JPS6068508A - Method of forming zinc oxide-tin oxide mixture transparent conductive thin film - Google Patents

Method of forming zinc oxide-tin oxide mixture transparent conductive thin film

Info

Publication number
JPS6068508A
JPS6068508A JP17519083A JP17519083A JPS6068508A JP S6068508 A JPS6068508 A JP S6068508A JP 17519083 A JP17519083 A JP 17519083A JP 17519083 A JP17519083 A JP 17519083A JP S6068508 A JPS6068508 A JP S6068508A
Authority
JP
Japan
Prior art keywords
transparent conductive
tin oxide
zinc oxide
thin film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17519083A
Other languages
Japanese (ja)
Inventor
純 桑田
阿部 惇
新田 恒治
洋介 藤田
富造 松岡
任田 隆夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17519083A priority Critical patent/JPS6068508A/en
Publication of JPS6068508A publication Critical patent/JPS6068508A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光電変換デバイスに用いる透明導電膜の形成
方法に関する。特に同一エツチング液に対して異なる溶
解速度を持つ膜を積層してテーパを有する透明導電膜を
構成する場合に極めて有用な酸化亜鉛−酸化錫混合透明
導電薄膜の形成力法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for forming a transparent conductive film used in a photoelectric conversion device. In particular, the present invention relates to a method for forming a zinc oxide-tin oxide mixed transparent conductive thin film, which is extremely useful when forming a tapered transparent conductive film by laminating films having different dissolution rates in the same etching solution.

(従来例の構成とその問題点) 透明導電膜はエレクトロルミネセンス(EL)表示装置
をはじめ各種光電変換装置に用いられている。これらの
なかでドツトマトリックス型薄膜EL素子においては、
発光層や絶縁層は互いに交差するストライプ状の透明導
電膜と反射電極によシミ界が印加される。とのため、透
明導電膜のストライプの断面形状が矩形に近いと、その
エツジ部分に高電界が仰加され、絶縁破壊を生じて、ス
トライプ状電極の断線や画質の劣化といった重大な問題
が起こる。これは透明導電膜の膜厚が大きい程顕著であ
る。
(Structure of conventional example and its problems) Transparent conductive films are used in various photoelectric conversion devices including electroluminescence (EL) display devices. Among these, in dot matrix type thin film EL elements,
A spot field is applied to the light-emitting layer and the insulating layer by a striped transparent conductive film and a reflective electrode that intersect with each other. Therefore, if the cross-sectional shape of the stripes of the transparent conductive film is close to rectangular, a high electric field will be applied to the edges, causing dielectric breakdown and causing serious problems such as disconnection of the striped electrodes and deterioration of image quality. . This becomes more noticeable as the thickness of the transparent conductive film increases.

断面形状にゆるやかなチー/母がついていれば、絶縁破
壊の問題は解決できる。従来、・ぞターンのエツジをゆ
るやかなチー/P状に加工する方法としては、断面が円
弧状のホトレジストヲマスクとして用い、酸化錫膜をス
・ぐツタエツチングする方法(「真空」第24巻第12
号、第653〜659頁(1981))やエツチング液
に対して溶解速度が異なる例えば2種類の透明導電膜を
積層し、ポトレジストでマスクして同時にケミカルエツ
チングする方法が提案されている。前者のスパッタエツ
チング法では、試料を陰極の上に並べて置く必要があり
、一度に多数の素子全エツチングすることができず、し
かもエツチングレイトラ上げるために7.バッタリング
放電電力を増すと、フォトレジストが加熱されて硬化し
除去できなくなる等の欠点があり非常に生産性が低いと
いう問題点があった〇 一方、後者のケミカルエツチングする方法では、・ぐタ
ーンのエツジをゆるやかなテーパ状にするためにエツチ
ング液に対する溶解速度が10倍はど異なる透明導電膜
が必要である。透明導電膜としては酸化錫全添加した酸
化インジウム(ITO)からなる膜が広く用いらnてお
り、この透明導電膜のエツチング液の溶解速度に比べて
約10倍大きい速度を持つ透明導電膜として酸化亜鉛−
酸化錫の混合膜があるがこの系では、ターケ9ット中の
両者の組成比が1対1の時に約180倍、3対7のとき
に約1.3倍と組成比によって大きく異なるので組成比
を精確に制御することが重要である。
If the cross-sectional shape has a gentle curve, the problem of dielectric breakdown can be solved. Conventionally, the method of processing the edge of a zigzag into a gentle chi/p shape is to use a photoresist with an arc-shaped cross section as a mask and to etch the tin oxide film (as described in "Vacuum" Vol. 24). 12
No. 653-659 (1981)), a method has been proposed in which, for example, two types of transparent conductive films having different dissolution rates in an etching solution are laminated, masked with a photoresist, and chemically etched at the same time. In the former sputter etching method, it is necessary to place the samples side by side on the cathode, making it impossible to etch all the elements at once, and to increase the etching rate. When the battering discharge power is increased, the photoresist is heated and hardened, making it impossible to remove it, resulting in extremely low productivity.On the other hand, the latter chemical etching method In order to make the edges of the turns gently tapered, a transparent conductive film is required whose dissolution rate in the etching solution is 10 times different. As a transparent conductive film, a film made of indium oxide (ITO) with all tin oxide added is widely used.As a transparent conductive film, the dissolution rate of this transparent conductive film is about 10 times higher than that of the etching solution. Zinc oxide
There is a mixed film of tin oxide, but in this system, the composition ratio of the two in Tarquet 9t varies greatly depending on the composition ratio: about 180 times when it is 1:1, and about 1.3 times when it is 3:7. It is important to accurately control the composition ratio.

