JPS6066469A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6066469A
JPS6066469A JP17481483A JP17481483A JPS6066469A JP S6066469 A JPS6066469 A JP S6066469A JP 17481483 A JP17481483 A JP 17481483A JP 17481483 A JP17481483 A JP 17481483A JP S6066469 A JPS6066469 A JP S6066469A
Authority
JP
Japan
Prior art keywords
substrate
bevel
semiconductor device
type
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17481483A
Other languages
Japanese (ja)
Inventor
Toshio Ogawa
敏夫 小川
Yukio Igarashi
五十嵐 行雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17481483A priority Critical patent/JPS6066469A/en
Publication of JPS6066469A publication Critical patent/JPS6066469A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Thyristors (AREA)

Abstract

PURPOSE:To check damage during the process of production, and to enhance manufacturing yield and reliability of a semiconductor device by a method wherein aslant processed surfaces are formed to the peripheral edge parts of a substrate, and inorganic material insulating films are formed on the surfaces. CONSTITUTION:A P type emitter layer 32 and a P type base layer 33 are formed respectively on both the surfaces of an N type semiconductor substrate 30, and an N type emitter region 34 is formed. The sides of the substrate 30 are scraped by a grinder to form respectively negative bevel faces B1, B2 making an angle of 3 deg. or less (the bevel angle theta) with P-N junction faces PN1, PN2. Thermal oxidation is performed to form oxide films as surface covering films 41, and metal films such as aluminum, etc. are evaporated to be patterned to form an anode electrode 35, a cathode electrode 36 and a gate electrode 37. Because there exists no part cut out making an acute angle with the substrate 30 by the bevel process, mechanical strength is improved.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は例えばサイリスタ等、大型電力素子等の半導体
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor device such as a large power device such as a thyristor.

〔発明の技術的背景〕[Technical background of the invention]

第1図に従来のサイリスクの構造の1例を示す。図にお
いて、Nペース領域となるN形のシリコン半導体基板1
の裏面にP形のPエミッタ層2が、上面側にP形のPベ
ース層3がそれぞれ形成場れており、このPペース層3
の表面領域にN十形のNエミッタ領域4が形成されてい
る。
Figure 1 shows an example of the structure of a conventional Cyrisk. In the figure, an N-type silicon semiconductor substrate 1 serving as an N pace region is shown.
A P-type P emitter layer 2 is formed on the back surface of the P-type P emitter layer 2, and a P-type P base layer 3 is formed on the top surface of the P-type P base layer 3.
An N0-shaped N emitter region 4 is formed in the surface region.

そして、基板裏面のPエミッタ層2の表面にはアノード
電極5が、基板上面のNエミッタ領域4上にはカソード
電極6が、Nエミッタ領域4の形成されないPベース層
3の露出面上にはダート電極7がそれぞれ形成されてい
る。
An anode electrode 5 is placed on the surface of the P emitter layer 2 on the back surface of the substrate, a cathode electrode 6 is placed on the N emitter region 4 on the top surface of the substrate, and a cathode electrode 6 is placed on the exposed surface of the P base layer 3 where the N emitter region 4 is not formed. Dirt electrodes 7 are formed respectively.

ところで高耐圧用のサイリスクなどでは、PN接合の露
出している基板側面での電界集中によって素子耐圧が決
定される場合が多い。そこでこの表面での耐圧を持たせ
るために接合表面での形状を傾斜させたベベル構造が採
用される。
By the way, in high-voltage devices such as SiRisk, the device breakdown voltage is often determined by electric field concentration on the side surface of the substrate where the PN junction is exposed. Therefore, in order to provide pressure resistance on this surface, a bevel structure is adopted in which the shape of the bonding surface is inclined.

図において傾斜面の8はPエミッタ層2とN形基板1と
によシ形成される第1PN接合面PN1に対し施した第
1ベベル而であシ、溝部の9はN型基板1とPベース3
とによジ形IlX、される第2PN接合面PN2に対し
施した第2ベベル而である。
In the figure, the inclined surface 8 is the first bevel applied to the first PN junction surface PN1 formed by the P emitter layer 2 and the N type substrate 1, and the groove 9 is the first bevel applied to the first PN junction surface PN1 formed by the P emitter layer 2 and the N type substrate 1. base 3
This is the second bevel applied to the second PN joint surface PN2, which has a special shape IlX.

