JPS6068634A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6068634A
JPS6068634A JP17743483A JP17743483A JPS6068634A JP S6068634 A JPS6068634 A JP S6068634A JP 17743483 A JP17743483 A JP 17743483A JP 17743483 A JP17743483 A JP 17743483A JP S6068634 A JPS6068634 A JP S6068634A
Authority
JP
Japan
Prior art keywords
layer
polycrystalline silicon
layers
silicon layer
silicide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17743483A
Other languages
Japanese (ja)
Inventor
Masaru Oki
勝 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP17743483A priority Critical patent/JPS6068634A/en
Publication of JPS6068634A publication Critical patent/JPS6068634A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accelerate the operation of a semiconductor device with a silicide layer by connecting a metal silicide layer formed on a polycrystalline silicon of lower layer with two polycrystalline silicon layers, thereby enabling to reduce the contacting area between two polycrystalline silicon layers. CONSTITUTION:A high melting point metal layer is formed on the first polycrystalline silicon layer 3, a molybdenum silicide layer 8 is formed by exposing, for example, in nitrogen atmosphere of high temperature to remove the prescribed portion such as by a lithographic technique. Then, the second polycrystalline silicon layer 5 is formed, and the prescribed portion is allowed to remain. According to this method, even if the layers 3, 5 are in reverse conductive types, no P-N junction is formed due to the presence of an intermediate silicide layer 8. Thus, the layers 3, 5 coupled by a wiring material becomes an overlapped portion only, thereby eliminating a space for contacting and increasing the degree of freedom of wirings. The layer resistance can be reduced by silicifying the layer 3, thereby being effective for acceleration.

Description

【発明の詳細な説明】 本発明は、特に多結晶半導体層を2層以上有する半導体
装置に関するものである・ 多結晶半導体層、例えば多結晶シリコン層を2層以上有
する半導体装置に於いて、従来、一層目多結晶シリコン
層と2層目の多結晶シリコン層とが導伝型が異なる場合
、1層目多結晶シリコン層と2層目多結晶シリコン層と
を直接接触させると、接触した部分にPN接合が出来、
PN接合に逆バイアスが掛った場合電流が流れなくなる
という欠点がある・このため、1層目多結晶シリコン層
と、2層目多結晶シリコン層とをつなぐ場合には、配線
材料(例えばAt等)を用いてつないでいる。
DETAILED DESCRIPTION OF THE INVENTION The present invention particularly relates to a semiconductor device having two or more polycrystalline semiconductor layers. , when the first polycrystalline silicon layer and the second polycrystalline silicon layer have different conductivity types, when the first polycrystalline silicon layer and the second polycrystalline silicon layer are brought into direct contact, the contacted portion A PN junction is made in
There is a drawback that current will not flow if a reverse bias is applied to the PN junction.For this reason, when connecting the first polycrystalline silicon layer and the second polycrystalline silicon layer, it is necessary to use a wiring material (such as At). ) are used to connect them.

この方法では、1層目多結晶シリコン層と配線材料とを
つなぐためのコンタクト部分と、2層目多結晶シリコン
層と配線材料とを結ぶだめのコンタクト部分とが必要で
あシ、無駄なスペースが必要となシ、半導体装置の微細
化にとって不利な要素であり、同時に配線の自由度も失
われる。又、1層目の多結晶シリコン層と2層目の多結
晶シリコン層とを結ぶために2つのコンタクト抵抗が入
シ、かつ、多結晶シリコン層は不純物を濃くドープして
も層抵抗が数十Ω/口程度にしか下らず半導体装置の高
速化にも不利である。
This method requires a contact part for connecting the first polycrystalline silicon layer and the wiring material, and a contact part for connecting the second polycrystalline silicon layer and the wiring material, which wastes space. This is a disadvantageous factor for miniaturization of semiconductor devices, and at the same time, freedom in wiring is also lost. In addition, two contact resistors are inserted to connect the first polycrystalline silicon layer and the second polycrystalline silicon layer, and even if the polycrystalline silicon layer is heavily doped with impurities, the layer resistance remains low. The resistance decreases to only about 10 Ω/port, which is disadvantageous for increasing the speed of semiconductor devices.

本発明は半導体装置の微細化、高速化にも有効な半導体
装置を提供するものである。
The present invention provides a semiconductor device that is effective in miniaturizing and increasing the speed of semiconductor devices.