ターダ、トとして酸化亜鉛と酸化錫の粉体全混合した粉
末を用いると、スノクッタ中に酸化亜鉛と酸化錫のスパ
ッタ速度が異なるためにターケゝット表面の組成が時々
刻々と変化し、再現性が悪いという欠点があった。しか
し、生産性の面では、この酸化亜鉛−酸化錫混合膜が再
現性よく作製されれば、前者のスパッタエッチ法よシ有
利である。
When a powder mixture of zinc oxide and tin oxide is used as a target, the composition of the target surface changes from time to time due to the different sputtering speeds of zinc oxide and tin oxide during the snocutter, making it difficult to reproduce. It had the disadvantage of being bad. However, in terms of productivity, if this zinc oxide-tin oxide mixed film can be produced with good reproducibility, it is more advantageous than the former sputter etching method.

(発明の目的) 本発明は、チー・ぐを有する透明導電膜の生産性を向上
させることができる酸化亜鉛−酸化錫混合膜の形成方法
を提供することを目的とする。ケミカルエツチングを行
なう際に用いるエツチング液に対する溶解速度を、酸化
錫を添加した酸化インジウム(ITO)のそれの200
倍から5倍の範囲で一定の溶解速度に操作できるように
、酸化亜鉛と酸化錫の組成比を自在に調節できる特徴金
持った酸化亜鉛−酸化錫透明導電薄膜形成方法を提供す
るものである。
(Objective of the Invention) An object of the present invention is to provide a method for forming a zinc oxide-tin oxide mixed film that can improve the productivity of a transparent conductive film having a silicon oxide. The dissolution rate in the etching solution used when performing chemical etching is 200% that of indium oxide (ITO) added with tin oxide.
To provide a method for forming a zinc oxide-tin oxide transparent conductive thin film, which has the feature that the composition ratio of zinc oxide and tin oxide can be freely adjusted so that the dissolution rate can be controlled at a constant rate in the range of 5 times to 5 times. .

(発明の構成) 上記の目的を達成するため、本発明は、酸化亜鉛磁器及
び酸化錫磁器とで構成される複合ターゲット金用い、不
活性ガスと酸素の混合ガス中でス・マツタリング法によ
シ基板上に薄膜全形成する。
(Structure of the Invention) In order to achieve the above object, the present invention uses a composite target gold composed of zinc oxide porcelain and tin oxide porcelain, and uses a smearing method in a mixed gas of inert gas and oxygen. A thin film is completely formed on the substrate.

不ン占イ住ガスとしては、アルコ゛ンを用いることがで
きる。
Alkon can be used as the unoccupied gas.

特に、本発明は、酸化亜鉛磁器及び酸化錫磁器の各々の
ス・ぐツタ速度が、アルゴンと酸素の分圧比丘°変えた
場合に両者で異なった分圧比依存性を示すため、複合タ
ーケ゛ットを用いた場合、基板上に形成さ扛る薄膜の組
成が、このアルゴンと酸素の分圧比で操作できる現象を
見い出したことに基づいている。したがって、ケミカル
エツチングする場合、エツチング液に対して溶解速度を
約200イ帛の範囲で自由に操作できることになり、透
明導電膜の幅の広いパターンにおいてゆるやかなテーパ
状にケミカルエツチングすることができる。
In particular, the present invention uses a composite target because the suction speeds of zinc oxide porcelain and tin oxide porcelain exhibit different partial pressure ratio dependencies when the partial pressure ratio of argon and oxygen is changed. This is based on the discovery that when used, the composition of the thin film formed on the substrate can be controlled by the partial pressure ratio of argon and oxygen. Therefore, when performing chemical etching, the dissolution rate in the etching solution can be freely controlled within a range of about 200 patties, and a wide pattern of the transparent conductive film can be chemically etched in a gentle taper shape.