このようなベベル面としては正ベベル面と負ベベル面の
2種がある。すなわち、第2図において第1導電型の第
1不純物層2ノとこの第1不純物層21より不純vIJ
濃度の筒い第2導電型の第2不純物層22とが形成する
PN接合面と、とのPN接合面が露出するベレットの側
面とのなす角゛のうち高濃度の第2不純物層22 (i
iljにできる角θが90’を超える場合を正ベベル、
90゜未満の場合を負ベベルと呼ぶ。第2図は負ベベル
の場合を示しており、第1図の装置は、N型の基板1に
対し、Pエミッタ層2およびPベース層3の方が不純物
濃度が高く、正R′ベル面が形成されたものである。
There are two types of such bevel surfaces: positive bevel surfaces and negative bevel surfaces. That is, in FIG. 2, the first impurity layer 21 of the first conductivity type and the impurity vIJ
The second impurity layer 22 with high concentration ( i
If the angle θ formed at ilj exceeds 90', it is a positive bevel.
A case where the angle is less than 90° is called a negative bevel. Figure 2 shows the case of a negative bevel, and the device in Figure 1 has a higher impurity concentration in the P emitter layer 2 and the P base layer 3 than in the N type substrate 1, and the positive R' bevel surface. was formed.

〔背景技術の問題点〕[Problems with background technology]

ここで、基板に施された周縁加工部のうち、第1ベベル
面8においてはPエミッタ層2の角部■、第2ベベル面
9においては開口部■の部分が鋭角に切り出されるため
、製造過程中に損傷しやすいものである。こり、らの部
分の損傷は耐圧の劣化を招くため、製造工程において十
分に注意を払う必要があシ、製造歩留も低いものであっ
た。
Here, among the peripheral edge processing portions applied to the substrate, the corner portion (■) of the P emitter layer 2 on the first bevel surface 8 and the opening portion (■) on the second bevel surface 9 are cut out at an acute angle. It is easily damaged during the process. Damage to these parts leads to a deterioration of the withstand voltage, so it is necessary to pay sufficient attention during the manufacturing process, and the manufacturing yield is also low.

また、このようなベベル面8,9上には図に示すように
表面被覆材1oとして例えば7.、 、’y’ンゴム、
ソリコンワニス等のソリg <m 層系のものを塗布す
る。
Further, as shown in the figure, on such beveled surfaces 8 and 9, a surface covering material 1o, for example 7. , ,'y'n rubber,
Apply a layer type material such as Solicon varnish.

しかしながら、このような塗布材を塗布する際に、特に
第2ベベル面9の溝部内に気泡が残留しゃすく、安定し
た素子特性が得られにくがった。
However, when applying such a coating material, air bubbles remained particularly in the grooves of the second bevel surface 9, making it difficult to obtain stable device characteristics.

また、このような樹脂系の表面被偉材は信頼性において
不十分であシ、その信頼性を補うために、装置の外囲器
として高価な気密封止パッケージを用いる必要があった
Further, such resin-based surface covering materials have insufficient reliability, and in order to compensate for the reliability, it is necessary to use an expensive hermetically sealed package as an envelope for the device.

〔発明の目的〕[Purpose of the invention]

本発明は上記のような点に鑑みなされたもので、製造過
程中での損傷を防止でき、高価な気密封止・ぐッケーソ
を用いる必要のない製造歩留および信頼性の商い半導体
装置を提供しようとするものである。
The present invention has been made in view of the above points, and it is an object of the present invention to provide a semiconductor device that can prevent damage during the manufacturing process and has a high manufacturing yield and reliability without the need for expensive hermetic sealing and sealing. This is what I am trying to do.