本発明は、二つの多結晶シリコンj−を下層の多結晶シ
リコン上に形成された金属シリサーfト層で接続するこ
とを特徴とする特 以下、本発明を図面を用いて詳細に説明する・従来の方
法による半導体装置の構造断面図を第1図に示す。シリ
コン基板1上の絶縁膜2の上に形成された一層目の多結
晶シリコン層3と、二層目の多結晶層5とが逆の導伝型
であると、直接2つの多結晶シリコン層?接触させると
l) N接合が出来るため、配線材料7(例えばA /
= )を介して2層の多結晶/リコン層3,4を結んで
いる。この場合、コンタクト用の面積が必要であること
The present invention is characterized in that two polycrystalline silicon layers are connected by a metal silicide layer formed on the underlying polycrystalline silicon. FIG. 1 shows a cross-sectional view of the structure of a semiconductor device produced by a conventional method. When the first polycrystalline silicon layer 3 and the second polycrystalline layer 5 formed on the insulating film 2 on the silicon substrate 1 are of opposite conductivity type, the two polycrystalline silicon layers are directly connected to each other. ? When brought into contact, an N junction is formed, so the wiring material 7 (for example, A/
The two polycrystalline/recon layers 3 and 4 are connected via a wire. In this case, area for contacts is required.

一層目多結晶クリコン層3上の絶縁体膜層4,6の厚が
厚いためコンタクト孔が大きくなる等の欠点がある。又
、多結晶シリコン層は不純物を濃く拡散しても層抵抗は
数十〇/口種度にしか下がらず、高速動作には不利であ
る〇 本発明の一実施例の半導体装置の構造断面1qを第2図
に示す。本発明では一層目多結晶シリコンj裔3形成後
、この上に高融点金属1層(例えばモリブデン等)を形
成し、例えば高温の1素分間気中にさらすことによジモ
リブデンシリサイド層8を形成する。シリサイド層8上
に絶縁膜4を形成し、シリサイド層8上の絶縁膜4の所
定の部分を、例えばリングラフイー技術を用い除去する
。次に2層目多結晶シリコン層5を形成し、既知の方法
によシ2層目多結晶シリコン層の所定の部分を残す。
Since the insulator film layers 4 and 6 on the first polycrystalline silicon layer 3 are thick, there are drawbacks such as a large contact hole. Furthermore, even if impurities are diffused in a high concentration in the polycrystalline silicon layer, the layer resistance decreases only to a few tens of degrees, which is disadvantageous for high-speed operation. Structural cross section 1q of a semiconductor device according to an embodiment of the present invention is shown in Figure 2. In the present invention, after forming the first layer of polycrystalline silicon 3, a layer of high melting point metal (for example, molybdenum, etc.) is formed thereon, and the dimolybdenum silicide layer 8 is formed by exposing it to air at high temperature for 1 minute, for example. Form. An insulating film 4 is formed on the silicide layer 8, and a predetermined portion of the insulating film 4 on the silicide layer 8 is removed using, for example, a phosphorography technique. Next, a second polycrystalline silicon layer 5 is formed, and a predetermined portion of the second polycrystalline silicon layer is left by a known method.

上記方法によれば、一層目多結晶シリコン層3と、二層
目多結晶シリコン層5とが逆の導伝型であっても、2層
間にシリサイド層8があることによJ)PN接合は出来
ないOこれによシ配線材料によって結んでいた一層目多
結晶シリコン層3と2層目多結晶シリコン層5とは2層
のオーツく一うップ分だけとな夛コンタクト用のスペー
スは不要となり、配線の自由度も増大する。1層目多結
晶層3をシリサイド化することによシ層抵抗を下げるこ
とが出来、高速化にも有効である。又、第3図に示すよ
うに前記2層目多結晶シリコン層5にも例えば白金シリ
サイド層9(低融点金属シリサイド)を形成することに
よシよシ一層の高速化が期待出来る。2層目の多結晶シ
リコン層5には、高融点金属シリサイド層を形成しても
よい。
According to the above method, even if the first polycrystalline silicon layer 3 and the second polycrystalline silicon layer 5 are of opposite conductivity types, the presence of the silicide layer 8 between the two layers makes the PN junction Because of this, the first polycrystalline silicon layer 3 and the second polycrystalline silicon layer 5, which were connected by the wiring material, have only the space for the two layers of auto-contact. This eliminates the need for wiring, and increases the degree of freedom in wiring. By siliciding the first polycrystalline layer 3, the layer resistance can be lowered, which is also effective in increasing speed. Further, as shown in FIG. 3, by forming, for example, a platinum silicide layer 9 (low melting point metal silicide) on the second polycrystalline silicon layer 5, even higher speeds can be expected. A refractory metal silicide layer may be formed in the second polycrystalline silicon layer 5.