(実施例の説明) 以下、本発明方法の一実施例について示す。膜生成条件
として、ターケ゛ッド及び基板間距離が約7cn1、ガ
ス圧が10−’Torrから10−2Torrの範囲に
ある場合について述べる。第1図は、本発明にかかる酸
化亜鉛及び酸化錫磁器の複合ターケ゛ットを示したもの
であり、−素片が2 X 12.5 X O,3cm3
の酸化亜鉛磁器りと酸化錫磁器2の磁器板を酸化亜鉛と
酸化錫の面積比が1対Jになるようにストライノ°状に
並べて複合ターケ゛ットとした。イiし、酸化亜鉛磁器
の空孔率は約35−%、酸化錫磁器の空孔率は約15%
であった。
(Description of an Example) An example of the method of the present invention will be described below. As film formation conditions, a case will be described in which the distance between the target and the substrate is about 7 cn1, and the gas pressure is in the range of 10-' Torr to 10-2 Torr. Figure 1 shows a composite target of zinc oxide and tin oxide porcelain according to the present invention;
The porcelain plates of zinc oxide porcelain 2 and tin oxide porcelain 2 were arranged in a strino shape so that the area ratio of zinc oxide to tin oxide was 1:J to form a composite target. The porosity of zinc oxide porcelain is approximately 35%, and the porosity of tin oxide porcelain is approximately 15%.
Met.

5X10Torrのアルゴンガス中でこの複合ターグッ
トヲ用い、マダネトロン型スパッタリング装置を用いて
室温で基板上に薄膜形成を行ない、薄膜中の組成をX線
マイクロアナライザでdlll iしたところ、2 Z
nO−35nOzの複合膜が形成さ扛た。
Using this composite target in argon gas at 5 x 10 Torr, a thin film was formed on a substrate at room temperature using a madanetron sputtering device, and the composition of the thin film was analyzed using an X-ray microanalyzer.
A composite film of nO-35nOz was formed.

また、同一ガス圧、同一温度でアルゴンと酸素ガスを2
対1に分圧した混合ガスを用いて薄膜形成を行なった場
合、組成は、3 ZnO−25n02となり、アルゴン
及び酸素ガスの分圧比により酸化亜鉛と酸化錫の組成比
が変えられることが明らかとなった。−力、エツチング
速度を見ると、例えば電子ビーノ、蒸着法で作製された
ITO膜に比べて、21no −3Sn02膜は1倍以
下と小さく、3 ZnO−25n02膜は逆に200倍
よりはるかに大きいことが見出さした。そこで、アルゴ
ン及び酸素ガスの分圧比全400対1から10対1まで
変化し、エツチング液に対する溶解速度を測定したとこ
ろ、表に示すような結果を得た。
Also, two argon and oxygen gases are used at the same gas pressure and temperature.
When a thin film is formed using a mixed gas with a partial pressure of became. - When looking at the force and etching speed, the 21no-3Sn02 film is less than 1 times smaller than the ITO film produced by electronic vino or vapor deposition, while the 3ZnO-25n02 film is much more than 200 times larger. This is what I found out. Therefore, when the partial pressure ratio of argon and oxygen gases was varied from 400:1 to 10:1 and the rate of dissolution in the etching solution was measured, the results shown in the table were obtained.

表 表中のエツチング速度比は、ZnO−SnO2系膜と電
子ビーム蒸着法で作製されたITO膜のエツチング速度
(4,5nnv’分)との比である。
The etching rate ratio in the table is the ratio of the etching rate (4.5 nnv' minutes) of the ZnO-SnO2 film and the ITO film produced by electron beam evaporation.

このように同一複合ターケ゛ットを用いても、酸化亜鉛
と酸化錫の組成比が、アルコゝン及び酸素ガス圧比によ
り変わり、エツチング速度が40倍程度の範囲内でコン
トローlしできることが確かめらg、ITO透明導電膜
の幅広い・ぞターンにおい)でもゆるやかなテーパ状に
ケミカルエツチングさ扛ることも確認さnた。その結果
を第2図に示す。
It has been confirmed that even when the same composite target is used, the composition ratio of zinc oxide and tin oxide changes depending on the alcon and oxygen gas pressure ratio, and the etching rate can be controlled within a range of about 40 times. It was also confirmed that the ITO transparent conductive film was chemically etched in a gentle tapered shape even in a wide range of patterns. The results are shown in FIG.