〔発明の概要〕[Summary of the invention]

すなわち本発明に係る半導体装置では、基板の周縁部に
ベベル加工としてPN接合面に対して3°以下の角度を
なす負ベベルの傾斜加工面を形成し、この傾斜加工面の
表面に例えばシリコン酸化膜或いは半絶縁性多結晶シリ
コン膜或いはこれらの膜の積層膜からなる信頼性の高い
無機系絶縁膜を形成するようにしたものである。
That is, in the semiconductor device according to the present invention, a negative bevel inclined surface forming an angle of 3° or less with respect to the PN junction surface is formed as a bevel processing on the peripheral edge of the substrate, and the surface of this inclined processed surface is coated with silicon oxide, for example. A highly reliable inorganic insulating film made of a film, a semi-insulating polycrystalline silicon film, or a laminated film of these films is formed.

〔発明の実施例〕[Embodiments of the invention]

以下図面を参照して本発明の一実施例につきめL明する
An embodiment of the present invention will be explained below with reference to the drawings.

第3図において、N型の半導体基板30の裏面にP型不
純物を拡散させ、P型のP゛エミッタ層32を形成し、
同様に基板30の上面側からもP型不純物全拡散させて
P型のPベース層33を形成する。 ′ この後、基板30上面のほぼ中央部にN型不純物を選択
拡散させてPペース層33内にNエミッタ領域34を形
成する。尚、」二配半尋体基板30の、Pエミッタ層3
2およびl)ベース層33に挾まれたN型領域はNベー
ス層3ノとなる。
In FIG. 3, a P-type impurity is diffused on the back surface of an N-type semiconductor substrate 30 to form a P-type P emitter layer 32,
Similarly, P type impurities are completely diffused from the upper surface side of the substrate 30 to form a P type P base layer 33. ' Thereafter, an N-type impurity is selectively diffused almost in the center of the upper surface of the substrate 30 to form an N emitter region 34 in the P space layer 33. In addition, the P emitter layer 3 of the two-layer half-layer substrate 30
2 and l) The N-type region sandwiched between the base layers 33 becomes the N base layer 3.

次いで上記基板の上面および裏面に保穫膜として予め例
えばレジスト膜等全塗布し、この基板30の側面を例え
ば40に示すような断面形状の刃先を有する研磨装置に
より削る。これによシ、基板3υの裏面側のNベース層
3ノとPエミツタ層32とにより形成烙れる第1のPN
接合面PN、に対して3°以下の角(ベベル角θ)をな
す負ベベル面Blを、基板、JOの上面側にはNベース
層3ノとPベース層33とにより形成される第2PN接
合面PN2に灯して3°以下の角をなす負ベベル面B2
をそれぞれ形成する。尚、第3図の装置ではNベース層
3ノは、Pエミッタ層32およびPベース層33よシも
不純物濃度が低い。
Next, a protective film such as a resist film is applied to the entire upper and lower surfaces of the substrate in advance, and the side surface of the substrate 30 is ground by a polishing device having a cutting edge having a cross-sectional shape as shown at 40, for example. This allows the first PN to be formed by the N base layer 3 and the P emitter layer 32 on the back side of the substrate 3υ.
A negative bevel surface Bl forming an angle (bevel angle θ) of 3° or less with respect to the bonding surface PN is formed on the upper surface side of the substrate and the JO with a second PN formed by an N base layer 3 and a P base layer 33. Negative bevel surface B2 forming an angle of 3° or less with respect to the joint surface PN2
form each. In the device shown in FIG. 3, the N base layer 3 has a lower impurity concentration than the P emitter layer 32 and the P base layer 33.

この後、混酸(硝酸、フッ酸等の混合液)を用いて上記
負ベベル面B1+B2の破砕層(研削後の荒れた面)を
除去する。
Thereafter, the crushed layer (rough surface after grinding) of the negative bevel surfaces B1+B2 is removed using a mixed acid (a mixed solution of nitric acid, hydrofluoric acid, etc.).

次いで、第4図に示すようにこの基板3oを例えば熱酸
化することによシ、酸化膜全表面被覆膜4ノとして基板
30表面に形成し、妊らにアノード電極およびカソード
電極およびダート電極を形成すべき部位の上記酸化膜を
除去し、アルミニウム等の金属膜の蒸着とその・やター
ニングを行って、Pエミッタ層32上にアノード電極3
5、Nエミッタ領域34上にカソード電極36、Nエミ
ツタ層の形成されないPイー2層33上にケゝ−ト電極
37をそれぞれ形成する。
Next, as shown in FIG. 4, this substrate 3o is thermally oxidized, for example, to form an oxide film covering the entire surface of the substrate 30 on the surface of the substrate 30, thereby forming an anode electrode, a cathode electrode and a dirt electrode. The anode electrode 3 is formed on the P emitter layer 32 by removing the oxide film in the region where the P emitter layer 32 is to be formed, and then depositing a metal film such as aluminum and turning it slightly.
5. A cathode electrode 36 is formed on the N emitter region 34, and a cathode electrode 37 is formed on the P-E2 layer 33 on which the N emitter layer is not formed.