上記の様に本発明によれば2層多結晶シリコン間のコン
タクト面積を縮小出来、又シリサイド層を用いることに
より半導体装置の高速化が期待出来る・
As described above, according to the present invention, the contact area between two layers of polycrystalline silicon can be reduced, and by using a silicide layer, it is expected that the speed of semiconductor devices will be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例を示す断面図、第2図、第3図はそれぞ
れ本発明の実施例を示す断面図である。 1は半導体基板、2は絶縁膜、3は1層目多結晶シリコ
ン層、4は1層目多結晶シリコン層と2層目多結晶シリ
コン層との間の眉間絶縁膜、5は2層目多結晶シリコン
層、6は2層目多結晶シリコン層と配線材料との間の層
間絶縁膜、7は配線材料、8は高融点金属シリサイド層
(例えばモリブデンシリサイド)・9は低融点金属シリ
サイド層(例えば白金シリサイド)t−それぞれ示す。 代理人 弁理士 円 原 諸
FIG. 1 is a sectional view showing a conventional example, and FIGS. 2 and 3 are sectional views showing an embodiment of the present invention. 1 is a semiconductor substrate, 2 is an insulating film, 3 is a first polycrystalline silicon layer, 4 is an insulating film between the eyebrows between the first polycrystalline silicon layer and the second polycrystalline silicon layer, and 5 is a second layer Polycrystalline silicon layer, 6 is an interlayer insulating film between the second polycrystalline silicon layer and wiring material, 7 is wiring material, 8 is a high melting point metal silicide layer (for example, molybdenum silicide), 9 is a low melting point metal silicide layer (e.g. platinum silicide) t-respectively. Agent Patent Attorney Yen Hara

Claims (1)

【特許請求の範囲】[Claims] 1.2層以上の多結晶半導体層を有する半導体装置に於
て、二つの多結晶半導体層間に金属半導体化層が形成さ
れていることを特徴とする半導体装置。
1. A semiconductor device having two or more polycrystalline semiconductor layers, characterized in that a metal semiconductor layer is formed between two polycrystalline semiconductor layers.
JP17743483A 1983-09-26 1983-09-26 Semiconductor device Pending JPS6068634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17743483A JPS6068634A (en) 1983-09-26 1983-09-26 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17743483A JPS6068634A (en) 1983-09-26 1983-09-26 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6068634A true JPS6068634A (en) 1985-04-19

Family

ID=16030873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17743483A Pending JPS6068634A (en) 1983-09-26 1983-09-26 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6068634A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0455339A2 (en) * 1990-04-30 1991-11-06 STMicroelectronics, Inc. Polycrystalline silicon contact structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5131189A (en) * 1974-09-11 1976-03-17 Sony Corp HANDOTA ISOCHI
JPS567450A (en) * 1979-06-29 1981-01-26 Ibm Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5131189A (en) * 1974-09-11 1976-03-17 Sony Corp HANDOTA ISOCHI
JPS567450A (en) * 1979-06-29 1981-01-26 Ibm Semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0455339A2 (en) * 1990-04-30 1991-11-06 STMicroelectronics, Inc. Polycrystalline silicon contact structure
US5279887A (en) * 1990-04-30 1994-01-18 Sgs-Thomson Microelectronics, Inc. Polycrystalline silicon contact structure
JPH0737885A (en) * 1990-04-30 1995-02-07 Sgs Thomson Microelectron Inc Structure of contact in integrated circuit element and formation thereof
USRE37769E1 (en) 1990-04-30 2002-06-25 Stmicroelectronics, Inc. Methods for fabricating memory cells and load elements

Similar Documents

Publication Publication Date Title
KR970023863A (en) Semiconductor device and manufacturing method
US4883772A (en) Process for making a self-aligned silicide shunt
JPS6068634A (en) Semiconductor device
JP2762473B2 (en) Method for manufacturing semiconductor device
JPH1092764A (en) Method for forming polycide layer for semiconductor element
JP2719569B2 (en) Semiconductor device
JPS633436A (en) Manufacture of semiconductor device
JPS6068633A (en) Semiconductor device
JPS59112641A (en) Semiconductor device and manufacture thereof
KR930020574A (en) Semiconductor device manufacturing method
JPS59121855A (en) Semiconductor device
JPS63114261A (en) Self-aligning base shunt for transistor
JPS6120141B2 (en)
JP3161044B2 (en) Method for manufacturing heterojunction bipolar transistor integrated circuit device
JPH01268150A (en) Semiconductor device
JP3331671B2 (en) Semiconductor device and manufacturing method thereof
JPS61176135A (en) Semiconductor device
JPS5929458A (en) Semiconductor device
JPS60242662A (en) Semiconductor device
JPS59211249A (en) Wirings forming method
JPS63104448A (en) Semiconductor integrated circuit device
JPH0235719A (en) Manufacture of semiconductor device
JPS6376424A (en) Manufacture of semiconductor device
JPH0222544B2 (en)
JPH0530056B2 (en)