このようにアルコ゛ンと酸素ガス圧比全400対1にい
 500 Xの酸化亜鉛−酸化錫透明導電薄膜3を、2
500Xの膜厚全持つITO膜4上に形成シ、エツチン
グすると、角度6が約11度のチー・ぐ状・ぐターンと
なり、力゛ス分圧比が10対1では、約03度のチー・
ぐ状・?ターンが形成されることが確かめられた。本発
明によりアルコ8ンとW波素の分圧比の制御に充分留意
することにより、1T)H1性よく一定組成の酸化亜鉛
−酸化錫透明導電膜75(形成されることも確かめられ
た。
In this way, a zinc oxide-tin oxide transparent conductive thin film 3 of 500× was deposited at a total pressure ratio of 400:1 between alkon and oxygen gases.
When formed and etched on the ITO film 4 with a full film thickness of 500X, the angle 6 becomes a chi-shaped curve of about 11 degrees, and when the force partial pressure ratio is 10:1, the angle 6 becomes a chi-shaped curve of about 0.3 degrees.
Gusty? It was confirmed that a turn was formed. It was also confirmed that by paying sufficient attention to the control of the partial pressure ratio of the alconite and W wave elements according to the present invention, a zinc oxide-tin oxide transparent conductive film 75 (1T) having good H1 properties and a constant composition can be formed.

さらに、基板温度を室温から200℃まで変えても室温
状態同杼にアルコ゛ンと酸素の分圧比を変えることによ
りm成が変化し、ガス圧、分圧比の条件を選択すること
により、適当なエツチング速度金持つ酸化亜鉛−酸化錫
透明導電膜が得られた。
Furthermore, even if the substrate temperature is changed from room temperature to 200°C, the m composition changes by changing the partial pressure ratio of alkon and oxygen at the same room temperature, and by selecting the conditions of gas pressure and partial pressure ratio, appropriate etching can be achieved. A zinc oxide-tin oxide transparent conductive film with high-speed gold was obtained.

ガス圧も10”−”Torrから10−2Torrの範
囲では、同様の結果が得られた。なお本4発明の実施例
では、マグネトロンス・ぐツタリング装置を用いたが他
のス・ぞツタリング装Nt用いても同様の結果が得られ
ることが推測さ扛る。さらに複合ターケ゛ノトヲ用いた
ことに」:9タ一ケ゛ツト表面の組成比は変化せず極め
て再現性に箔んでいた。
Similar results were obtained when the gas pressure ranged from 10''-''Torr to 10-2 Torr. In the embodiment of the fourth invention, a magnetron gutter ring device was used, but it is presumed that similar results can be obtained even if other strut ring devices Nt are used. Furthermore, since the composite substrate was used, the composition ratio on the surface of the nine particles did not change and was extremely reproducible.