ここで、上記負ぺづル面B、およびB2はそれぞれPN
接合出IPN、、PN、が基板3oに露出した部分付近
での電界集中を緩和させるために施すものである。従っ
て、第5図に示゛すように、第1のPN接合面PN、お
よび第2のPN接合面PN、のそれぞれの露出部付近に
のみ傾斜加工を施し、負ベベル面HI+83を形成して
もよい。
Here, the negative pezzle planes B and B2 are each PN
This is done in order to alleviate the electric field concentration near the portion where the junction output IPN, PN, is exposed on the substrate 3o. Therefore, as shown in FIG. 5, slope processing is performed only near the exposed portions of the first PN bonding surface PN and the second PN bonding surface PN to form a negative bevel surface HI+83. Good too.

第6図には、第5図に示すような構造の装置の、基板3
0表面の平坦部から傾斜加工面の端部までの加工部の高
さδと素子耐圧との関係を種々のベベル角θについて調
べた結果を示す。
FIG. 6 shows the substrate 3 of the device having the structure shown in FIG.
The results of investigating the relationship between the height δ of the machined part from the flat part of the zero surface to the end of the inclined machined surface and the element breakdown voltage for various bevel angles θ are shown.

ここで、対象とした素子におけるNベース層3ノ、Pエ
ミッタ層32、Pベース層330層厚をそれぞれ500
 fim、 120μm、 120μmに設定した。
Here, the thicknesses of the N base layer 3, the P emitter layer 32, and the P base layer 330 in the target device are each 500 mm.
fim, 120 μm, and 120 μm.

この第6図のグラフに示すようにベベル面とPN接合面
とがなすベベル角θは1°前後が好ましく、ベベル面と
して、3°以下のベベル角のものを形成すれば十分であ
る。−1:/こ、ベベル角θが小さい場合には基板30
 ’、(通′Iルの平盤状のウェー・と殆んど同様の取
り扱いができるが、ベベル角θを大きくすると十分な素
子耐圧が得られないばか9でなく、保護膜4)の形成工
程が煩雑化する恐れがあるので好ましくない。
As shown in the graph of FIG. 6, the bevel angle θ between the bevel surface and the PN junction surface is preferably about 1°, and it is sufficient to form the bevel surface with a bevel angle of 3° or less. -1: /ko, if the bevel angle θ is small, the substrate 30
(Although it can be handled in almost the same way as the flat wafer in the 3-way block, if the bevel angle θ is increased, sufficient device breakdown voltage cannot be obtained. Instead of 9, the protective film 4) is formed This is not preferable because it may complicate the process.

以上のように紀4図に示す装置では、ベベル加工により
基板30に鋭角に切り出される部分がないため、機械的
な強度が改善される。第5図に示す装置では基板30の
中央部の面とベベル面Bl 、B2との間に段差部42
が形成されるが、この段差は非常に小さく、しかもこの
段差部分はPN接合面PN、、PN2からは十分に離れ
ており、損傷による耐圧劣化の問題は殆んどない。
As described above, in the device shown in Fig. 4, the mechanical strength is improved because there is no part cut out at an acute angle in the substrate 30 due to the bevel processing. In the apparatus shown in FIG.
is formed, but this step is very small, and this step is sufficiently far away from the PN junction surfaces PN, PN2, so there is almost no problem of breakdown voltage deterioration due to damage.

