagonal layered structure represented by TmGaCuO↓4 and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS606891B2 (en) |
-
1981
- 1981-06-19 JP JP9466181A patent/JPS606891B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS57209828A (en) | 1982-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0244256B2 (en) | INGAZN2O5DESHIMESARERUROTSUHOSHOKEINOSOJOKOZOOJUSURUKAGOBUTSUOYOBISONOSEIZOHO | |
JPH0244259B2 (en) | ||
JPS5943424B2 (en) | Compound having hexagonal layered structure represented by TmFeCuO↓4 and method for producing the same | |
JPS5934656B2 (en) | Compound having hexagonal layered structure represented by YbAlMnO↓4 and method for producing the same | |
JPS606891B2 (en) | Compound having hexagonal layered structure represented by TmGaCuO↓4 and method for producing the same | |
JPS5943416B2 (en) | Compound having hexagonal layered structure represented by YbFeZnO↓4 and method for producing the same | |
JPS606893B2 (en) | Compound having hexagonal layered structure represented by LuGaCuO↓4 and method for producing the same | |
JPS606892B2 (en) | Compound having hexagonal layered structure represented by YbGaCuO↓4 and method for producing the same | |
JPS6041618B2 (en) | Compound having hexagonal layered structure represented by YbFeCoO↓4 and method for producing the same | |
JPS5943417B2 (en) | Compound having hexagonal layered structure represented by LuFeCuO↓4 and method for producing the same | |
JPS606894B2 (en) | Compound having hexagonal layered structure represented by TmGaZnO↓4 and method for producing the same | |
JPH0435407B2 (en) | ||
JPS606889B2 (en) | Compound having hexagonal layered structure represented by LuGaZnO↓4 and method for producing the same | |
JPS606888B2 (en) | Compound with hexagonal layered structure represented by TmGaMgO↓4 and method for producing the same | |
JPS606890B2 (en) | Compound having hexagonal layered structure represented by LuGaMgO↓4 and method for producing the same | |
JPS6024053B2 (en) | Compound having hexagonal layered structure represented by YbGaMgO↓4 and method for producing the same | |
JPS5943418B2 (en) | Compound having hexagonal layered structure represented by YbFeCuO↓4 and method for producing the same | |
JPS5943420B2 (en) | Compound having hexagonal layered structure represented by YbFeMgO↓4 and method for producing the same | |
JPS6024054B2 (en) | Compound having hexagonal layered structure represented by ErGaMgO↓4 and method for producing the same | |
JPS5933542B2 (en) | Compound having hexagonal layered structure represented by YGaMnO↓4 and method for producing the same | |
JPS6041617B2 (en) | Compound having hexagonal layered structure represented by LuFeCoO↓4 and method for producing the same | |
JPS606895B2 (en) | Compound having hexagonal layered structure represented by YbGaZnO↓4 and method for producing the same | |
JPS6041620B2 (en) | Compound having hexagonal layered structure represented by YbGaCoO↓4 and method for producing the same | |
JPS6041622B2 (en) | Compound having hexagonal layered structure represented by LuGaCoO↓4 and method for producing the same | |
JPS6041621B2 (en) | Compound having hexagonal layered structure represented by TmGaCoO↓4 and method for producing the same |