(発明の効果) 以上のように、本発明によれば、適度なエツチング速度
金持つ酸化亜鉛−酸化錫混合透明導電薄膜がITO膜上
に形成でき、幅広い・平ターンにおいても透明導電膜の
断面形状がゆるやかなテーパ状全なすようケミカルエツ
チングが再現良く行なえ、かつその生産性が高くなると
いう効果を有するものである。なお、本発明にかかる酸
化亜鉛−酸化錫混合透明導電薄膜は、単独でも透明導電
膜として用いることができることはいう1でもない。
(Effects of the Invention) As described above, according to the present invention, a zinc oxide-tin oxide mixed transparent conductive thin film having an appropriate etching rate can be formed on an ITO film, and the cross section of the transparent conductive film can be formed even in wide and flat turns. Chemical etching can be performed with good reproducibility so that the shape is completely tapered, and the productivity is increased. It should be noted that the zinc oxide-tin oxide mixed transparent conductive thin film according to the present invention can be used alone or as a transparent conductive film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例における複合ターケ8ソ1
〜の平面図、第2図は、本発明の酸化IIF釦−酸化錫
透明導電薄膜をITO膜上に形成し、エツチングした膜
の断面全横形的に示した図である。 1・・酸化亜鉛磁器、2・・・酸化錫磁器、3・・酸化
亜鉛−酸化錫透明導電薄膜、4・ ITO膜、5ガラス
基板。 特許出願人 松下電器産業株式会社 代 理 人 星 野 恒 司 第1図 第2図
FIG. 1 shows a composite turret 8-sol 1 in an embodiment of the present invention.
FIG. 2 is a plan view of the IIF oxide button-tin oxide transparent conductive thin film of the present invention, which is formed on an ITO film and shown in full horizontal cross-section through etching. 1. Zinc oxide porcelain, 2. Tin oxide porcelain, 3. Zinc oxide-tin oxide transparent conductive thin film, 4. ITO film, 5. Glass substrate. Patent applicant: Matsushita Electric Industrial Co., Ltd. Agent: Hisashi Hoshino Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1) 酸化亜鉛磁器と酸化錫磁器とで構成される複合
ターゲットを用い、不活性ガスと酸素の混合ガス中でス
パッタ1)、フグ法によシ薄膜を形成することを特徴と
する酸化亜鉛−酸化錫混合透明導電薄膜形成方法。
(1) Zinc oxide characterized in that a thin film is formed by sputtering in a mixed gas of inert gas and oxygen using a composite target composed of zinc oxide porcelain and tin oxide porcelain by the blowfish method. - Method for forming a tin oxide mixed transparent conductive thin film.
(2)形成される薄膜の酸化亜鉛と酸化錫の組成比が1
.4から0.7の範囲にあるように、前記不活性ガスと
酸素の混合比を設定することを特徴とする特許請求の範
囲第(1)項記載の酸化亜鉛−酸化錫混合透明導電薄膜
形成方法。
(2) The composition ratio of zinc oxide and tin oxide in the thin film formed is 1
.. Formation of a zinc oxide-tin oxide mixed transparent conductive thin film according to claim (1), characterized in that the mixing ratio of the inert gas and oxygen is set within a range of 4 to 0.7. Method.
JP17519083A 1983-09-24 1983-09-24 Method of forming zinc oxide-tin oxide mixture transparent conductive thin film Pending JPS6068508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17519083A JPS6068508A (en) 1983-09-24 1983-09-24 Method of forming zinc oxide-tin oxide mixture transparent conductive thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17519083A JPS6068508A (en) 1983-09-24 1983-09-24 Method of forming zinc oxide-tin oxide mixture transparent conductive thin film

Publications (1)

Publication Number Publication Date
JPS6068508A true JPS6068508A (en) 1985-04-19

Family

ID=15991855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17519083A Pending JPS6068508A (en) 1983-09-24 1983-09-24 Method of forming zinc oxide-tin oxide mixture transparent conductive thin film

Country Status (1)

Country Link
JP (1) JPS6068508A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347963A (en) * 1989-03-01 1991-02-28 Toshiba Corp Sputtering target
WO2008084865A1 (en) * 2007-01-12 2008-07-17 Sumitomo Chemical Company, Limited Material for transparent conductive film
US7875155B2 (en) 2006-03-16 2011-01-25 Sumitomo Chemical Company, Limited Transparent electrically conductive film and method for production thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347963A (en) * 1989-03-01 1991-02-28 Toshiba Corp Sputtering target
US7875155B2 (en) 2006-03-16 2011-01-25 Sumitomo Chemical Company, Limited Transparent electrically conductive film and method for production thereof
WO2008084865A1 (en) * 2007-01-12 2008-07-17 Sumitomo Chemical Company, Limited Material for transparent conductive film

Similar Documents

Publication Publication Date Title
US6221520B1 (en) Transparent conductive film and process for forming a transparent electrode
US3926763A (en) Method for fabricating a gas discharge panel structure
JP3766453B2 (en) Transparent conductive film and method for producing the same
JPS6068508A (en) Method of forming zinc oxide-tin oxide mixture transparent conductive thin film
JP3094421B2 (en) Method for forming transparent conductive film
JPH10239697A (en) Substrate with transparent conductive film and its manufacture
JPH06160876A (en) Transparent electrode plate and its production
JP3489844B2 (en) Transparent conductive film and method for producing the same
JPS5987834A (en) Forming method of thin-film
EP0109589A1 (en) Electroluminescent thin film display device
JP2007302909A (en) Thin film and electrode made of the same
JP3369728B2 (en) Laminated transparent conductive substrate
JPH0465803A (en) Formation of dielectric oxide thin film
JPH04341707A (en) Transparent conductive film
JPH0147844B2 (en)
JPH056319B2 (en)
JPH0215163A (en) Formation of thin alumina film
JPH05224220A (en) Formation of pattern of substrate for liquid crystal display element
US6960497B2 (en) Method for forming pi-type assistant electrode
JPS601704A (en) Method of forming pattern of transparent conductive film
JPS6322404B2 (en)
JPS63241846A (en) Heat-proof black electrode
JP2651940B2 (en) Substrate with transparent conductive film
JPH09174749A (en) Transparent conductive film
JPH03295193A (en) Manufacture of thin film el element