捷だ、第4図に示す装置では基板30ヘペベル而BI+
B2および基板30の側面に渡って被a膜47として酸
化膜を形成したが、PN接合面から基板仙■捷での距離
tは例えば数叫程度にもなるため、第5図に示すように
基板30の側面に被覆膜41を形成しなくとも素子の耐
圧上問題とならない。
In the device shown in Figure 4, the board 30 is BI+.
An oxide film was formed as the a-coat film 47 over B2 and the side surface of the substrate 30, but since the distance t from the PN junction surface to the substrate center is, for example, several meters, as shown in FIG. Even if the coating film 41 is not formed on the side surface of the substrate 30, there is no problem in terms of the withstand voltage of the element.

さらに、第4図に示す装置では、PN接合部上の被&膜
4ノとして熱酸化膜を用いたが、これは従来のンリコち
ゴムやシリ5う樹脂等の有機系の被覆膜に比らべ極めて
信頼性が高いものである。
Furthermore, in the device shown in Figure 4, a thermal oxide film was used as the coating on the PN junction. It is extremely reliable compared to other methods.

また、被覆膜41としては熱酸化により形成したシリコ
ン酸化膜の他にCVD (ChemicalVapou
r Deposition )法により賑化膜ヲベベル
面BI+B2に堆積させて形成してもよい。さらにまた
、ベベル面B、、B2上に半絶縁性多結晶シリコン(5
rpos )を例えば形成しても信頼性の高い素子を得
ることができる。さらに、シリコン酸化膜と、半絶縁性
多結晶シリコンと全積層して形成してもよいし、上記/
リコン酸化膜或いは半絶縁性多結晶シリコンの被覆膜上
にシリ≦ろゴムやワニス或いはポリイミド樹脂等の塗布
膜を積層被着させてもよい。
Further, as the coating film 41, in addition to a silicon oxide film formed by thermal oxidation, CVD (Chemical Vapor
It may also be formed by depositing the activated film on the beveled surface BI+B2 by a method (rDeposition). Furthermore, semi-insulating polycrystalline silicon (5
For example, a highly reliable device can be obtained by forming a semiconductor device (rpos). Furthermore, the silicon oxide film and the semi-insulating polycrystalline silicon may be entirely laminated, or the above/
A coating film of silica rubber, varnish, polyimide resin, or the like may be laminated and deposited on the silicon oxide film or the semi-insulating polycrystalline silicon coating film.

尚、従来の正ベベル面を有する素子はMOな場れる。こ
こで、アルミニウムシリコン合金は、削熱温度が低いた
め、例えば熱酸化等の尚温処理を伴う工程を施すことが
できない。従って従来構造の装置のベベル加工面に酸化
膜を形成することは不■」能である。
Incidentally, a conventional element having a positive bevel surface can be used as an MO. Here, since the aluminum-silicon alloy has a low heat cutting temperature, it cannot be subjected to a process involving still temperature treatment such as thermal oxidation. Therefore, it is impossible to form an oxide film on the beveled surface of the conventionally structured device.

〔発明の効果〕〔Effect of the invention〕

以上のようにして、第5図に示す構造全肩する素子を試
作した結果、第1図に示した従来の素子に比らベンリコ
ン十専体基板への損傷が減少し、約10%の製品歩留の
向上を図ることができた。
In the above manner, we prototyped an element with the structure shown in Figure 5, which had a full shoulder structure.As a result, damage to the Venlicon board was reduced by about 10% compared to the conventional element shown in Figure 1. We were able to improve yield.

−また、本発明による装置を商い気密性金山するリーク
速度10’−’(atm・cc/see :lの気密封
止/4’ノケージに組み込み高温^湿試験全行ったとこ
ろ、従来の装置との信頼性の違いを確認することができ
なかったが、気密性の低いリーク速度10”” [at
m−cc/sec ]の・ぐツラグ−に組み込んたとこ
ろ、168時間の高温高湿試験により従来の装置では約
半数のものにもれ電流および順電圧降下の増加がみられ
たのに対し、本発明による装置では試験の施さ、れた全
ての装置にもれ電匠および順電圧降下の変動がみられな
かった。
- In addition, when the device according to the present invention was installed in a hermetically sealed/4' cage with a leak rate of 10'-' (ATM cc/see: l) and was subjected to high temperature and humidity tests, it was found that it was different from the conventional device. Although it was not possible to confirm the difference in the reliability of the
When installed in a 168-hour high-temperature, high-humidity test, an increase in leakage current and forward voltage drop was observed in approximately half of the conventional equipment. No leakage current or fluctuation in forward voltage drop was observed in all devices tested in accordance with the present invention.

以上のように本発明によれば、製造過程ての損傷を受け
にくく高い製造歩留を有す゛ると共に信頼性にも優れた
半導体装置f:提供できる。
As described above, according to the present invention, it is possible to provide a semiconductor device f: which is less susceptible to damage during the manufacturing process, has a high manufacturing yield, and is also excellent in reliability.

尚、本発明は上記実施例に限定きれることなく、例えば
各部の4電型を上記実施例と逆にして構成してもよく、
さらに露出したPN接合m1にベベル加工を施す必要の
ある素子で多れば例えばトライアック等、他の装置にも
適用F=J能である。
It should be noted that the present invention is not limited to the above embodiment, and for example, the 4-electrode type of each part may be configured in reverse to the above embodiment.
Furthermore, if there are many devices that require bevel processing on the exposed PN junction m1, the F=J function can be applied to other devices such as triacs.

【図面の簡単な説明】 第1図は従来の牛4体装置の4Kj造をツノ<す断面図
、第2図はベベル構造を説明するだめの断面図、嬉3図
および第4図はそれぞれ本発明の一実施例に係る半導体
装置を製造過6i順に示すルr面図、第5図は本発明の
他の実施例に係る半導体装置を示す断面図、第6図は本
発明による半導体装置の耐圧と加工部の高さδとの関係
とベベル角θをパラメータとして示すグラフである。 30・・・半導体基板、3ノ・・・Nペース層、32・
・・Pエミッタ層、33・・・Pペース層、34・・・
Nエミッタ領域、35・・・アノード電極、36・・・
カソード電極、37・・ダート電極、B1 、B2・・
・ベベル面、41・・・前曲被覆膜。 出願人代理人 弁理士 鈴 江 武 彦第4図 第6図 力り二vPめ高さ
[Brief explanation of the drawings] Figure 1 is a cross-sectional view of the 4KJ structure of a conventional four-body device, Figure 2 is a cross-sectional view of the bevel structure, and Figures 3 and 4 are respectively FIG. 5 is a sectional view showing a semiconductor device according to another embodiment of the present invention; FIG. 6 is a cross-sectional view showing a semiconductor device according to another embodiment of the present invention; FIG. 3 is a graph showing the relationship between the withstand pressure and the height δ of the processed portion, and the bevel angle θ as parameters. 30... Semiconductor substrate, 3... N paste layer, 32...
...P emitter layer, 33...P pace layer, 34...
N emitter region, 35... anode electrode, 36...
Cathode electrode, 37...Dart electrode, B1, B2...
- Beveled surface, 41... forward curved coating membrane. Applicant's representative Patent attorney Takehiko Suzue Figure 4 Figure 6 Riki 2 vP height

Claims (4)

【特許請求の範囲】[Claims] (1) 第1導電形の半導体層とこの半導体層とPN接
合面を形成する第2導電形の半導体層とが積層して形成
され上記PN接合面が半導体基板の側面に露出した半導
体装置において、上記半導体基板の側面に上記PN接合
面に対し3°以下の角度をなす傾斜加工面を有し、この
傾斜加工面上に無機系保護膜が形成されていることを特
徴とする半導体装置。
(1) In a semiconductor device in which a semiconductor layer of a first conductivity type and a semiconductor layer of a second conductivity type forming a PN junction surface are stacked, and the PN junction surface is exposed on a side surface of a semiconductor substrate. . A semiconductor device, wherein a side surface of the semiconductor substrate has a sloped surface forming an angle of 3 degrees or less with respect to the PN junction surface, and an inorganic protective film is formed on the sloped surface.
(2)上記無機系保護膜がシリコン酸化膜であることを
特徴とする特許請求の範囲第1項記載の半導体装置。
(2) The semiconductor device according to claim 1, wherein the inorganic protective film is a silicon oxide film.
(3)上記無機系保護膜が半絶縁性シリコン多結晶膜で
あることを特徴とする%W「請求の範囲第1項記載の半
導体装置。
(3) The semiconductor device according to claim 1, wherein the inorganic protective film is a semi-insulating silicon polycrystalline film.
(4)上記無機系保護膜がシリコン酸化膜おJひ半絶縁
性シリコン多結晶膜の積層膜であることを特徴とする特
許請求の範囲第1項記載の半導体装置。
(4) The semiconductor device according to claim 1, wherein the inorganic protective film is a laminated film of a silicon oxide film and a semi-insulating silicon polycrystalline film.
JP17481483A 1983-09-21 1983-09-21 Semiconductor device Pending JPS6066469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17481483A JPS6066469A (en) 1983-09-21 1983-09-21 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17481483A JPS6066469A (en) 1983-09-21 1983-09-21 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6066469A true JPS6066469A (en) 1985-04-16

Family

ID=15985127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17481483A Pending JPS6066469A (en) 1983-09-21 1983-09-21 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6066469A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134974A (en) * 1984-06-14 1986-02-19 ブラウン・ボバリ・ウント・シ−・アクチエンゲゼルシヤフト Silicon semiconductor element and method of producing same
JP2008186922A (en) * 2007-01-29 2008-08-14 Mitsubishi Electric Corp Semiconductor device and manufacturing method thereof
RU2564048C1 (en) * 2011-11-30 2015-09-27 Инфинеон Текнолоджиз Биполар Гмбх Унд Ко. Кг Semiconductor structural element with optimised boundary termination

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3397349A (en) * 1961-02-17 1968-08-13 Motorola Inc High voltage semiconductor rectifier with a sloping surface across barrier edge
JPS53107283A (en) * 1977-03-02 1978-09-19 Toshiba Corp Thyristor
JPS554975A (en) * 1978-06-26 1980-01-14 Mitsubishi Electric Corp Semiconductor device for power application and manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3397349A (en) * 1961-02-17 1968-08-13 Motorola Inc High voltage semiconductor rectifier with a sloping surface across barrier edge
JPS53107283A (en) * 1977-03-02 1978-09-19 Toshiba Corp Thyristor
JPS554975A (en) * 1978-06-26 1980-01-14 Mitsubishi Electric Corp Semiconductor device for power application and manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134974A (en) * 1984-06-14 1986-02-19 ブラウン・ボバリ・ウント・シ−・アクチエンゲゼルシヤフト Silicon semiconductor element and method of producing same
JP2008186922A (en) * 2007-01-29 2008-08-14 Mitsubishi Electric Corp Semiconductor device and manufacturing method thereof
RU2564048C1 (en) * 2011-11-30 2015-09-27 Инфинеон Текнолоджиз Биполар Гмбх Унд Ко. Кг Semiconductor structural element with optimised boundary termination

Similar Documents

Publication Publication Date Title
US4179794A (en) Process of manufacturing semiconductor devices
JPS5976466A (en) Planar type semiconductor device
JPS6066469A (en) Semiconductor device
US5136348A (en) Structure and manufacturing method for thin-film semiconductor diode device
TW201732870A (en) Method for producing a plurality of components and component
US5441599A (en) Lightly doped drain etch method for semiconductor manufacture
JPS6286838A (en) Manufacture of integrated circuit
JPS6246534A (en) Manufacture of glass coated semiconductor chip
JPS607178A (en) Semiconductor device
US3934331A (en) Method of manufacturing semiconductor devices
JPH01232762A (en) Mesa type semiconductor basic substance
JPS6218055Y2 (en)
JPS587815A (en) Semiconductor device
JP2023022738A (en) Photodetection device and method for manufacturing photodetection device
KR860000507B1 (en) Semiconductor apparatus and manufacturing method
JPS62156820A (en) Manufacture of semiconductor element
JPS59150471A (en) Semiconductor device
JPS59208731A (en) Manufacture of semiconductor device
JPH08222558A (en) Manufacture of semiconductor element
JPS60170977A (en) Manufacture of semiconductor device
JPS58101462A (en) Semiconductor device
RU2163410C1 (en) Silicon structure manufacturing process
JPS5950116B2 (en) diffusion. Alloy semiconductor device
JPS62117375A (en) Semiconductor device
JPS59100563A (en) Manufacture of mesa type semiconductor device